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Abstract 
We have written a prototype computer program 

called TrenDx for automated trend detection during process 
monitoring. The program uses a representation called trend 
templates that define disorders as typical patterns of relevant 
variables. These patterns consist of a partially ordered set of 
temporal intervals with uncertain endpoints. Bound to each 
temporal interval arc value constraints on real-valued func­
tions of measurable parameters. 

TrenDx has been used to diagnose trends in growth 
patterns from examining heights, weights and other parame­
ters of pediatric patients. As TrenDx analyzes successive 
data points, the program updates its hypotheses about which 
stage of the growth process each data point belongs to. We 
present an example of TrenDx reaching temporally plausible 
diagnoses for an actual patient with delayed growth cur­
rently being seen at Boston Children's Hospital.1 

1 In t roduct ion 

This work is part of the growing body of artificial 
intelligence (AI) research on diagnostic process monitoring. 
We wish to automatically detect trends, defined thusly: 
• A trend is a clinically significant pattern in a sequence of 

time-ordered data. 
These trends may be multivariate, and may consist of several 
distinct phases. Our trend detection program, called TrenDx, 
can identify a trend and give a chronology of which data 
were in each phase. 

We are particularly motivated by application 
domains where there is no reliable structure-function model 
because the underlying mechanism is poorly understood. 
Our application domain, pediatric growth, is such an area. 
Physicians recognize many hormonal, nutritional and 
genetic factors for growth, but cannot predict quantitative 
effects on height or weight from changes to any of these fac-
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tors. Therefore in this domain the recent AI work in monitor­
ing using semi-qualitative simulation [Dvorak and Kuipers 
1989) or Bayesian networks [Berzuini, Bellazzi et al. 1992) 
may be insufficient. 

Time-series analysis techniques [Avent and Charl­
ton 1990], when used with a curve-fitting model of process 
disorders, are potentially useful for trend detection as we 
have described it. However, most curve-fitting models of 
pediatric growth [e.g. Thissen and Bock 1990] do not accu­
rately match data of most new individuals and also contain 
many parameters that cannot be interpreted biologically. 
Furthermore, statistical models usually describe patterns 
after a fixed time point, while our goal includes detecting 
trends that may occur at any point in time. 

Even in applications characterized by incomplete 
understanding of mechanism, domain experts can accurately 
detect trends. Furthermore they can verbally describe proto­
typical trends consisting of constraints that restrict certain 
values of variables over time. 

We have written a prototype program called TrenDx 

for automated trend detection. The program uses a represen­
tation called trend templates that define disorders as typical 
patterns of relevant variables. These patterns consist of a par­
tially ordered set of temporal intervals with uncertain end-
points. Bound to each temporal interval are value constraints 
on real-valued functions of measurable parameters. As 
TrenDx interprets data points of a process, the flexible tem­
poral constraints allow alternate hypotheses of how that pro­
cess has varied over time. 

2 Pediatric Growth Mon i to r ing 

Our initial application domain for automated trend 
detection is pediatric growth monitoring. The principal tool 
pediatricians use to monitor the growth of their patients is 
the growth chart. Figure 1 shows the height of a child with 
age. A set of curves representing standard deviations (-2, - 1 , 
+ 1, +2) and the mean for heights of male children studied by 
the National Center for Health Statistics (NCHS) [Hamil, 
Drizd et al. 1979] are pre-plotted on the chart. Each standard 
deviation (SD) curve describes the proportion of the male 
children in the U.S.A. of the same age who arc taller or 
shorter than children whose height falls on that curve. For 
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instance, as calculated from the normal distribution, all chil­
dren whose height is on the - 2 SD curve arc taller than 
2.28% of male children in the U.S.A. of the same age. Pedia­
tricians often use centiles rather than their corresponding 
standard deviations. 

Figure 1 Growth chart height points of patient described 
throughout this article. Triangle shows hone age of X at 
chronological age of 11. 

As a process monitoring application, pediatric 
growth is distinct in at least two ways. First, growth data is 
relatively clean; carefully measured heights are usually accu­
rate within three millimeters. Second, although a child's 
height and weight are measured as infrequently as once per 
year, this sampling rate is frequent enough for expert pediat­
ric endocrinologists to identify potential growth disorders. 
As we shall see, our program TrenDx does not require the 
monitored data to be sampled regularly or frequently. 

2.1 An Example Case 
The height points illustrated in Figure 1 are from 

the growth chart of a patient at the endocrinology clinic at 
Boston Children's Hospital. This patient, whom we shall 
refer to as Patient 002, was brought into the endocrine clinic 
at age 11 for consultation about possible growth disorders. 
The patient's general pediatrician had noticed a particularly 
sharp drop against the NCHS standards at age 10. This was 
of concern as children with a normal tempo of growth tend 
to grow on or parallel to the standard curves. The endocri­
nologists at Children's Hospital agreed that Patient 002 did 
not appear to exhibit an average growth pattern, and that one 
of the likely hypotheses was constitutional delay of growth, 
a nonnal variant of growth marked by delayed puberty and 
bone maturity well behind the patient's chronological age. 

2.2 Clinically Significant Patterns: 
From consulting clinical literature and experts in 

pediatric endocrinology, we are acquiring text descriptions 
of patterns followed by children with normal and abnormal 
growth. Two of these patterns, related to Patient 002, are 

described here. The descriptions use centiles rather than 
standard deviations. 

The text description of average nonnal growth in 
boys, before puberty, consists of four general constraints: 
• From birth until age 2 - 3 years, the patient establishes his 

or her centiles for height and weight. During this time 
height and weight centiles should vary in the same way 
from their original centiles. 

• From then until the onset of puberty, the patient stays 
close to the same centiles in height and weight, with 
respect to the population of children having puberty at 
the average age. 

• From birth until puberty, bone age is approximately equal 
to chronological age 

• Puberty begins between age 10 and age 15, and is mea­
sured by when the qualitative testicular stage of the boy 
changes from stage 1 to stage 2. 

The text description of constitutional delay of 
growth in boys differs only in that puberty begins between 
age 12 and 16, that the bone age is delayed 1 to 4 years 
behind chronological age, and that the reference population 
for height centiles is children having delayed puberty rather 
than puberty at the average age. These alternate reference 
populations were presented in [Tanner and Davies 1985]. 

Notice that the text descriptions above are charac­
terized by uncertainty both in the value of relevant variables, 
and in the times over which these values hold. For example, 
there is uncertainty in the time of the onset of puberty, and 
uncertainty of the age at which the first constraint ends and 
the second begins. There is uncertainty in a child staying 
"close to the same centiles" and in the bone age being 
"approximately equal to" chronological age. This uncer­
tainty is due to experts characterizing a common pattern for a 
large number of patients with the same growth trend. 

3 TVend Templates 

We wish to represent trends that include the uncer­
tainty mentioned above. Additionally, our representation 
must provide enough constraints to distinguish between 
competing trends. Our attempt to reach these goals is the 
trend template. 

A trend template is a prototypical pattern of data for 
a process exhibiting a certain behavior. In Figure 2 is the 
Wend template for male average growth before puberty 
adapted from the text constraints in section 2.2. Time con­
straints are drawn horizontally and value constraints are 
drawn vertically, The next two sections define trend tem­
plates and illustrate with this example. 

3.1 Temporal Constraints 
The temporal component of a trend template 

includes landmark points and intervals. The landmark points 
represent significant events in the lifetime of the monitored 
process. Landmark points may linked with time ranges 
(min max) expressing the minimal and maximal times 

between them. The trend template for average nonnal 
growth includes three landmark points: birth, puberty onset, 
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and growth stops. Puberty onset occurs 10 to 15 years alter 
birth, and growth stops occurs 17 to 19 years after birth. The 
links between landmark points establish a conceptual lime 
scale of the part of the process life being modeled. In the dia­
gram, birth is illustrated as at time 0 and a time scale is 
labeled in "years." These arbitrary labels are for illustration; 
a trend template requires no "zero point" and allows mixing 
of time units (hours, years, etc.) in temporal distances. 

Figure 2 Trend template for average normal growth. 

Intervals represent periods of the process that are 
significant for diagnosis or therapy. The above trend tem­
plate consists of five intervals: lntl corresponds to infancy, 
lntl to mid-childhood, lnt3 to all of childhood, lnl4 to pre­
pubertal childhood, and Int5 to post-pubertal childhood. 
Intervals consist of begin and end points whose times arc 
declared either as: 
• offsets of the form (min max) from a landmark point, or 

• offsets of the form (min max) from another interval begin 
or end point. 

We represent time using the Temporal Utility Pack­
age (TUP) of [Kohane 1987J. TUP is a temporal reasoning 
program with both time points and time intervals; intervals 
include a begin point and an end point. Time is considered 
discrete, and for the growth domain TrenDx uses a minimal 
time distance of one second. With TUP, one asserts a vari­
able temporal distance between two points in the form of a 
range relation. A TUP range relation has the general form: 

where p1 and p2 are points, and the n1 and n2 are integers 
denoting the lower and upper bounds on the numbers of sec­
onds between p1 and P2. All temporal distances in a trend 
template are created with statements like these. 

3.2 Value Coastraints 
The value component of a trend template interval is 

a set of value constraints, each of which states that some 
function of a set of measurable parameters must fall within a 
certain range. Thus each value constraint is an expression of 
the form 

(EQl) 
where f is some real valued function defined on patient data, 
m is real-valued or and M is a real-valued or Each 
temporal interval in a trend template is associated with a set 
of value constraints. In the diagnostic program TrenDx, the 
function f is evaluated on the set of data D currently assigned 
to that interval and the result is compared to the bounds m 
and M. 

In the average normal growth template of Figure 2, 
interval lntl represents infancy, when height and weight cen-
tiles are established. We encode that height and weight cen-
tiles vary in the same way by constraining the difference 
between the average velocity of height SDs and the average 
velocity of weight SDs to be within a small number a of 
zero. Interval lnt2 represents the period of the boy staying in 
his centile channels, lntl begins at the endpoint of Int I and 
Int2 ends at puberty onset. There are two value constraints: 
both the average velocities of height SDs and that of weight 
SDs are close to zero. Presently the small value constraint 
bounds in this trend template are . These val­
ues may change as we refine the trend template. 

Intervals Int3 and lnt4 constrain other patient 
parameters. Int3 begins at birth, ends at growth stops and 
describes the normal parameter values. Screening tests for 
growth disorders are within normal published values. Also, 
the difference between chronological age and bone age must 
be within one year of zero. Int4 represents the pre-pubertal 
genital development: from birth until puberty onset by 
restricting testicular stage to 1. Int5 distinguishes that 
puberty has occurred by constraining testicular stage to be 
between 2 and 5. Together these intervals encode the tempo­
ral and value constraints of our earlier text descriptions of 
male prepubertal average normal growth. 

The trend template for male pre-pubertal constitu­
tional delay of growth is similar to that of average normal 
growth. There arc a few differences. The time bounds on the 
landmark points puberty onset are 12 to 16 years, and the 
bounds on growth stops are 18 to 22 years. The value con­
straint in Int3 states that bone age is one to four years behind 
chronological age. Additionally, height SDs arc measured 
with respect to the population of delayed puberty patients, as 
opposed to those of average puberty in the average growth 
trend template. 

4 Reasoning by TrenDx 

TrenDx diagnoses trends by matching process data 
to the constraints of trcnd templates. Those templates match­
ing the data are retained as hypotheses; those not matching 
are discarded with possible triggering of other templates. For 
each disorder template, TrenDx may maintain multiple 
hypotheses with different chronologies of the data fitting the 
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intervals of the template. Here we describe the diagnostic 
algorithms and illustrate with the data of Patient 002. 

Each TrenDx hypothesis hyp for a patient pat 
includes a trend template TT(hyp) and an assignment 
ASSIGNMENT(hyp) of patient data to the intervals of the 
template. ASSIGNMENT(hyp) is a relation [(int d)}, where 
int is an interval in TT(hyp) and d is an interpreted datum of 
pat. Each hypothesis also includes a set CONTEXT(hyp) (see 
next section) of temporal information in that assignment. 

4.1 Initializing a Hypothesis for a Patient 
In TrenDx every patient is initially assigned a 

hypothesis of average normal growth. The program does this 
using the context mechanism of TUP. A context is a collec­
tion of consistent temporal assertions that offers a single 
interpretation of events in the world - a possible chronology 
of events in the TrenDx hypothesis. Contexts are arranged 
hierarchically in a tree, with temporal assertions from a par­
ent context also holding in child contexts. Every context has 
at most one parent. 

The general architecture for contexts in TrenDx 

appears below: 

Figure 3 The TrenDx context hierarchy 

The root context for each patient contains temporal informa­
tion about that patient reported by the physician or hospital 
database, including the times of laboratory data and of sig­
nificant life events. The birth date is asserted here. The times 
of events may be stated absolutely, by the Gregorian calen­
dar, or relatively, within some bounds of another event in the 
patient context. 

The average growth trend template presented ear­
lier has its own context, which contains all of the points and 
range relations of that template. TrcnDx assigns a hypothesis 
to a patient by placing the context for the trend template of 
that hypothesis as a child of the patient context. We then 
place under the trend template context a third-tier context for 
temporal assertions about the patient's data matching the 
trend template. In this third-tier context we create a range 
relation that equates in time the birth date of the patient and 
the birth point of the trend template. With this assertion, TUP 
can calculate the temporal distance between any patient data 
point and any interval in the trend template. The hypothesis 
of average growth for Patient 002 initially only has the one 
chronology of the third tier context. When patient data are 

interpreted and assigned to intervals of the trend template, 
there may be alternate assignments and therefore alternate 
chronologies. In that case TrenDx branches to multiple 
hypotheses and associated (fourth tier) contexts. 

4.2 Matching Algorithms 
Let d be a patient datum, let hyp be a hypothesis of 

that patient, and let int be an interval in TT(hyp). We say that 
VALUE-SATISFIESW, int) iff all value constraints bound to 
int meet one of the following conditions: 
1. The parameter of d is not constrained by that value con­

straint. 
2. Inhere are insufficient data assigned to int to evaluate the 

function on the value constraint. 
3. The function on the value constraint evaluated on d and 

the data assigned to int, is within the constraints range. 
Ihe reasoning in TrenDx tits a data-driven process 

monitoring cycle. For each datum d in the input data stream, 
TrenDx executes the algorithm PROCESS-DATUMW). 
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TrenDx assigns more heights and weights to Intl. Later, 
Patient 002's height SD for the average pubertal population 
drops from -2.08 (age 6) to -2.61 (age 7). Call the height at 
age VALUE-SATISFIES(hd7, Int2) is false and the final 
average growth hypothesis is pruned. 

4.3.2 Triggering a New Trend Template 

Once no average growth hypotheses remain for 
Patient 002, TrenDx considers the alternate hypothesis of 
delayed growth. Details of how TrcnDx triggers alternate 
disorders are presented in [Haimowitz and Kohane 1993J. 
The program monitors all of Patient 002*s growth data in 
order. TrenDx branches similarly with the delayed growth 
hypothesis as it had with average growth (see Figure 6). 
However, VALUE-SATISFIES(hd7, lntl) is true for the 
delayed growth template because that template refers to the 
population of delayed pubertal boys. On this population 
standard the height SDs stay close to equal. Hypj • lasts three 
years longer, until age 10. It was at this age that the patient's 
pediatrician became concerned about a possible pathological 
growth disorder. 

Datum (with age) in order of processing by TrenDx 

Figure 6 Number of hypotheses for growth patterns as TrenD x 

processes data of patient 002. 

5 Related Literature 

Different approaches to automated monitoring and 
trend detection were mentioned in section 1. Other research­
ers [e.g. Allen and Koomen 1983J have encoded temporal 
predicates in associative rules to test conditions in a process 
for a diagnostically significant pattern. TrenDx extends this 
research by representing the entire process as phases. 

The different temporal interpretations of the same 
data in TrenDx is related to the Time Map Manager [Dean 
and McDermott 1987], that maintains different accounts of 
which logic propositions are true over which temporal inter­
vals. TrenDx differs by interpreting primary numerical data. 

6 Conclusions and Future Work 

Trend templates represent multi-variatc trends as 
constraints on parameters over intervals that correspond to 
phases of a process. This representation is based on how 
expert diagnosticians verbally report their knowledge of 

trends. For this reason trend templates may be useful for 
knowledge acquisition and explanation of trends. 

TrenDx monitors process data and matches them to 
hypotheses which include a trend template and a chronology 
of how the data fall into different stages of the trend. Our 
prototype application to growth chart monitoring produces 
plausible hypotheses on a real patient. 

We wil l extend our trend template representation to 
detect trends that may occur at any time (initial work appears 
in [Haimowitz and Kohane 1993]). We are considering prob­
abilistic bounds on value constraints, which may be used for 
assigning numerical scores to the match of data to template. 

TrenDx could detect trends more flexibly by repre­
senting data measurement error, or by ignoring markedly 
aberrant data. TrenDx may be more useful by presenting a 
ranked differential diagnosis of several likely trends. 
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