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A b s t r a c t 

Identifying that parts of a knowledge base (KB) 
are irrelevant to a specific query is a powerful 
method of controlling search during problem 
solving. However, finding methods of such ir-
relevance reasoning and analyzing their uti l i ty 
are open problems. We present a framework 
based on a proof-theoretic analysis of irrele­
vance that enables us to address these prob­
lems. Wi th in the framework, we focus on a 
class of strong-irrelevance claims and show that 
they have several desirable properties. For 
example, in the context of Horn-rule theo­
ries, we show that strong-irrelevance claims can 
be derived efficiently either by examining the 
KB or as logical consequences of other strong-
irrelevance claims. An important aspect is that 
our algorithms reason about irrelevance using 
only a small part of the KB. Consequently, 
the reasoning is efficient and the derived ir­
relevance claims are independent of changes to 
other parts of the KB. 

1 I n t r o d u c t i o n 

Control of reasoning is a major issue in scaling up prob­
lem solvers that use declarative representations, since 
inference is slowed down significantly as the size of the 
knowledge base (KB) is increased. A key factor for the 
slow down is the search of the inference engine through 
parts of the KB that are irrelevant to the query at hand. 
Moreover, since a KB is designed for a variety of tasks, 
it is often at a level of detail that is too refined for a spe­
cific query. Often, we have additional knowledge about 
the domain or about the KB that can be used to cut 
down drastically the space that the inference engine has 
to search. One important type of such knowledge con­
sists of irrelevance claims stating that certain formulas 
are redundant with respect to, or wil l not be part of any 
derivation of a given class of queries, and consequently, 
those formulas can be removed. Such irrelevance claims 
can be either given by the user or derived automatically 
by the system. 
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Effective use of irrelevance reasoning requires a formal 
understanding of the issues involved in such reasoning, 
as has been done in the context of probabilistic reason­
ing [Pearl, 1988]. The work of [Subramanian, 1989] pre­
sented a framework for stating irrelevance claims, and 
raised several issues concerning irrelevance reasoning. 
However, two issues remain largely open. The first is 
to find efficient methods for automatically deriving ir­
relevance claims. The second issue is to determine the 
uti l i ty of removing irrelevant knowledge, since removing 
irrelevant parts of a KB does not always improve effi­
ciency. For example, redundant formulas (which may be 
considered irrelevant) can often speedup problem solvers 

To address these issues, we first present a space of defi­
nitions of irrelevance, based on a proof-theoretic analysis 
of the notion. This space enables us to make finer dis 
Unctions than those possible in the framework of [Subra­
manian, 1989]. The main distinction we make is between 
weak-irrelevance claims and strong-irrelevance claims. 
Roughly, a formula is strongly irrelevant to a query if 
it cannot appear in any of its derivations, whereas it 
is weakly irrelevant if it does not appear in some of 
its derivations. Strong-irrelevance claims turn out to 
have some desirable properties. For example, in many 
cases it is possible to find efficiently formulas in the KB 
that are strongly irrelevant to a given query. In some 
cases it is even possible to find all strongly-irrelevant 
formulas. Furthermore, unlike weak irrelevance, remov-
ing strongly-irrelevant formulas from a KB may only 
improve the performance (and sometimes the improve­
ment is by orders-of-magnitude, as we will show). We 
investigate strong irrelevance in detail for Horn-rule KBs 
and describe novel algorithms for efficiently deriving new 
strong-irrelevance claims from those given by the user. 

Our algorithms consider, in addition to the rules of the 
KB, only constraints on the ground facts that may possi­
bly appear (e.g., order constrr'nts, sorts), as opposed to 
looking at the ground facts themselves. Consequently, 
if the ground facts change, the irrelevance claims still 
hold and, therefore, the cost of irrelevance reasoning is 
amortized over many queries. The main difficulty in ir­
relevance reasoning is finding properties satisfied by all 
possible derivations of a given query. To do so, we use 
a powerful tool, the query tree, first introduced in [Levy 
and Sagiv, 1992]. The query tree encodes finitely all 
possible derivations of the query (even when rules are re-
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cursive). T h e query tree faci l i tates au tomat ic der ivat ion 
of irrelevance c la ims t ha t fo l low f r o m an examina t ion of 
the KB and irrelevance c la ims suppl ied by the user. 

2 Formal iz ing Irrelevance 

1 We can return unknown if neither nor are derivable. 
However that does not affect our discussion. 

2 An alternative definition often considered is finding one 
variable binding that satisfies the query formula. However, 
this distinction does not affect our discussion. 

of def in i t ions of irrelevance and investigate the different 
propert ies of various def in i t ions w i t h i n th is space. 

I t should be noted tha t our analysis is not an a t temp t 
to formal ize the common sense no t ion of irrelevance or 
argue for propert ies of such a no t ion (as done, for ex­
ample , by [Gardenfors, 1978]). Our goal is to ut i l ize 
the no t ion of irrelevance to speed inference and, there­
fore, we analyze the ways in which i t can arise in in ­
ference. Specif ical ly, we analyze irrelevance in a proof-
theoret ic set t ing by considering the possible derivat ions 
(or more generally, paths) t h a t an inference mechanism 
can pursue in answering a query. In contrast, the analy­
sis of [Subramanian, 1989] is meta-theoretic, i.e., it con­
siders only the formulas in the K B , not the possible 
der ivat ions of the query. Consequently, we are able to 
make finer d is t inct ions than those made in Subrama­
nian's f ramework . 
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3Given some criteria of minimali ty for derivations. See 
Section 3 for a definition of minimali ty in the case of Horn-
rule KBs. 

4 We can also consider other ways of quantifying over a set 
of derivations, such as requiring that DI holds for some per­
cent of the derivations. In this paper, however, we consider 
only universal and existential quantifications. 
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3 Der i v ing Irrelevance Claims 
A key issue in relevance reasoning is the ability to decide 
which formulas are irrelevant to a given query. Specifi­
cally, two questions are of interest. First, given a knowl­
edge base and a query, which formulas in the knowledge 
base are irrelevant to the query? Second, if we are given 
an irrelevance claim by a user, can we derive other irrele­
vance claims that logically follow. This section considers 
these questions for the case of KBs consisting of a set V 
of Horn rules and a set G of ground atomic facts 

We consider atomic queries that are either ground or 
contain free variables. A derivation of a query uses a 
single rule of inference: Given an instance of a rule from 
the KB, the consequent of the rule can be inferred if 
the antecedents were inferred previously. A derivation 
D is conveniently viewed as a tree, as shown in Figure 1 
A derivation tree (and the corresponding derivation) is 
minimal if there is no pair of identical goal-nodes, n1 
and n2, such that n1 is an ancestor of n2. A formula 

is said to be irrelevant to a derivation D if does 
not appear in D (i.e., we use DI2 from the previous 
section). We distinguish two sets of predicates in the KB. 
the eztenstonal predicates (EDB) that appear in G and 
the intensional predicates that appear in the consequents 
of the rules. As a syntactic convenience, we assume that 
base predicates do not appear in the consequents of any 
of the rules. 

Deriving irrelevance claims requires that we establish 
properties of all possible derivations of a query, and that 
entails examining the whole KB. This is, of course, im-



practical and defeats the original goal of relevance rea­
soning. Therefore, we would like to derive irrelevance 
claims that depend only on a small and stable part of 
the KB and are independent of changes to other parts of 
the KB. In many applications, the bulk of the KB con­
sists of ground facts that are updated frequently, while 
the rules of the KB form a small and stable part. There­
fore, we are not going to examine the ground facts of KB 
directly. Instead, we wil l use a set C of high-level con­
straints describing the ground facts that may possibly 
appear in the KB (e.g., 

Constraints may also appear in rules, in the form of 
interpreted predicates (such as the order predicates =, 

and <, or sort predicates). Many interactions between 
rules can be detected by analyzing the semantics of these 
interpreted predicates. Furthermore, interpreted predi­
cates play an important role in many applications, and 
often, reasoning with them can be done efficiently. Note 
that in particular, the variable patterns in the rules can 
be viewed as constraints (using equality). 

We would like our relevance reasoning to incorporate 
both the semantics of the interpreted predicates appear­
ing in rules and the semantics of the constraints imposed 
on the possible ground facts. Formally, it means that we 
have to consider the following problem. Given a set P 
of rules, a set C of constraints on the ground facts, and 
a query q, find (some or all) rules and ground facts that 
are irrelevant to q in every KB of where 
denotes the set of all KBs consisting of V and a set G of 
ground facts, such that G satisfy the constraints of C. 

The distinctions made in our space of definitions also 
correspond to different answers to the above problem. 
First, we observe that determining weak irrelevance is 
undecidable, even in very restricted cases: 

P r o p o s i t i o n 3 . 1 : Determining whether a formula 4> is 
weakly irrelevant to a query q, with respect to and 
the set of all derivations is undecidable even if 
the rules of V contain no function symbols, C is empty 
and there are no interpreted predicates in rules. 

This result is proved by a reduction from the rule-
redundancy problem [Shmueli, 1987]. Algorithms that 
find some weakly-irrelevant formulas, but may fail to 
identify all of them, are described by [Sagiv and Yan-
nakakis, 1981] and [Sagiv, 1988]. 

For strong irrelevance, the situation is much better. 
In [Levy and Sagiv, 1992], we have shown that strong 

irrelevance is decidable for funct ion-free Horn rules and 
interpreted predicates. The result shows tha t strong ir­
relevance is decidable when considering either the set 
of a l l der ivat ions or only the set of all m i n i m a l 
der ivat ions. 7 The a lgor i thms cover a wide range of in­
terpreted predicates, e.g., order and sort constraints.8 

W h e n func t ion symbols are in t roduced, determin ing 
s t rong irrelevance is undecidable for KB ' s w i t h recursion. 
However, the a lgor i thms described remain sound, i.e., i f 
they deem a fo rmu la i r re levant, then it is i rrelevant. 

E x a m p l e 3.2 : Let step, bigStep, bad Point and 
good Point be the E D B predicates, where the rules are: 

The following constraints are known about the ground facts: 

F igure 2 shows tha t Rule r5 is s t rongly irrelevant 
to the query goodPath(x,y), since the constraints on 
big Step contradic t those of the nodes tha t m igh t be 
unif ied w i t h the consequent of r5. Moreover, we can 
also deem many ground facts s t rongly i rrelevant, such 
as al l badPoint(x), where where 

and al l the facts for big Step. I 

In the next section, we w i l l describe an a lgo r i t hm for 
der iv ing logical conclusions f r om irrelevance claims given 
by the user. The a lgo r i t hm uses a powerfu l t oo l , called 
the query tree, f i rst in t roduced in [Levy and Sagiv, 1992]. 
Below, we brief ly describe some aspects of query trees. 

3 .1 T h e Q u e r y T r e e 

There are several di f f icul t ies in der iv ing irrelevance 
claims. F i rs t , we need to establish propert ies of the set of 
a l l der ivat ions of the query w i t h o u t enumerat ing them. 
Second, we are given the rules of the K B , bu t have only 
a par t ia l knowledge about the ground facts in the K B . 
F ina l ly , we want to enforce the semantics of the inter­
preted predicates. The query tree provides a compact 
representation of precisely the set of al l der ivat ions of 
the query tha t satisfy the semantics of the interpreted 
predicates. 

The query tree is a symbol ic A N D - O R tree consist ing 
of goal nodes and rule nodes (see F igure 2) . T h e root of 
the tree is a goal node labeled w i t h the query. A goal-
node g has a chi ld for every rule whose consequent unifies 
w i t h g, and the actual chi ld is the rule resul t ing f r o m the 
uni f icat ion w i t h g. A rule node has a goal-node chi ld for 

7The algorithms for these two cases differ in their 
complexity 

8Formally, we require that the constraint language C sat­
isfy several properties. We must be able to determine when 
two sentences in the constraint language are equivalent. Fur­
thermore, there must be a finite number of non-equivalent 
sentences when the number of variables is fixed. For ful l de­
tails, see [Levy and Sagiv, 1992]. 
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every conjunct in its antecedent. If a KB has recursive 
rules, such a simple minded construction of the tree will 
not terminate. In order to get a finite representation of 
all possible derivations, we attach a label to each node in 
the tree. The label of a node contains the tightest con­
straint that needs to be satisfied by tuples generated in 
that node. The label is inferred by the constraint literals 
appearing in the rules and the constraints known about 
the possible ground facts that may appear in the KB. 
A goal node wi l l be further expanded only if there is no 
other expanded node in the tree that has an isomorphic 
label. Note that computing the labels of the nodes may 
require several phases of propagation through the nodes 
in the tree. 

A query-tree T encodes a set of symbolic derivations. 
A symbolic derivation is like a derivation except that 
some constants are replaced by variables, and it repre­
sents the set of derivations that can be obtained by as­
signing constants to those variables. A symbolic deriva­
tion is encoded by the query tree if it can be constructed 
as follows. Start from the root and choose one rule-node 
child and its subgoal nodes. Inductively, let t be the tree 
created so far. If n is a leaf of t for an IDB predicate, 
let n' be the goal node in T that has a label isomorphic 
to n and was expanded (n ' may be n itself). Expand n 
with one of the children of n'. 

When the KB contains no function symbols, the query 
tree encodes precisely the set of derivations of the query 
that use formulas that satisfy the constraints. Specifi­
cally: 

• For any derivation d that uses only ground 
facts that satisfy the constraints of C, there exists 
a symbolic derivation d and an assignment <r, such 
that and d is encoded by the query tree. 

• For every symbolic derivation d encoded by the tree, 
there is a variable assignment such that 

and the leaves of 

Consequently, the query tree provides a sound and 
complete inference mechanism for strong irrelevance 
(with respect to Specifically, a rule is strongly 

Specifically, it requires rules that create in their conse­
quents permutations of the variables from their antecedents 

10 For example, this knowledge may be based on the fact 
that the join of two relations is empty. 
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3.3 T h e U t i l i t y o f Relevance Reasoning 

Removing strongly-irrelevant formulas (i.e., rules and 
ground facts) effectively prunes many useless paths that 
a problem solver (such as a backward chainer) has to pur­
sue. Removing a large number of ground facts can par­
ticularly impact the performance, since much of the cost 
of a problem solver is in doing database lookups. The 
savings wil l be especially significant when the lookup 
involves uninstantiated variables. For instance, in Ex­
ample 3.2 we need to perform many lookups of the form 
step(x,y), where y is uninstantiated. Removing all the 
ground facts for which y > 170 wil l drastically reduce 
the search. 

Identifying irrelevant facts also yield savings when up­
dates are done. For example, if the KB is updated with 
a fact that is known to be irrelevant, then we need not 
recompute the answer to the query. Finally, identifying 
which facts are irrelevant to a query leads to space sav­
ings in storing the KB. This is especially significant when 
deciding which parts of a large KB should be brought 
into main memory. 

We tested the impact of removing irrelevant facts for 
over 20 sets of queries taken from four domains. Space 
limitations preclude the presentation of the complete 
results. Table 1 presents a set of representative re­
sults. More detailed results can be found in [Levy, 1993] 
Rows 1 &: 2 use the rules given in Example 3.2. Rows 3-
6 are taken from a travel KB (using real airline data) 
Row 7 uses a KB describing compatibilities between 
wines and dishes (gleaning some knowledge from [Rom-
bauer and Rombauer-Becker, 1975]), while the last row 
uses a KB describing relationships between students, ad­
visors and institutions (using a database of Ph.D. grad­
uates in computer science). 

In the table, Filtering Time is the time taken to build 
the query tree and to remove the irrelevant facts. Per-
cent irrelevant is the percent of facts that were removed 
from the KB. BC1 is the time taken to find all solu­
tions to the query using the original KB, and BC2 is 
the corresponding time using the filtered KB. 1 1 The re­
sults show significant speedups, usually in excess of 3, 
ranging up to 31 (mean: 10.8, median: 4.4), while the 
time taken to build the query tree and filter the KB are 
usually insignificant. The speedups grew significantly as 
the percent of irrelevant facts grew. For example, using 
the same query as in Row 3, the speedup was a factor of 
280 when 90% of the ground facts were removed. Fur­
thermore, the speedups grew as the size of the KB grew, 
even when the percent of irrelevant facts remained the 
same. Similar speedups were recorded when the number 
of nodes visited in the search was the performance mea­
sure (instead of the execution time) and when measuring 
the time taken to find just the first solution to the query. 
The experiments were performed on a TI Explorer I I . 

11 The performance of our backward chainer compared fa­
vorably with that of Epikit (a commercial implementation of 
MRS [Russell, 1985)). 
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The theorem is proved by a reduction from the rule-
redundancy problem [Shmueli, 1987]. 



Table 1: Exper imenta l results. 

4 Discussion 
Relevance reasoning is a powerfu l me thod to control in ­
ference. We presented a general f ramework for s ta t ing 
knowledge about irrelevance and reasoning w i t h i t . We 
concentrated on the class of strong-irrelevance claims 
tha t has several desirable propert ies, such as existence 
of efficient a lgor i thms for detect ing irrelevant facts. Re­
mov ing s t rongly- i r re levant fo rmulas may only improve 
the performance, and our exper iments have shown that 
these savings are s igni f icant. Fur thermore, relevance rea­
soning is done w i t h on ly par t ia l knowledge about the 
contents of the KB and does not need to be repeated 
when certain changes occur in the K B . Consequently, 
our methods are especially effective for K B s tha t con­
ta in many ground facts. 

Our analysis of irrelevance can be viewed as a refine­
ment of the analysis in [Subramanian, 1989]. The spe­
cific def in i t ions considered by Subramanian fal l under 
weak irrelevance in our f ramework . Subramanian de­
f ined the class of computat ional- i r relevance claims to be 
claims tha t lead to computa t iona l savings. Our class of 
st rong irrelevance is a p r ime example of computa t iona l 
irrelevance. I t should be noted t ha t [Subramanian and 
Genesereth, 1987) discusses a def in i t ion of st rong i r re l ­
evance, b u t it is a var ia t ion on weak irrelevance and is 
not an instance of computa t iona l irrelevance. 

The query tree encodes the space of possible deriva­
t ions of the query. Recently, the question of f inding 
o p t i m a l methods to search tha t space has received a 
lo t of a t ten t ion [Sm i th , 1986, Greiner, 199 l ] ; a related 
issue is analyz ing the u t i l i t y of techniques in explana­
t i on based learning [E tz ion i , 1990, Greiner and Jur is ica, 
1992]. Much of th is work requires a graph- l ike repre­
sentat ion of the search space under considerat ion. The 
query tree is such a representat ion tha t handles recursive 
theories in a pr inc ip led manner and fu l l y incorporates 
the interpreted constraints appear ing in rules. 
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