
E x p l o i t i n g D o m a i n S t ruc tu re t o Ach ieve
Eff ic ient T e m p o r a l Reasoning

M i k e Wi l l i amson and Steve Hanks*
Department of Computer Science and Engineering

University of Washington,
Seattle, WA 98195

{mikew,hanks}@cs. washington.edu

Abst rac t
We take temporal reasoning to be the prob­
lem of ma in ta i n i ng a set of constraints be­
tween t i m e po in ts a n d / o r intervals, and re­
sponding to queries about the tempora l separa­
t i on between those ind iv idua ls . Forma l invest i ­
gat ions of th is constra int -sat is fact ion p rob lem
have demonst ra ted tradeoffs between the ex­
pressive power of the constra int language and
the t i m e required to answer queries. A s imple
constra int language admi ts an a lgo r i t hm cubic
in the number o f ind iv idua ls ; a l lowing unre­
st r ic ted d is junct ive constraints makes the a l ­
g o r i t h m exponent ia l . The prob lem is tha t ap­
p l icat ions of t empora l reasoning, e.g. p lan pro­
j ec t i on , need bo th d is junct ive constraints and
an a l go r i t hm much faster than 0 (n 3) .
I t is s igni f icant , however, t ha t the nature of the
constra ints added by and the queries posed by
an app l ica t ion tend to be s t ruc tured and pre­
d ic table. Our so lu t ion to the p rob lem is to ex­
p lo i t the s t ruc ture o f the app l ica t ion doma in to
prov ide fast responses to typ ica l queries.
We consider the p rob lem of p lan projec­
t ion under uncer ta in ty and bu i ld a tempo­
ra l representat ion—hierarchical in terval con­
st ra ints (H I C) — t h a t al lows appropr ia te dis­
j unc t i ve constra ints. We then implement the
H I C representat ion in a temporal - reasoning
modu le , and test i t using a p lan-pro jec t ion
app l i ca t ion . A p p l y i n g the H I C modu le to
a s imple t empora l p ro jec t ion p rob lem shows
orders-of -magni tude improvement over runn ing
the same pro jec tor using current imp lemen­
ta t ions o f domain- independent tempora l con­
s t ra in t propagators.

1 In t roduc t i on
Temporal reasoning (T R) has become ident i f ied in the
l i te ra tu re , e.g. [Kautz and L a d k i n , 1991], [Dechter et

*This work was supported in part by NSF grants IR I -
9008670 and IRI-9206733 and by an NSF Graduate Research
Fellowship. Thanks to Dan Weld for commenting on an ear­
lier draft

a/., 1991], [Me i r i , 1991], as a domain- independent prob­
lem of constra int sat is fact ion: given (1) a set of tempora l
ind iv idua ls (t ime points a n d / o r in tervals) , (2) exp l ic i t
constraints on their t empora l separat ion, and (3) i m ­
plicit constraints l ike the in terva l t r ans i t i v i t y relat ions of
A l l en , 1983] or the t r ans i t i v i t y propert ies of Eucl idean

metr ic distance, compute the t ightest bounds on the sep-
arat ion of any two ind iv idua ls . [Dean and M c D e r m o t t
1987], [Koomen, 1988], and [Kau tz and L a d k i n , 1991]
report on imp lementa t ions of these domain- independent
a lgor i thms.

There have been two p redominan t approaches to tem­
pora l reasoning. Interval-based systems, [A l len , 1983]
take intervals to be the fundamenta l t empora l ent i t ies,
and al low the specif icat ion of qua l i ta t i ve constraints
that hold between intervals. Systems based on t ime
points [Dean and M c D e r m o t t , 1987; Dechter et a/., 1991],
on the other hand, take instants in t ime (points) to
be the fundamenta l t empora l ent i t ies, and al low bo th
qua l i ta t i ve and metr ic constraints among those ind i ­
v iduals (Const ra in ts specify t ha t the temporal dis­
tance between two t ime points fal ls w i t h i n some par­
t icu lar in terval .) There has been a s igni f icant amount
of work compar ing these two approaches, and also some
recent work showing how the two f rameworks can be
unif ied [V i la in et a/., 1989; Kau tz and L a d k i n , 1991;
Me i r i , 1991].

Analysis of these systems reveals a clear t radeoff be­
tween the expressive power of the constra int language
and the worst-case runn ing t i m e of the constra int prop­
agat ion a l g o r i t h m , tradeoffs t ha t ho ld regardless of the
under ly ing representat ion. Deta i led analysis of these
results is beyond the scope of th is paper, bu t shows
tha t "s imp le" constra ints 1 over ei ther a t ime-po in t or
t ime- interval -based system a d m i t an 0 (n 3) so lu t ion a l ­
g o r i t h m , where n is the number of tempora l ind iv idua ls
(po ints or intervals) . S imple constra ints cannot repre­
sent certa in d is junct ive i n f o r m a t i o n , however, and al­
go r i thms for processing sets of unrest r ic ted d is junct ive
constraints require t ime exponent ia l in n in the worst
case.

]See [Dechter et a/., 199l] and [Vilain et al., 1989] for a
precise definition of simple constraints. [Davis, 1987] ana­
lyzes this tradeoff as well. We defer a detailed comparison of
these systems to [Williamson and Hanks, 1993].

152 Automated Reasoning

Many application areas in AI do some sort of tempo-
ral causal reasoning: reasoning about changes in propo­
sitions, the occurrence of events, and so on. Planning,
temporal projection, motivation analysis, and qualita­
tive simulation are prominent examples. Causal reason­
ing in turn requires temporal reasoning, to keep track of
the durations of events, the time at which propositions
change state, and so on.

These formal results about temporal-reasoning algo­
rithms are troublesome to programs that do causal rea­
soning. Causal reasoning almost always involves some
sort of disjunction, as discussions in [Hanks, 1990a],
[Dechter et al., 1991], and [Weld and de Kleer, 1989,
Chapter 2] demonstrate, so simple temporal constraints
wil l not generally suffice.

Moreover, the application program may generate great
numbers of temporal individuals, and wil l call the TR
module many times in the course of doing higher-level
causal reasoning. Experiments in [Hanks, 1990b] show
that projecting a plan of roughly 25 steps generates
about 400 time points, and that about 65% of the projec­
tor's time is spent performing temporal-reasoning tasks.
Even the cubic TR algorithm wil l be unacceptable for
most applications.

We must conclude, then, that domain-independent or
"uninformed" temporal reasoning is too slow to support
reasonable application-program performance. In this pa­
per we advance the idea that the application domain can
provide the "information" that allows temporal reason­
ing to be efficient The temporal constraints imposed
by an application, and the queries it typically poses to
the TR module, are structured and regular. A TR mod­
ule can exploit this structure and these regularities and
by doing so can provide appropriate functionality while
delivering acceptable performance.

We demonstrate our approach by considering a par­
ticular causal reasoning problem, a simplified version
of plan projection under uncertainty [Hanks, 1990a]
and [Hanks, 1990b]. We define formally the plan lan­
guage used by the projector and a corresponding struc­
tured representation for the temporal information it
generates The representation, called hierarchical in­
terval constraints (HIC), combines time point and in-
terval information in a nested format that, mirrors the
structure of the projector's plans. We implement a
temporal-constraint propagator using the HIC represen­
tation, then run experiments by instantiating a sim­
ple projection algorithm using our HIC' propagator,
Dean's [1987] time-map manager, and Kautz and Lad-
kin's [l99 l] MATS system as subroutines. The HIC sys­
tem runs faster by orders of magnitude; furthermore, its
performance degrades more slowly as problem size in­
creases.

2 The Plan Pro jec t ion Prob lem

[Hanks, 1990a] discusses the problem of projecting to­
tally ordered sequences of actions under uncertainty. Un­
certainty about the state of the world or the effects of an
action means that an action sequence (plan) may have
many possible outcomes. The projector builds a scenario

tree1, which is a temporal trace of the plan's execution.
Each path through the tree, a chronicle, is one possi­
ble, internally coherent course of execution. The projec­
tion problem is to control branching in the scenario tree
while stil l being able extract useful information about
the plan's effects.

We will simplify the projection problem somewhat:

• Instead of the probabilistic representation in
[Hanks, 1990a] we wil l use a three-valued truth as­
signment true, false, unknown for each proposition.
A world state then consists of propositions along
with their t ruth assignments. Any proposition not
true or false is assumed to be unknown.

• A simple action consists of a name and a set of out­
comes. Each outcome is a pair, (condition, effect).
The condition describes the world states in which
the corresponding effect wil l be realized—a condi­
tion is a set of propositions. The corresponding ef­
fect consists of a duration (a time interval) and a set
of proposition/truth-value pairs.
The idea is that if, at execution time, all of a condi­
tion's propositions are true, then all of the effect's
propositions will take on the corresponding truth
value We require that an action's conditions be mu­
tually exclusive and exhaustive, so at execution time
exactly one outcome wil l be realized. The projec­
tor may not know which one, however, since one or
more of the action's conditions may have truth value
unknown. Projecting a simple action wil l cause a
branch in the scenario tree each time more than
one of an action's outcomes has a condition that
evaluates to true or unknown.

• From the simple actions we define complex actions
representing sequential, parallel, conditional, and it­
erated execution of simple actions3.
If a1, a2 , an are actions and P is a proposition,
then the following are actions too:

- (seq a 1 , a 2 , . . . , a n)
- (par a 1 , a 2 , • , a n)
- (i f P a1 a2)
- (wh i le P a1)

The projection algorithm is presented with an init ial
world state and an action. It projects the action fully,
branching every time a subaction has multiple possible
outcomes.

Consider, for example, projecting a plan such as (seq
a b c d). Suppose that the projector can identify a sin­
gle outcome for each action except c,4 which has two
possible outcomes. Figure 1(a) shows what the scenario
tree would look like. The nodes in the tree represent the
outcomes of the primitive actions in the plan. There are
two chronicles, representing the two possible courses of
execution.

2This structure is similar to an environment graph,
[Davis, 191)0, Chapter 4].

3[Shaw, 11)81)] uses similar program-description operators.
4That is, exactly one condition for a, 6, and d evaluates

to true.

Williamson and Hanks 153

(b) HIC representation

Figure 1: Projection Example

The projector may then have to answer questions both
about the states of propositions at various points of
t ime—"is P true when action A is executed?" "is G
true when the plan finishes executing?"—and also tem­
poral queries like "how long wil l the plan take to ex­
ecute?" and "wil l this segment of the plan take more
than 15 minutes?" We address queries only of the lat­
ter type, and furthermore, wil l concentrate mainly on
temporal queries involving the distance separating time
points within the same chronicle

We wil l next describe the Hierarchical Interval Con­
straint structure, which is an attempt to mimic the sorts
of temporal structures generated by the projector

3 Hierarchical In terva l Constraints
A hierarchical interval constraint (HIC) represents an
interval of time, and may comprise one or more suhiu-
tervals. Subintervals, if any, are also represented by
HICs. The interval's duration—its minimum and maxi­
mum temporal length—depends on the two sorts of in­
formation: the durations of its subintervals, and the in­
terval's type. HIC types represent common temporal rea­
soning structures, some of which cannot be represented
as simple temporal constraint graphs

Table 1: How is calculated for complex HICs

of for each HIC type. A H ICs duration is computed
increment ally by the system when it is defined, a process
requiring time linear in the number of its children.

For example, imagine that we wish to reason about
an action go- to-work , which wil l be carried out by
performing one of two possible subactions: either
by wa lk - to -work , taking from 30 to 40 minutes, or
b i ke - to -work , taking from 10 to 15 minutes. We create
simple HICs W and B to represent the last two actions,
and specify = [30,40] and = [10,15]. We then
create a selection HIC, G, to represent the go- to-work
action and specify that = (B, W). The system wil l
calculate that = [10,40].

The descendants of a HIC are its children, all their
children, etc. (The terms parent and ancestor also have
the obvious definition.) A HIC must have at most one
parent, and no HIC may be a descendant of itself; i.e.
HICs must be properly nested. A top-level HIC is one
that has no parent A leaf HIC has no children. Leaves
must be type simple.

Our temporal reasoning module reasons about isolated
time points in addition to these HIC structures. Time
points may be useful to represent the occurrence of ex­
ogenous events, or to synchronize the plan's execution
with known clock times Time points are integrated with
HIC' structures to form an arbitrary temporal constraint
graph (TCG), with time points as the vertices and top-
level HICs as the edges If all of the HICs were of type
simple and sequence, the expressive power of the sys­
tem would be equivalent to a network consisting of sim­
ple temporal constraints as described in [Dechter et al.,
1901]. This is also equivalent to the constraints allowed
by the T M M system [Dean and McDermott, 1987].

The additional HIC types, selection and parallel, sig­
nificantly increase the expressive power of the system.
They allow an application to represent and reason effi­
ciently about commonly occurring temporal situations
which previously existing formalisms could only accom­
modate by resorting to more general, exponential-time
algorithms An example of this is the go- to-work situ­
ation described above. Simple temporal constraint net­
works (in the technical sense of [Dechter et al., 1991])
cannot represent this situation at all. General temporal
constraint networks can find the more precise solution

but are NP-Hard to solve.
Temporal queries request the distance between two

time points, which may be the beginning or end of any
hierarchical interval (known as virtual time points), or
one of the isolated time points in the TCG.

We compute the temporal distance between two time
points as follows:

154 Automated Reasoning

• I f the two t i m e po in ts are bo th endpoints of HICs
t ha t share some common ancestor we compute the
distance f r o m each t i m e po in t to each end po in t of
t h a t c o m m o n ancestor. A l t h o u g h th is requires t ime
exponent ia l (0(2d)) in the depth of nest ing of the
H ICs , th is is s t i l l a t most l inear in the number of
descendants of the in terva ls ' common ancestor5 .

• I f the two t i m e points are no t end points of H ICs
t h a t share a c o m m o n ancestor, or i f ei ther of t hem
is an isolated t i m e po in t in the T C G , we have no
choice bu t to propagate bounds th rough the ent i re
g raph . We use the F loyd-Warsha l l t rans i t i ve closure
a l g o r i t h m , which is 0(n3) in the number of exp l ic i t
t i m e po in ts , b u t independent o f the number o f HICs.
(The a l go r i t hm requires on ly the lengths of the top-
level H ICs , wh ich have been pre-computed.)

[W i l l i amson and Hanks, 1993] provides a complete dis­
cussion of the query a l go r i t hm and i ts computa t iona l
complex i ty .

Our a lgo r i t hm 's compu ta t i ona l advantage derives
f r om the fact t ha t i t al lows the app l ica t ion to represent
a tempora l reasoning s i tua t ion using the H I C f ramework
a lmost exc lus ive ly—only a smal l number of expl ic i t t ime
points are typ ica l l y required. In fact most queries do not
require so lu t ion of the so lu t ion the T C G at a l l , and even
when the ent i re graph must be considered it is much
smaller t han i t wou ld be i f the same s i tua t ion had been
represented using ex is t ing, un in fo rmed TR systems.

By l e t t i ng the app l ica t ion prov ide i n fo rma t i on about
the s t ruc ture o f the TR task, HICs effectively al low the
query a l g o r i t h m to ignore constraints irrelevant to the
par t icu lar query. As a s t r i k i ng example, we shall con­
sider our p lan pro jec t ion app l i ca t ion , which does not re­
quire the const ruct ion of a T C G at a l l , but represents
the pro jec t ion scenario in a single nested H I C st ructure

3 .1 H I C s i n P l a n P r o j e c t i o n

H I C types simple, sequence, selection, and parallel d i ­
rect ly suppor t the p lan pro jec t ion task. A simple H I C
represents a single, a tomic act ion. It has no sub-
intervals, and i ts t empora l length (m i n i m u m and max­
i m u m) is suppl ied by the app l i ca t ion . A sequence H I C
represents two s i tuat ions: a compound act ion composed
of a number of sub-act ions executed sequential ly, as well
as a series of adjacent act ions each w i t h a single outcome.
In other words, a scenario tree w i t h a single branch ap­
pears as a sequence in terva l constra int .

Selection H ICs represent act ions tha t have more than
one possible ou tcome due to uncer ta in ty : A sub-HIC is
created for each possible outcome.

As an example , consider pro jec t ion of the plan men­
t ioned above, which gave rise to the chronicle tree in
F igure 1(a). F igure 1(b) shows the corresponding H I C
s t ruc ture . T h e smal lest boxes are simple intervals rep­
resenting the outcomes of each p r i m i t i v e act ion. E1 is a
selection H I C representing the fork in the scenario tree.
T h e fact t h a t i t is a selection H I C codes the in fo rmat ion
t ha t exact ly one of the branches w i l l actual ly be realized

5Assuming that each non-leaf HIC has two or more
children.

at execut ion t ime. S1, S2 and S3 are sequence HICs, SI
representing the tempora l in terval over which the entire
p lan is executed.

Queries to the temporal - reasoning modu le m igh t ask
about the amoun t o f t ime separat ing any two t ime
points : the beg inn ing or end of any pair of the struc­
ture 's intervals. Note again t ha t neither the i n i t i a l pro-
jec t ion task nor queries invo lv ing the plans steps require
construct ion of a tempora l constra int graph. We rep-
resent the ent ire scenario tree in a single, nested H I C
s t ruc ture , meaning t ha t tempora l queries w i l l require at
worst t ime l inear in the number of t ime points. In many
cases the t ime required w i l l be s igni f icant ly less.

An example of the increased expressiveness of our sys­
tem is tha t the du ra t i on of the ent ire p lan can be ob­
tained w i t h a single tempora l query. Ex is t ing imp lemen­
tat ions based on s imple tempora l constra int networks
would require the app l ica t ion to m in im ize and max imize
over the durat ions of each i nd i v i dua l chronicle to ob ta in
the same i n fo rma t i on .

4 Empi r i ca l Results

We implemented our pro jector on top of three different
TR modules: our own H I C system, the M e t r i c / A l l e n
T i m e System (M A T S) o f Kau tz and Ladk in [1991],
and the tempora l reasoning component of Dean's [1987]
T M M A l l systems were implemented i n C o m m o n Lisp,
and tests were run on the same machine under s imi lar
loading We w i l l f irst describe how we implemented the
projector using the other two temporal - reasoning m o d ­
ules, then report the comparat ive results.

T M M ' s tempora l reasoning fac i l i t y essentially bui lds a
graph of t ime points constrained by s imple in terval met­
ric constraints. T M M allows no d is junct ive constraints.
We represented the projected plan's scenario tree by cre-
a t ing a pair of t ime points to represent the beginning
and ending of each plan outcome, which were then con­
strained by the associated act ion's du ra t i on . The end
po in t of each outcome and the begin po in t (s) of the fo l ­
lowing outcome(s) were constrained to be consecutive by
adding the constraint [0,0] between them.

The M A T S system integrates metr ic i n f o rma t i on in to
Al len 's f ramework of qua l i ta t i ve in terva l relat ionships.
I t al lows the creat ion of t empora l intervals, specifica­
t ion of their qua l i ta t i ve relat ionships, and specif icat ion
of interval-valued metr ic constraints between the end
points of intervals. We represented the scenario tree
by creat ing an interval for each act ion outcome. The
dura t ion of such outcome's in terva l once again has the
appl icat ion-suppl ied du ra t i on . Intervals for successive
outcomes are constrained to meet each other.

For each imp lemen ta t i on we pro jected plans t h a t gen­
erated scenario trees of various sizes. We then per formed
100 random tempora l queries on the resul t ing tempora l
structures The plans were a l l less than ten steps long.
We changed the number of possible outcomes in the sce­
nar io tree by vary ing the number of possible outcomes
for the f irst ac t ion. In effect th is in t roduced uncer ta in ty
early in the pro jec t ion . T h e number of i n i t i a l branches
varied between one and eight ; doub l i ng the number of

Williamson and Hanks 155

init ial branches essentially doubles the size of the result­
ing scenario tree.

We formed a temporal query by randomly choosing
a chronicle from the tree, choosing two outcomes from
that chronicle, and then choosing one of the end points
of each of those outcomes. Table 2 shows the CPU time
(in milliseconds on a DECstation 5000) required for pro-
jection and query processing.

Note that the query time required by the MATS sys­
tem is cubic in the size of the scenario tree, making it
completely impractical for larger problems. (MATS also
requires space quadratic in the size of the tree) MATS
spends almost all of its query-processing time in com­
puting the solution for the entire TCG, which is then
cached. MATS would therefore take essentially the same
amount of time to process one query as it did to process
all 100 queries. T M M and HIC, on the other hand, com­
pute query answers incrementally, and would therefore
process a single query roughly 100 times faster

TMM's temporal reasoning mechanism required only
linear time to answer queries, but seemed to require
quadratic time to construct the constraint graph ini­
tially, we discuss TMM's propagation mechanism below

Our HIC system required only linear time for projec­
tion, and performed queries in sub-linear time This is
possible because the constraint network's structure al­
lows the query algorithm to isolate a particular chronicle
and ignore the (irrelevant) constraints in the others.

These results suggest that our system is capable of
handling projection problems several orders of magni­
tude larger than either of the alternative implementa­
tions.

5 Related Work

[Kautz and Ladkin, 199l] and [Dechter et al., 1991] both
present metric TR algorithms that are completely do­
main independent. We noted above our opinion that
these algorithms are mainly useful for pointing out
explicitly the tradeoffs between expressive power and
speed. We doubt that either algorithm, implemented
without problem-dependent optimizations, will prove
useful for applications of a reasonable size.6

[Allen, 1983] introduces the notion of a reference inter­
val7 as a means of controlling temporal inference Each
interval added to the database is assigned to one or more
reference intervals, and the system caches the full inter­
val transitivity table for all the intervals contained within
a given reference interval. To infer the relationships be­
tween two intervals that do not share a reference interval
the system searches for a path between the two intervals,
restricting its search to reference intervals alone. Allen
discusses the possibility of applying this idea to the prob­
lem of reasoning about events and processes, though he
does not implement such a system. We provide an im­
plementation, and furthermore extend the temporal rep-

6On the other hand, the MATS implementation available
through [Kautz and Ladkin, 199l] is extremely elegant and
easy to use, and so provides a nice vehicle for exploring small
problems.

7Allen in turn acknowledges [Kahn and Gorry, 1977].

resentation to include quantitative as well as qualitative
constraints.

The T i m e l o system of [Koomen, 1988) implements
a temporal reasoning algorithm based on Allen's quali­
tative interval framework. It provides an algorithm for
building reference-interval structures automatically. In
some sense Koomen ' approach is diametrically opposed
to our own. Both approaches recognize that an appli­
cation's constraints and queries exhibit regularities, and
furthermore that exploiting these regularities is crucial
to achieving good performance. In Koomen's system the
application adds constraints without communicating that
structure to the temporal database module; Timelogic
rediscovers that structure by constructing an appropri­
ate hierarchy of reference intervals. Our approach allows
the application to communicate its temporal structure
directly, which is then incorporated into the structure of
the temporal database itself.

Dean's [1991] time-map manager (TMM) implements
both causal and temporal reasoning patterns. Its
temporal-reasoning mechanism constructs graphs whose
nodes are time points connected by simple metric con­
straints It implements a heuristic, limited-depth search
to infer the mst restrictive constraints binding any two
points in the graph. Underlying this scheme is the as­
sumption that paths through the constraint graph wil l be
short The search can be quite efficient if the assump­
tion holds, but if it is violated—if the graph contains
long paths or is highly connected—-its performance can
degrade to worse than the standard On3) algorithms.
And since the algorithm abandons paths that exceed a
constant bound, it can potentially report incorrect re­
sults.

A second notable feature of T M M is its temporal in­
dexing scheme. This technique, which is also similar
to reference intervals, allows the application to provide
information about the granularity of the temporal rea­
soning problem so that time points can be indexed for
more efficient retrieval This functionality is an impor­
tant step toward the kind of informed temporal reasoning
necessary for realistic applications.

Our work also builds on the work in [Hanks, 1987],
which was an early attempt to optimize a temporal
database manager to perform tasks like temporal infer-
encing, temporally scoped database fetches, and hypo-
thetical recisoning about the future, under conditions of
uncertainty and ignorance.

6 Conclusion
Formal explorations of temporal-reasoning algorithms
have made the tradeoffs between expressive power and
computational efficiency extremely clear. The results
point out that an application cannot use a domain-
independent temporal constraint propagator and expect
reasonable performance: reasonable functionality comes
at the price of an exponential algorithm, and the algo-
rithms are too slow in the worst case even under the
most restrictive limitations.

Our paper has shown how to build an efficient tempo­
ral reasoning module by exploiting regularities both in
the constraints typically added by the application and

156 Automated Reasoning

Table 2: CPU time (in msec) for projection and 100 temporal queries

in the queries typically posed. We considered the prob­
lem of plan projection, and advanced a formal model of
the problem's constraint structure. A temporal projec­
tor using an implementation of our model dramatically
outperformed current domain-independent implementa­
tions in absolute terms, and furthermore showed better
performance degradation as problem size grew.

It remains to be seen the extent to which our H1C
model for temporal reasoning can be applied to other
application domains, or whether a class of similar mod­
els can be developed for other applications. It is clear,
however, that if a temporal-reasoning system is to be
of practical value to a realistic implementation, it will
have to have some model of its applications1 behavior
Identifying a set of HIC-like structures offers a promising
means of providing functionality midway between truly
domain-independent temporal reasoning and problem-
specific programs.

References

[Allen, 1983] J. Allen. Maintaining Knowledge About
Temporal Intervals CACM, 2(>(11):832 843, 11)83
Reprinted in [Weld and de Kleer, 1989]

[Davis, 1987] Ernest Davis Constr ami propagation
with interval labels. Art i f ic ial luttllujt-net, 32(3) 281
331,1987

[Davis, 1990] E. Davis. Representations of Common-
sense Knowledge. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1990.

[Dean and McDermott, 1987] T. Dean and 1) McDer-
mott. Temporal data base management Art i f icial
Intelligence, 32(1), Apr i l 1987.

[Dean, 1991] Thomas Dean Using temporal hierarchies
to efficiently maintain large temporal databases Jour­
nal of the ACM, 1991.

[Dechter ct a i , 1991] R. Dechter, 1. Mein, and J Pearl
Temporal Constraint Networks. Art i f ic ial Intel l igent ,
49, May 1991.

[Hanks, 1987] Steve Hanks. Temporal reasoning about
uncertain worlds. In Proceedings, Uncertainty in Ar­
tif icial Intelligence, pages 114-122, 1987.

[Hanks, 1990a] S. Hanks. Practical Temporal Projec­
tion. In Proceedings of AAAI-90, August 1990.

[Hanks, 1990b] S. Hanks. Projecting PI ans about Uncer­
tain Worlds. Ph.D. Thesis, Yale University Computer
Science Department, January 1990.

[Kahn and Corry, 1977] Kenneth Kahn and G Anthony
Gorry. Mechanizing temporal knowledge Artif icial
Intelligence, 9(2):87 108, 1977.

[Kautz and Ladkin, 199l] H. A. Kautz and P. B. Lad-
km Integrating Metric and Qualitative Temporal
Reasoning In Proceedings of AAA1-91, July 1991.

[Koonien, 1988] Johannes Koomen The TIMELOGIC
Temporal Reasoning System Technical Report 231,
University of Rochester, Department of Computer Sci­
ence, October 1988.

[Mem, 199l] 1 Mein Combining Qualitative and Quan­
titative Constraints in Temporal Reasoning. In Pro-
cttdings of AAAI-91, July 1991.

[Shaw, 1989] Alan C. Shaw. Reasoning about time in
higher-level language software. IEEE Transactions on
Software Engineering, 15(7):875-889, July 1989.

[Vilain el al., 1989] M. Vilain, H. Kautz, and P. van
Beek Constraint propagation Algorithms for Tem­
poral reasoning: A Revised Report. In Readings in
Qualitative Reasoning about Physical Systems, chap­
ter 4, pages 373-381 Morgan Kaufmann, San Mateo,
CA, 1989.

[Weld and de Kleer, 1989] D Weld and J. de Kleer, edi­
tors Readings in Qualitative Reasoning about Physical
Systems. Morgan Kaufmann, San Mateo, CA, August
1989

[Williamson and Hanks, 1993] Mike Williamson and
Steve Hanks Informed temporal reasoning. Techni­
cal report, University of Washington, Department of
Computer Science, 1993 Forthcoming.

Williamson and Hanks 157

