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Abstract

Identifying that parts of a knowledge base (KB)
are irrelevant to a specific query is a powerful
method of controlling search during problem
solving. However, finding methods of such ir-
relevance reasoning and analyzing their utility
are open problems. We present a framework
based on a proof-theoretic analysis of irrele-
vance that enables us to address these prob-
lems. Within the framework, we focus on a
class of strong-irrelevance claims and show that
they have several desirable properties. For
example, in the context of Horn-rule theo-
ries, we show that strong-irrelevance claims can
be derived efficiently either by examining the
KB or as logical consequences of other strong-
irrelevance claims. An important aspect is that
our algorithms reason about irrelevance using
only a small part of the KB. Consequently,
the reasoning is efficient and the derived ir-
relevance claims are independent of changes to
other parts of the KB.

1 Introduction

Control of reasoning is a major issue in scaling up prob-
lem solvers that use declarative representations, since
inference is slowed down significantly as the size of the
knowledge base (KB) is increased. A key factor for the
slow down is the search of the inference engine through
parts of the KB that are irrelevant to the query at hand.
Moreover, since a KB is designed for a variety of tasks,
it is often at a level of detail that is too refined for a spe-
cific query. Often, we have additional knowledge about
the domain or about the KB that can be used to cut
down drastically the space that the inference engine has
to search. One important type of such knowledge con-
sists of irrelevance claims stating that certain formulas
are redundant with respect to, or will not be part of any
derivation of a given class of queries, and consequently,
those formulas can be removed. Such irrelevance claims
can be either given by the user or derived automatically
by the system.

* Supported by a fellowship from Shell Oil Company.

138 Automated Reasoning

Yehoshua Sagiv
Dept. of Computer Science
Hebrew University
Jerusalem, Israel
(sagiv@cs.huji.ac.il)

Effective use of irrelevance reasoning requires a formal
understanding of the issues involved in such reasoning,
as has been done in the context of probabilistic reason-
ing [Pearl, 1988]. The work of [Subramanian, 1989] pre-
sented a framework for stating irrelevance claims, and
raised several issues concerning irrelevance reasoning.
However, two issues remain largely open. The first is
to find efficient methods for automatically deriving ir-
relevance claims. The second issue is to determine the
utility of removing irrelevant knowledge, since removing
irrelevant parts of a KB does not always improve effi-
ciency. For example, redundant formulas (which may be
considered irrelevant) can often speedup problem solvers

To address these issues, we first present a space of defi-
nitions of irrelevance, based on a proof-theoretic analysis
of the notion. This space enables us to make finer dis
Unctions than those possible in the framework of [Subra-
manian, 1989]. The main distinction we make is between
weak-irrelevance claims and strong-irrelevance claims.
Roughly, a formula is strongly irrelevant to a query if
it cannot appear in any of its derivations, whereas it
is weakly irrelevant if it does not appear in some of
its derivations. Strong-irrelevance claims turn out to
have some desirable properties. For example, in many
cases it is possible to find efficiently formulas in the KB
that are strongly irrelevant to a given query. In some
cases it is even possible to find all strongly-irrelevant
formulas. Furthermore, unlike weak irrelevance, remov-
ing strongly-irrelevant formulas from a KB may only
improve the performance (and sometimes the improve-
ment is by orders-of-magnitude, as we will show). We
investigate strong irrelevance in detail for Horn-rule KBs
and describe novel algorithms for efficiently deriving new
strong-irrelevance claims from those given by the user.

Our algorithms consider, in addition to the rules of the
KB, only constraints on the ground facts that may possi-
bly appear (e.g., order constrr'nts, sorts), as opposed to
looking at the ground facts themselves. Consequently,
if the ground facts change, the irrelevance claims still
hold and, therefore, the cost of irrelevance reasoning is
amortized over many queries. The main difficulty in ir-
relevance reasoning is finding properties satisfied by all
possible derivations of a given query. To do so, we use
a powerful tool, the query tree, first introduced in [Levy
and Sagiv, 1992]. The query tree encodes finitely all
possible derivations of the query (even when rules are re-



cursive). The query tree facilitates automatic derivation
of irrelevance claims that follow from an examination of
the KB and irrelevance claims supplied by the user.

2 Formalizing Irrelevance

2.1 Preliminaries

We consider a knowledge base (KB) of closed formulas
A in first-order predicate calculus. We assume that the
inference mechanism of the KB employs a set of inference
rules §. A derivation D of a closed formula ¢ from A
is a sequence of formulas, oy, ..., apn, such that ¢y = ¢
and for each i {1 < i < n), either o; € A, a; is a logical
axiom, or ey is the result of applying a rule in § to
some elements o, , ..., oy that appear prior to o;. The
formulas ay,,..., e are said to be tmmediate subgoals
of a;. The set of formulas in D that do not have any
subgoal is called the base of the derivation, denoted by
Base(D). The set Base(D) represents a “support set”
for 4. We consider only derivations in which every a; is
a subgoal of ¥ (not necessarily an immediate subgoal).

A guery is represented by a formula ¢. If ¢ is a closed
formula (i.e., has no free variables), then the answer
ts true if the the inference mechanism can find some
derivation of ¥ from A, and false otherwise.! 1f ¢ con-
tains free variables, the answer is the set of assignments
{or the free variables, such that the resulting closed for-
mulas are derivable from A;? in this case, a derivation is
a set containing a single derivation for each answer. A
yuery may have several derivations from a given knowl-
edge base, and we denote the set of those derivations by
Da(y) (note that if ¥ has free variables, then Da(¢) is
a set of sets of dertvattons).

2.2 Definitions of Irrelevance

Our goal is to express and reason wilh irrelevance claims
of the form “X is irrelevant {o § with respect to the theory
A.” and so, we need to give such claims a formal defini-
tion. X is called the subject of the irrelevance claim. In
this paper, we discuss the case in which X is a formuia
or set of formulas. Other irrelevance subjects such as
objects, predicates and distinctions between predicates
are discussed in [Levy, 1993].

1n order for a definition of irrelevance to be useful, it
should give us information that could be used effectively.
For example, we would like to know whether irrelevance
claims can be derived, how the claims change when the
KB changes, and what is the utility of removing irrele-
vant facts. Unfortunately, there is no single best defini-
tion of irrelevance that both matches our intuition and
enables us to eatablish such properties. For example, we
can define a formula ¢ to be irrelevant to ¢ if there is
some derivation of ¢ that does not contain ¢, or alter-
natively, we can require that ne derivation of ¢ contains
¢. To make the needed distinctions, we present a space

"We can return unknown if neither ¢ nor ~~¢ are derivable.
However that does not affect our discussion.

2An alternative definition often considered is finding one
variable binding that satisfies the query formula. However,
this distinction does not affect our discussion.

of definitions of irrelevance and investigate the different
properties of various definitions within this space.

It should be noted that our analysis is not an attempt
to formalize the common sense notion of irrelevance or
argue for properties of such a notion (as done, for ex-
ample, by [Gardenfors, 1978]). Our goal is to utilize
the notion of irrelevance to speed inference and, there-
fore, we analyze the ways in which it can arise in in-
ference. Specifically, we analyze irrelevance in a proof-
theoretic setting by considering the possible derivations
(or more generally, paths) that an inference mechanism
can pursue in answering a query. In contrast, the analy-
sis of [Subramanian, 1989] is meta-theoretic, i.e., it con-
siders only the formulas in the KB, not the possible
derivations of the query. Consequently, we are able to
make finer distinctions than those made in Subrama-
nian's framework.

Definitions in the space vary along two axes. The first
considers different ways of defining irrelevance of a sub-
ject ¢ with respect to a single derivation D of the query
1. We capture this by a definition of derivation irrel-
evance, denoted by DI{¢, D). The following are a few
examples of how [ can be defined:

e DI,(.D) iff é ¢ Base(D).

o DIy(¢,D)iftd ¢ D.

o DIa(s, D) iff Base(D) i ¢.

o DI¢, D) Y Base(D} ¥ ¢, 9.

Definition DI, requires ¢ not to be in the support set of
D. Defimtion M, 1s stronger and requires ¢ not 1o ap-
pear in [, Definition D3 is even stronger and requires
that ¢ not be a logical consequence of the formulas in
I}, while D4 requires the same also for —¢. Note that
¢ is not necessarily a formula in the KB.

Requiring that [ holds for all possible derivations
of the query may be too restrictive. Therefore, in the
second axis we examine different restrictions on the set of
derivations we consider. For example, we can require DI
to hold for the set of minimal derivations® of the query.
or {or the set all derivations bounded by some resource
constraint. Alternatively, we can require DI to hold for
some derivation in the chosen set. For example, we can
require that DJ hold for some minimal derivation of the
query ? Given a predicate D/ and a set of derivations, a
definition of irrelevance in our space 1s as follows:

Definition 2.1: Let A be a KB, ¢ be a closed formula,
¥ be a query, and Dy be a subset of the set D4y (4) of all
possible derivations of ¢. Let DJ{r, D) be a condition
specifying when a formula * is irrelevant with respect to
a derivation D).

The formula ¢ is said to be weakly irrelevant to ¢ with re-
spect to A, DI and Dy, denoted by Wi(d, v, A, DI Dy),
if DI{¢, D) holds for some D € Dy.

3Given some criteria of minimality for derivations. See
Section 3 for a definition of minimality in the case of Horn-
rule KBs.

*We can also consider other ways of quantifying over a set
of derivations, such as requiring that D/ holds for some per-
cent of the derivations. In this paper, however, we consider
only universal and existential quantifications.
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The formula ¢ is said to be strongly irrelevant to
¥ with respect to A, D and Dy, denoted by
SIg. ¢, A, DI, Dy), if DI(¢, D) holds for every D € Dy.
If Da(v) is empty (i.e., ¥ is not derivable from A), then
¢ is both weakly and strongly irrelevant to ¢.

We often refer to irrelevance of a set of formulas or to
irrelevance of formulas with respect to = set of KBs. To
define irrelevance of a set of formulas, we extend the defi-
nition of DI as follows. If & is a set of formulas, we define
DI(®, D) to hold if DI{¢i, D) holds for every ¢; € . To
define irrelevance for a set of knowledge bases T, we de-
fine Wi(¢,v, L, DI, Dgy) to hold if Wi{é, ¢, A, DI, Dp)
holds for every A € %, and similarly for $1.% The fol-

lowing example illustrates the various definitions.

Example 2.2: Lel v = CanTA(Fred,101) be the
query and Ag be the following knowledge base:

ry : AttendClass(z,y) = Pass{z.y).

ry : PassEram(r,y) = Pass{z,y).

ra: Pasa(z,y) A TookGradCourse(z) = CanTA{x, y).
re 1 Passlz, y) Ay > 200) = TookGradCourse(z).

g1 . AltendClass(Fred, 101).
g3 : PassEzam(Fred, 202).

Note that Wl{gs, 3, Ag, D15, Da(¥}) holds (i.e., g2 15
weakly irrelevant Lo 3), because only one of ¢y and g9
1s needed to prove . Atom g4 is strongly irrelevant
to ¥ (i.e., §F(gq, ¥, No, Di3, Da(¥)) holds), since it 1s
not used in any derivation of ¢». CanTA(Fred, 202)
ts strongly irrelevant to ¢ if DI, is used for I}
(i.e., SI{CanTA(Fred, 202), v. &o. DIy, Pal(y}) holds),
but not if D3 is used instead of D/5. 1

The space encompasses several definitions of irrele-
vance and related notions discussed in the past. The def-
initions of [Subramanian, 1989] are instances of weak ir-
relevance; in particular, although her definitions are not
in terms of derivations, the main definition of [Subrama-
nian, 1989)] is equivalent to Wi (¢, v, A, DIs, Da(¥)}.
The definition of update independence in [Elkan, 1990)
is equivalent to WI{¢, ¢, A, DI, Da(y)) (see {Levy
and Sagiv, 1993]}). The definition of irrelevance given
in [Srivastava and Ramakrishnan, 1992] is equivalent lo
SI(¢, ¥, A, DI, Da(¥)). In [Levy and Sagiv, 1992}, we
discuss strong irrelevance with respect to the set Dy of
minimal derivations.

Several properties can be shown for classes of defini-
tions in the space, mostly distinguishing between weak
and strong irrelevance. Here, we mention only two of

them. For full details, see [Levy, 1993].

Observation 2.3: Closure under union. When a
system needs to determine whether it can use all the ir-
relevance claims it has, or whether using certain ones will
falsify others, it needs to know whether they are closed
under union of their subjects. Weak-irrelevance claims
do not add up in general, but for strong-irrelevance

*Note that for every A € L, the set Dy is actually dif-
ferent. We assume that Dy is a characterization of a set of
derivations that can be instantiated for any given A (eg., all
minimal derivations}.

®Assuming the inference engine is complete. A variant
of this definition, which is given in [Subramanian and Gene-
sereth, 1987, ia obtained by using DI,
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g2 : PassEzam(Fred, 101).
g1 : PasaEzam(Fred, 161).

claims we have a sufficient condition for adding up that
depends on DJI. Specifically, if the following holds for
any derivation D and sets ®;, do (as, for example,
the case of DI,-DI,),

DI®,, DYADI(®2, D) = D!({¢1,¢2}‘ D}

then for any choice of Py and T,
SHO 0. Z, D1 DA SH Py, ¢, L, D1, DPy) =
SI({@I, ¢2}1 ‘bn Eu Dl,po)

Observation 2.4: Problem-solving payoff. The
utility of removing irrelevant formulas is an important
question. For weak irrelevance, this is a subtle is-
sue. In fact, explanation-based learning systems do ex-
actly the opposite by adding redundant rules, which
are weakly irrelevant. In Example 2.2, adding the rule
AttendClass{z, ) A (y > 200) = CanT A(r,y) may
speed the solving of some quertes. The utility of adding
such rules is a subject of ongoing research (e.g.. [Minton,
1988]). For strong irrelevance, savings are guaranteed
for many cases. For example, when considering all
derivations of the query (i.e., Py = Dal(y)]. deriving
¥ from A — & costs no more than deriving it from A if
SI{®.¢. A, DI;, Pa(¥)) holds. This property also holds
if we consider a set of derivations Ty, such that the in-
ference engine is always guaranteed to find one of the
derivations in Dy before it finds others. In the next sec-
tion, we will illustrate that removing strongly-irrelevant
formulas can result 1n significant time savings and not
only in space savings.

3 Deriving Irrelevance Claims

A key issue in relevance reasoning is the ability to decide
which formulas are irrelevant to a given query. Specifi-
cally, two questions are of interest. First, given a knowl-
edge base and a query, which formulas in the knowledge
base are irrelevant to the query? Second, if we are given
an irrelevance claim by a user, can we derive other irrele-
vance claims that logically follow. This section considers
these questions for the case of KBs consisting of a set V
of Horn rules and a set G of ground atomic facts

We consider atomic queries that are either ground or
contain free variables. A derivation of a query uses a
single rule of inference: Given an instance of a rule from
the KB, the consequent of the rule can be inferred if
the antecedents were inferred previously. A derivation
D is conveniently viewed as a tree, as shown in Figure 1
A derivation tree (and the corresponding derivation) is
minimal if there is no pair of identical goal-nodes, n;
and n,, such that n; is an ancestor of n,. A formula
¢ is said to be irrelevant to a derivation D if ¢ does
not appear in D (i.e., we use DI/2 from the previous
section). We distinguish two sets of predicates in the KB.
the eztenstonal predicates (EDB) that appear in G and
the intensional predicates that appear in the consequents
of the rules. As a syntactic convenience, we assume that
base predicates do not appear in the consequents of any
of the rules.

Deriving irrelevance claims requires that we establish
properties of all possible derivations of a query, and that
entails examining the whole KB. This is, of course, im-
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Figure 1: A derivation tree.

practical and defeats the original goal of relevance rea-
soning. Therefore, we would like to derive irrelevance
claims that depend only on a small and stable part of
the KB and are independent of changes to other parts of
the KB. In many applications, the bulk of the KB con-
sists of ground facts that are updated frequently, while
the rules of the KB form a small and stable part. There-
fore, we are not going to examine the ground facts of KB
directly. Instead, we will use a set C of high-level con-
straints describing the ground facts that may possibly
appear in the KB (e.g., Age(x,y) = y < 150).

Constraints may also appear in rules, in the form of
interpreted predicates (such as the order predicates =, #,
< and <, or sort predicates). Many interactions between
rules can be detected by analyzing the semantics of these
interpreted predicates. Furthermore, interpreted predi-
cates play an important role in many applications, and
often, reasoning with them can be done efficiently. Note
that in particular, the variable patterns in the rules can
be viewed as constraints (using equality).

We would like our relevance reasoning to incorporate
both the semantics of the interpreted predicates appear-
ing in rules and the semantics of the constraints imposed
on the possible ground facts. Formally, it means that we
have to consider the following problem. Given a set P
of rules, a set C of constraints on the ground facts, and
a query q, find (some or all) rules and ground facts that
are irrelevant to q in every KB of (P, (), where Z(P,()
denotes the set of all KBs consisting of V and a set G of
ground facts, such that G satisfy the constraints of C.

The distinctions made in our space of definitions also
correspond to different answers to the above problem.
First, we observe that determining weak irrelevance is
undecidable, even in very restricted cases:

Proposition 3.1: Determining whether a formula 4> is
weakly irrelevant to a query q, with respect to DI, and
the set of all derivations Pa(q), is undecidable even if
the rules of V contain no function symbols, C is empty
and there are no interpreted predicates in rules.

This result is proved by a reduction from the rule-
redundancy problem [Shmueli, 1987]. Algorithms that
find some weakly-irrelevant formulas, but may fail to
identify all of them, are described by [Sagiv and Yan-
nakakis, 1981] and [Sagiv, 1988].

For strong irrelevance, the situation is much better.
In [Levy and Sagiv, 1992], we have shown that strong

irrelevance is decidable for function-free Horn rules and
interpreted predicates. The result shows that strong ir-
relevance is decidable when considering either the set
of all derivations Pafg)} or only the set of all minimal
derivations.” The algorithms cover a wide range of in-
terpreted predicates, e.g., order and sort constraints.®
When function symbols are introduced, determining
strong irrelevance is undecidable for KB's with recursion.
However, the algorithms described remain sound, i.e., if
they deem a formula irrelevant, then it is irrelevant.

Example 3.2 : Let step, bigStep, badPoint and

good Point be the EDB predicates, where the rules are:

71 : bad Point{z) A path{z, ¥} A good Potnt(y) =
goodPath{z, ¥).

ry : tink({z,y) = path{z, p).

r3 c dink(z, 2} A path{z,y) = path(z, y).

vy @ step(x, y) => link{z, ).

rs ; bigSteplz, ¥y} = link(z, ¥).

The following constraints are known about the ground facts:
bad Point(z) =% 100 < £ < 200, steplz,¥y) => z < ¥.

good Point{z) = 150 < z < 170,

bigStep(z,y) = x < 100 Ay > 200.

Figure 2 shows that Rule rs is strongly irrelevant
to the query goodPath(x,y), since the constraints on
big Step contradict those of the nodes that might be
unified with the consequent of rs. Moreover, we can
also deem many ground facts strongly irrelevant, such
as all badPoint(x), where z > 170, all step(r, y}, where
# > 170 or y < 100, and all the facts for bigStep. |

In the next section, we will describe an algorithm for
deriving logical conclusions from irrelevance claims given
by the user. The algorithm uses a powerful tool, called
the query tree, first introduced in [Levy and Sagiv, 1992].
Below, we briefly describe some aspects of query trees.

3.1 The Query Tree

There are several difficulties in deriving irrelevance
claims. First, we need to establish properties of the set of
all derivations of the query without enumerating them.
Second, we are given the rules of the KB, but have only
a partial knowledge about the ground facts in the KB.
Finally, we want to enforce the semantics of the inter-
preted predicates. The query tree provides a compact
representation of precisely the set of all derivations of
the query that satisfy the semantics of the interpreted
predicates.

The query tree is a symbolic AND-OR tree consisting
of goal nodes and rule nodes (see Figure 2). The root of
the tree is a goal node labeled with the query. A goal-
node g has a child for every rule whose consequent unifies
with g, and the actual child is the rule resulting from the
unification with g. A rule node has a goal-node child for

"The algorithms for these two cases differ in
complexity

8Formally, we require that the constraint language C sat-
isfy several properties. We must be able to determine when
two sentences in the constraint language are equivalent. Fur-
thermore, there must be a finite number of non-equivalent
sentences when the number of variables is fixed. For full de-
tails, see [Levy and Sagiv, 1992].

their
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good Path{z,y)

F1

{100 < z < y < 170,y > 150}

badPoint(zx) ///ﬁ\ good Poini(y)

{100 < z < 170}

ra

{100 < £ < y < 170,y > 150} link(z,2)

~ _7’1 |
Fa r4

L
[

step(z,y)
{100 < £ < y < 170,y > 150}

{100 < = < y < 170,y > 150}

/A\

link(z, y) {100 < £ < z < 170}

{150 < y < 170}
ra

path(z,y)
{100 < z < y < 170,y > 150}

stepdr, 2) {100 < £ < z < 170}

Figure 2: The query tree of Example 3.2. The labels of the rule nodes are omitted for clarity. The expanded

equivalent of the node path({z,y) is path(z, y).

every conjunct in its antecedent. If a KB has recursive
rules, such a simple minded construction of the tree will
not terminate. In order to get a finite representation of
all possible derivations, we attach a /abelto each node in
the tree. The label of a node contains the tightest con-
straint that needs to be satisfied by tuples generated in
that node. The label is inferred by the constraint literals
appearing in the rules and the constraints known about
the possible ground facts that may appear in the KB.
A goal node will be further expanded only if there is no
other expanded node in the tree that has an isomorphic
label. Note that computing the labels of the nodes may
require several phases of propagation through the nodes
in the tree.

A query-tree T encodes a set of symbolic derivations.
A symbolic derivation is like a derivation except that
some constants are replaced by variables, and it repre-
sents the set of derivations that can be obtained by as-
signing constants to those variables. A symbolic deriva-
tion is encoded by the query tree if it can be constructed
as follows. Start from the root and choose one rule-node
child and its subgoal nodes. Inductively, let t be the tree
created so far. If n is a leaf of t for an IDB predicate,
let n' be the goal node in T that has a label isomorphic
to n and was expanded (n' may be n itself). Expand n
with one of the children of n'.

When the KB contains no function symbols, the query
tree encodes precisely the set of derivations of the query
that use formulas that satisfy the constraints. Specifi-
cally:

* For any derivation € Dy that uses only ground
facts that satisfy the constraints of C, there exists
a symbolic derivation d and an assignment <r, such
that e(d) = d' and d is encoded by the query tree.

+ For every symbolic derivation d encoded by the tree,
there is a variable assignment ¢, such that e(d) €
Dy and the leaves of o{d) satisfy C.

Consequently, the query tree provides a sound and
complete inference mechanism for strong irrelevance
(with respect to Pa(g)). Specifically, a rule is strongly
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irrelevant Lo ¢ if and only if an instance of it does not ap-
pear in the tree. A ground fact p(a,,..., a,) 1s strongly
trrelevant if and only if ay, .. .. 2, does not satisfy the la-
bel of any goal node of p in the query tree. When the K3
contains function symbols (and recursion) the query tree
encodes a supersel of Dalg), and therefore, it provides
only a sound inference mechaniam for strong irretevance.

By refining the labels of nodes in the tree, the query
tree can also be made to encode precisely the set of mini-
mal dertvations of the query (see [Levy and Sagiv, 1992)])
and the set of all derivations when some of the EDB lit-
erals appear negated (see [Levy et al., 1993]).

The complexity of building the tree {and therefore of
deriving S} is linear in the number of rules in P, It
may be exponential in the arity of predicates. However,
arities of predicates tend to be very small {(c.g., framme
systems usually employ mostly binary predicates). Fur-
thermore, we believe that exponential running time is
not likely to occur in practice (since finding examples
with exponential running time requires careful crafting
of the rules),® and so, building the query tree is not an
expensive operation.

3.2 Irrelevance Facts from an External Source

Often a user may be able to supply the system with ad-
ditional irrelevance claims based on his knhowledge about
the ground facts in the KB {or those that may appear
in the KB). Specifically, the user may know that a set
of formulas ¢ is strongly irrelevant to the query ¢ in
the current state of the KB. This knowledge may not
be expressible as explicit constraints on ground facts.'?
Clearly, if we are told that a formula ¢ is strongly ir-
relevant to ¢, we can remove ¢ from the KB. However,
we may also be able to conclude that other formulas are
irrelevant as well. This section describes an algorithm
for deriving such conclusions using the query-iree.

Specifically, it requires rules that create in their conse-

quents permutations of the variables from their antecedents

O For example, this knowledge may be based on the fact
that the join of two relations is empty.



Suppose that P is a set of rules and C is a set of con-
straints on the EDB predicates. Let I be an irrelevance
claim stating that a sei of formulas & is strongly irrele-
vant to a query ¢; more precisely, I states that the set
of possible KBs is some subset T’ C X(P, (), such that
SH®,q,%', DI;,Dalg)) holds. We assume that & is ei-
ther a set of rules or a set of ground facts specified as
{p(Z) | C(Z)}, where p is some predicate and C(Z) is a
formula with ounly interpreted predicates.

To derive logical conclusions from I, our strategy is to
create a set of rules P;, such that when formulas from &
are excluded, P, and P produce the same derivations of
the query ¢ for every set of ground facts G satisfying C.
We then create a query tree for Py and find all formulas
that are strongly irreievant to ¢. Clearly, if a formula ¢
1s strongly irrelevant with respect to Py, then it 15 also
strongly irrelevant with reapect to P whenever I holds.

Formally, P; is created as follows:

1. If ¢ is a set of rules, then P; = P — &,

2. & = {p(z) | C(£)}, then let the negation of C(Z)
be d1 V... Vd,,, where each d; is a conjunction of lit-
erals of interpreted predicates. The set P; consists
of all the rules of P whose consequent is not p and
all rules of the form qi{z(}A. . . q(E1)Adi(2} = p(X)
(1 < i< m), where qy(z))A...q{Z1) = p(&) 1s a
rule of P.

Example 3.3: Suppose that in Example 3.2 we are told
that {path(z,y) |+ < 110 A y > 160} are strongly irrel-
evant. The rules for the predicate path in Py would
therefore be:

link(z,y) Az > 110 = path(z,y}.

link(x, z) Az > 110 A path{z,y) = poth(z,y).
link(z,y) Ay < 160 = path(z, y).

{ink{z, z) Apath(z, y) Ay < 160 = pathiz,y).

The query tree for Py shows that {badPoint(z) [z <
110} and {goodPoint(z) | z > 160} are strongly irrele-
vant to goodPath(z, y).

Theorem 3.4: Suppose that ¢ is sirongly irrelevent
to g with respect to E{P,,C), or more precisely, sup-
pose that SI{¢,q. L(P1.C), DI, Dalq)) 18 true. Then
SH¢,q,%, DIz, Dalq)) holds, where &' is the set of pos-
stble K Bs, as mplied by |.

Proof sketch: The theorem follows from the observa-
tion that P, produces the same derivations as P, excepl
for the ones that use formulas in ®. If & 1s a set of rules,
the observation follows trivially. If & includes ground
facts, the added literals in the rules of P; guarantee that
formulas in ¢ will not be used in derivations of P;.
In general, as the theorem below shows, even if there
are no function symbels, finding all the logical conse-
quences of a strong-irrelevance claim is not possible.

Theorem 3.5: Suppose that [ states that the set of
possible KBs 1s some subset T' C E(P.C), such thal
S1{(®,q.2, D13, Dalq)) holds. Determsning whether
SI(#,¢,. 2, D13, Dalg)) holds is undecidable.

The theorem is proved by a reduction from the rule-
redundancy problem [Shmueli, 1987].

3.3 The Utility of Relevance Reasoning

Removing strongly-irrelevant formulas (i.e., rules and
ground facts) effectively prunes many useless paths that
a problem solver (such as a backward chainer) has to pur-
sue. Removing a large number of ground facts can par-
ticularly impact the performance, since much of the cost
of a problem solver is in doing database lookups. The
savings will be especially significant when the lookup
involves uninstantiated variables. For instance, in Ex-
ample 3.2 we need to perform many lookups of the form
step(x,y), where y is uninstantiated. Removing all the
ground facts for which y > 170 will drastically reduce
the search.

Identifying irrelevant facts also yield savings when up-
dates are done. For example, if the KB is updated with
a fact that is known to be irrelevant, then we need not
recompute the answer to the query. Finally, identifying
which facts are irrelevant to a query leads to space sav-
ings in storing the KB. This is especially significant when
deciding which parts of a large KB should be brought
into main memory.

We tested the impact of removing irrelevant facts for
over 20 sets of queries taken from four domains. Space
limitations preclude the presentation of the complete
results. Table 1 presents a set of representative re-
sults. More detailed results can be found in [Levy, 1993]
Rows 1 &: 2 use the rules given in Example 3.2. Rows 3-
6 are taken from a travel KB (using real airline data)
Row 7 uses a KB describing compatibilities between
wines and dishes (gleaning some knowledge from [Rom-
bauer and Rombauer-Becker, 1975]), while the last row
uses a KB describing relationships between students, ad-
visors and institutions (using a database of Ph.D. grad-
uates in computer science).

In the table, Filtering Time is the time taken to build
the query tree and to remove the irrelevant facts. Per-
cent irrelevant is the percent of facts that were removed
from the KB. BC1 is the time taken to find all solu-
tions to the query using the original KB, and BC2 is
the corresponding time using the filtered KB."" The re-
sults show significant speedups, usually in excess of 3,
ranging up to 31 (mean: 10.8, median: 4.4), while the
time taken to build the query tree and filter the KB are
usually insignificant. The speedups grew significantly as
the percent of irrelevant facts grew. For example, using
the same query as in Row 3, the speedup was a factor of
280 when 90% of the ground facts were removed. Fur-
thermore, the speedups grew as the size of the KB grew,
even when the percent of irrelevant facts remained the
same. Similar speedups were recorded when the number
of nodes visited in the search was the performance mea-
sure (instead of the execution time) and when measuring
the time taken to find just the first solution to the query.
The experiments were performed on a Tl Explorer II.

" The performance of our backward chainer compared fa-
vorably with that of Epikit (a commercial implementation of
MRS [Russell, 1985)).
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KB size Filtering Percent | BC1 | BC2

Facts | Rules | time (sec) | irrelevant | {sec) | (sec)

1] 350 [ 1.7 63 % 2450 | 170
2 350 6 1.7 63 % 580 | 214
3T 200 18 7.8 70 % 380 12
4 ] 200 18 56 T0 % 25 5.3
51 200 18 19.8 65 % 41 10.8
6 | 200 18 85 62 % 460 19
T 1300 47 B.7 T0 %% 24 18.5
8§ 150 17 0.8 B 3 | 75

Table 1: Experimental results.

4 Discussion

Relevance reasoning is a powerful method to control in-
ference. We presented a general framework for stating
knowledge about irrelevance and reasoning with it. We
concentrated on the class of strong-irrelevance claims
that has several desirable properties, such as existence
of efficient algorithms for detecting irrelevant facts. Re-
moving strongly-irrelevant formulas may only improve
the performance, and our experiments have shown that
these savings are significant. Furthermore, relevance rea-
soning is done with only partial knowledge about the
contents of the KB and does not need to be repeated
when certain changes occur in the KB. Consequently,
our methods are especially effective for KBs that con-
tain many ground facts.

Our analysis of irrelevance can be viewed as a refine-
ment of the analysis in [Subramanian, 1989]. The spe-
cific definitions considered by Subramanian fall under
weak irrelevance in our framework. Subramanian de-
fined the class of computational-irrelevance claims to be
claims that lead to computational savings. Our class of
strong irrelevance is a prime example of computational
irrelevance. It should be noted that [Subramanian and
Genesereth, 1987) discusses a definition of strong irrel-
evance, but it is a variation on weak irrelevance and is
not an instance of computational irrelevance.

The query tree encodes the space of possible deriva-
tions of the query. Recently, the question of finding
optimal methods to search that space has received a
lot of attention [Smith, 1986, Greiner, 199l]; a related
issue is analyzing the utility of techniques in explana-
tion based learning [Etzioni, 1990, Greiner and Jurisica,
1992]. Much of this work requires a graph-like repre-
sentation of the search space under consideration. The
query tree is such a representation that handles recursive
theories in a principled manner and fully incorporates
the interpreted constraints appearing in rules.
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