Perception and Experience in Problem Solving

Edmund Furse

Department of Computer Studies

University of Glamorgan

Pontypridd, Mid Glamorgan

CD37 1DL
UK
efurse@uk.ac.glam.genvax

Abstract

Whilst much emphasis in Al has been placed on the use
of goals in problem solving, less emphasis has been
placed on the role of perception and experience. In this
paper we show that in the domain that may be
considered the most abstract, namely mathematics, that
perception and experience play an important role. The
mathematician has a vast amount of mathematical
knowledge, and yet is able to utilise the appropriate
knowledge without difficulty. We argue that it is
essential to model how well the knowledge is grasped,
so that mathematical knowledge can grow from partial
knowledge to important results that are easily accessed.
Not all knowledge is equal in its importance, and we
argue that perception and experience play a key role in
ordering our knowledge. Features play a role in both
representing the information from the environment, and
indexing the knowledge of our memories, but a key
requirement is that the features should be dynamic and
not be built in. This research is implemented in the
program MU, the Mathematics Understander, which
utilises the CMS, Contextual Memory System. MU has
sucessfully "read" university level texts in pure
mathematics, checking the proofs and solving the
simple problems.

1. Introduction

Problem Solving has been thought of as the primary
examplar of intelligence, and has been central to work in
artificial intelligence from the early work of Newell
and Simon's GPS, to expert systems and theorem proving.
Laird, Rosenbloom and Newell's SOAR (1987) has
problem solving as the cornerstone of its architecture.
However, whilst expert systems, and in particular Lenat
and Feigenbaum (1991), have shown the importance of a
large amount of knowledge to give systems power,
theorem proving in contrast has tended to concentrate on
general methods such as resolution, tempered by meta-
level reasoning (eg Bundy 1983). Given the evidence that
expert problem solving tends to have access to large
amounts of knowledge and tends to use shallow search
methods, it is surprising that much of the Al community

Rod Nicolson
Department of Psychology
University of Sheffield
Sheffield

S102TN

UK
pclrin@uk.ac.sheffield.sunc

continues to pursue methods which are knowledge thin
rather than knowledge rich.

It can be argued that if one is concerned with
discovering powerful machine problem solving methods,
then these do not necessarily have to be similar to
human problem solving methods. Furthermore, it is
clearly more elegant to have neat general problem
solving methods, rather than a collection of special
purpose methods. However, Schank (1981) has argued
that even if one's goal is to build intelligent machines, it
is a good first step to model how humans perform the
task. We argue that the neat approaches to problem
solving do not sufficiently model genuine ecological
tasks, are of insufficient power, and since they take
little account of learning are inadequate accounts of
human cognition.

Instead we present an alternative thesis on cognition
which places learning at the centre of what it is to be
intelligent, rather than placing problem solving at the
centre. Interestingly, this is a view much nearer to Alan
Turing's thought (1953), than his Turing machine
conception of computation. Turing wanted to know not
only how machines could solve problems, but how they
could learn. Certainly SOAR places great impotance on
learning, but it is in our view an impoverished view of
learning to see it only as search within a problem space.

For too long perception has been seen as almost a
separate faculty from the mainstream of Al and
cognition, and yet deGroot (1966) and Chase and Simon
(1973) have convincingly showed that expert knowledge
in chess is very largely a matter of 50,000 perceptual
features. One could argue that board games are
naturally prone to perceptual processing, but we show
that the same arguments apply in the domain of pure
mathematics. Given the highly abstract nature of pure
mathematics, if perceptual features play an important
part in problem solving in this domain, it may well be
the case that they play an important role in many other
types of problem solving.

It is easy to demonstrate that perception plays an
important part in problem solving. Consider the
following proposition:
¥x>03yVz>y lén -9l <x 1)

[1) is difficult to recognise, but by using the usual letter
names as in [21:

Furse and Nicolson 181

Ve>0INVYR>N Ixp-xl <€ [2]

we have a proposition that is easily recognised by
mathematicians as the definition of the limit of the
sequence X, as n tends to infinity is x. However, since [1]
is obtained from [2] simply by a change of letters, it is
logically equivalent to [1]. Thus there is more to problem
solving than logic. What we are arguing is that
expressons such as Ve >0 act as perceptual features
which enable the expert to rapidly recognise the
mathematical result.

It is obvious that experience plays a role in an expert's
ability to solve problems. However, apart from our own
work, we believe there is no convincing account of how
this might work. Too many models of expertise are
relatively static, and yet all expertise must have been
learned at some time, and experts continue to grow in
expertise. Through the study of education, and in
particular mathematics text books, one can see how
knowledge is slowly acquired. We argue that in text
books, any particular mathematical result goes through
three stages of usage in problem solving:

1. The result is stated explicitly, for example:

(3x - 2y)(3x + 2y) = (30" - 2y’ since (a-b)(a+b) = a’- b’
2. The result is used implicitly, for example:

(3x - 2y)3x + 2y) = Bx¥ - 2y

(ie the same as (1) but without the explanation).

3. Theresultis used in compound inferences, e.g.:

(3x - 2y)3x + 2y) = 9* - 4yJ

Not all mathematical results get beyond stage (1),
some results may only be used a few times, and may then
be forgotten. In contrast, results which are frequently
used become so well known through their stage (2) usage,
that eventually they get used in stage (3). Thus,
ironically the most important results are the ones which
are not mentioned at all, precisely because they are so
well known.

If all of an expert's knowledge was of equal importance,
and therefore equally easy/difficult to access, most
experts could not function at all. Yet most truth
maintenance systems work on this basis. In contrast we
argue that the expert has a perceptual system and
memory so organised that important results are easily
recognised and retrieved. Furthermore, we will show
how the Contextual Memory System, CMS, (Furse 1992,
Furse and Nicolson 1992) allows a continuing change of
the perceptual and memory systems, so that the novice
can become the expert through sufficient learning
experience.

The CMS is a network architecture of features and
items. The features are used to both encode the external
object in the environment, and to index items in memory.
Both features and items have an energy level, and the
links between features and items have a strength. The
novel characteristic of this architecture is that the
features are generated dynamically from the
environment, and the configuration of connections is
frequently changed during memory processes.

182 Cognitive Modeling

2. Pure Mathematics

Pure Mathematics is a good domain in which to study
problem solving since although it is a genuinely
ecologically valid task, it uses little common sense
knowledge, and all the mathematical knowledge has
been acquired through learning. Indeed, some branches
of pure mathematics, such as group theory, can be
learned by arts undergraduates, illustrating the point
that the subject can be learned with little prior
knowledge. Within a course a large body of knowledge
is built up which is used to understand proofs and solve
problems.

This research has concentrated on modelling the
understanding of mathematics texts. Since about the
beginning of this century pure mathematics texts have
taken the form of definitions, theorems and lemmas (a
lemma is a little theorem), their proofs and exercises.
Clearly it would be a large scale exercise to develop a
program to read verbatim mathematics texts, and so the
natural language component has been factored out by
rewriting the texts by hand in the language FEL (Formal
Expression Language), Furse (1990). FEL has a formal
syntax and is very expressive, as the example in Figure 1
shows.

Definition 2.4 of converges
«s_» converges to o

ifve>03ImVn>mls -al <&

Lemma 2.1.1
not («(-1)"» converges to 1)
Proof
1 RTP not («(-1)"» converges to)
2 Suppose to the contrary «(-1)"» converges to 1
3= Ve>03mVn>m I-1)"-1] <Ee by definition of
converges
4=3mVn>m i¢-1)"-11 < 1by substitutinge =1
Sletn=2m+1
6 =nisodd
7= =.1
B=I1¢-1-11=1-2i sincea=b=> la-1l = |b-1{
9=2
10 = 2 <1 by combining steps 4 and 9
11 = contradiction
12 QED
Figure 1

There are many levels of understanding a mathematics
text, but this research has focused on the ability to check
proofs by giving explanations of the steps and solving
the simple problems. The problem solver uses a number
of built-in general heuristics and uses the CMS to filter
the mathematical results to ensure there is no
combinatorial explosion. Many theorem provers model
an artificial task by carefull feeding of only the results
needed to solve the problem. In contrast, MU has access
to the whole body of mathematical knowledge it has
learned at the time, and uses its experience to focus on
the problem in hand.

A typical problem and its solution by MU is shown in
Figure 2. The output shows a solution only slightly more
verbose than a human protocol.

Problem 2.72
Prove { G isa group and g e G and [isa function from G to
Gand f(x) = gxg!) = fisa isomorphism from G to G

Solution
Suppose G isagroup and g € G and f isa function from G to
G and f(x) = g(xg™")
RTP { isa isomorphism from G to G
RT?P f isa homomorphism from G to G and f isa one-to-one
from G to G by definition of isomorphism
Part 1
RTP f isa homomorphism from G to G
RTP fisa function fromGto Gand vabae Gandbe G
= f(ab) = f{a)f(b} by definition of homomorphism
RTPVvabae Gand be G = f(ab) = f(a){b)
Supposeae Gandbe G
RTP f(ab) = f{a)f(b)
Now f(x) = glxg1)
RTP gi(ab)g'} = (glag Nigbg'))
(glag " Nglbg1))
= gaebg sincea’la=e
= gabg! sinceae =a
= g{(ab)g!) since associative-law
QED Part 1
Part 2
RTP f isa one-to-one from G to G
RTP fisa function from GtoGand ffa) = f(b) = a=b
by definition of one-to-one
RTPf@)=fb)=a=>b
Now f(x) = glxg™)
RTP glagt)=gbg')=a=b
glag') = glbg?)
= ag! =bg! sinceabsac=b=c
=a=bsineeba=ca=b=c
QED Part 2
Figure 2

3. Perception and Features

Many models of perception and memory use a fixed set of
features, but such models have difficulty with pure
mathematics as it is a large and completely open-ended
domain. A pure mathematician can at any point
introduce a new concept by means of a definition. Most
models tend to be reductionist, seeking to form
representations at some lowest common demoninator, or
primitives. However, it seems unlikely that a
mathematican is thinking in terms of concepts at this
sort of level. For example, consider the following
lemma:

Lemma. If y is a homomorphism of G onto G2 with
kernet], then] is a normal subgroup of Gy.

This lemma can be unpacked futher by use of the
definitions of homomorphism, kernel and normal
subgroup, so that we obtain a representation like:
Lemma. i yis a function from Gy onto G

and w(a*b) = y(a)*yw(b), and y-1{G3) =], then J is a
subgroupof G1andac Gandje]:aja'l e G1.

But the mathematician does not re-represent in his or
her head the definition in this lower level. Rather the
representation is at the original level, and can even be
utilised at this level without further unpacking, for
instance the lemma can be used in a step such as:

¢ is a homomorphism of G onto H with kernel K

=> K is a normal subgroup of G

simply by pattern matching.

Rather, we represent the proposition in terms of its
component concepts, namely "homomorphism", "kernel"
and "normal-subgroup". If the student on encountering
this lemma was very familiar with normal subgroups
then this should be easy to encode, and the student
should already have developed features for this
purpose.

In the CMS, features are generated dynamically from
the environment using built in feature generating
mechanisms. There are no built in features (see Furse and
Nicolson 1992, Furse 1993b). The program MU utilises a
dynamic parser which converts the FEL propositions into
a parse tree which is then fed to the feature generating
processes. Thus, e.g., the above proposition is
represented as the tree shown in Fig. 3.

Figure 3, Extracting features from a tree

Here, the leaves of the tree have been replaced by a
canonical representation using the letters a,b,c,... By
using mechanisms which construct different parts of this
tree a very large number of features can be built. In the
following we use LHS to represent the left hand side of
the tree, RHS the right hand side, and RHS-LHS to
represent the RHS of the LHS. Thus in this case the
RHS-LHS is the proposition kernel(c). It is also possible
to abstract a node, so for example if we abstract the
whole of the left hand side we obtain the proposition a
=> normal-subgroup(b,c), where again the letters have
been replaced by their canonical form. Using such
methods one obtains features such as:
has-form-[homomorphism_a_b]

has-form-[kernel_a1
rhs-has-form-[normal-subgroup_a_b]
rhs-lhs-is-form-[kernel_al
is-form-[=>Jand_a_b]_[normal-subgroup_c_d])
is-form-[=>_[and_[homomorphism_a_bLc]L[normal-
subgroup_d__a]]

The last feature captures the notion that the student can
remember that the lemma was something about being a

Furse and Nicolson 183

homomorphism implying that there was a normal-
subgroup. Thus these features enable a rich
representation of partial knowledge. With sufficient
features the original propostion can be reconstructed, and
given the development of sufficiently specialised
features, it can be represented exactly and compactly.

4. Learning and Experience

Not only does the expert mathematician learn a large
body of mathematical results, but also a large number of
features of these results. This then ensures that results
are easily recongised and retrieved. Given a
mathematical step such as:

logl{x - y){x + y}] + 2log{y) = 2log(x)

the mathematician has little difficulty in noticing that
the result:

(x-y)(x+y)=x2-y2

has been used, or at least in checking the forward
reasoning on applying this inference rule to produce the
intermediate step:

logtx?) - log(g/z) + 210&(5(} .

Given that the mathématician has hundreds or even
thousands of results that might be relevant at any
particular step, it is an important computational
problem how the appropriate result is retrieved without
difficulty. We argue that it is patterns or features that
the mathematician learns to recognise. Thus, in the
above example, the mathematician has no difficulty in
seeing the pattern (x - y)(x + y) as being the left hand
side of a well known result.

If this result has been used sufficiently often then a
specialised feature such as
has-form-[*_[-_a_b][+_a_hl]
may have been stored with which the result is indexed
and retrieved. It remains to explain how items are first
stored in memory in terms of features, and how these
features change through experience.

As explained in the previous section, when a result is
first processed by the CMS it is broken up into a large
number of features using knowledge free methods. Some
of these features may already have been stored, others
will be completely novel. The CMS stores a mixture of
old and new features, where the old ones are selected
from the ones with highest energy, all features being
given an energy value which is adjusted with
utilisation. If only old features were used, then we
would soon be in a closed box representation, but at the
time of storage one does not know which of the new
features may be useful. For example, consider the
definition of a normal subgroup:

Definition. N isa normal-subgroup of G

iff N isa subgroup of G and Vg e G, Vne Ngng'le N
Here, on initial encoding features that might be used
could include:

has-form-[*_a_b]

has-form-[subgroup_a_b]

but the crucial feature is:

has-form-[*_a_[*_bJinv_al]]

184 Cognitive Modeling

but it is only through experience that the
mathematician learns of the importance of recognising
the feature gng-".

Within the CMS, when a result is retrieved (for

example in proof checking or problem solving), the
features are adjusted to ensure that retrieval is more
efficient in future. Recall involves first computing the
features of the probe. For example, in trying to prove
that:
log[(x - y)(x + y)I + 210g(y) = 210g(x)
the system first searches for a whole matching result
before just trying to reason from the left hand side. In
reasoning from the left hand side, the LHS acts as the
probe for the CMS, generating features such as:
Ihs-has-form-[log_a]
has-form-[_*_ a_b]
lhs-has-form-|-_a_bl
lhs-lhs~has-form-[*_a_b]
All these features must be existing ones, for clearly it is
pointless to use a novel feature as an index to old
knowledge. The feature generating mechanisms generate
many features, and a subset is chosen of those of highest
energy.

In the second stage of recall this set of features is used
to index a number of mathematical results. Results
which do not match the probe are considered failures.
Ideally the features should only index relevant results,
which can be applied, but this only comes through
experience as the feature space changes. The matching
results are then applied and the outcome which has the
highest plausibility in terms of being nearer to the goal
and a simpler expression is chosen.

In the third stage of recall learning takes place to
ensure that the found item is more easy to retrieve in
future. This means ensuring that the same set of input
features should be more likely to retrieve the found item
than the failures. This is achieved by four processes:

« storing the uncomputed features

* encouraging the useful features
 discouraging the unuseful features

» creating new distinguishing features

Most of the features used in the probe will already
index the found item, but some of them may have arisen
from storing other items, and may not be connected to the
found item. These are known as uncomputed features,
and provided the found item possesses the feature, they
are now stored. By this means new connnections between
features and items are regularly being made during
retrieval.

Useful features are features which index the found
item but not the failures. These features are encouraged
by increasing both their energy and the link strength
between feature and found item. Conversely, unuseful
features index the failures but not the found item, and
have their energy decreased.

The final method of adjusting the CMS involves the
dynamic creation of novel features which index the
found item but not the failures, and do not already exist.
This is achieved by means of comparing the large
feature sets of the found item and the failures generated

by bottom-up methods.
specialised features such as
has-form-[*_[-_a_bll+_a_bl] can be generated.

By these means the CMS ensures that results which are
important have a number of high energy specialised
features so that such results are recognised easily. Thus
as a result is used through the stages (I)-(3) described
above, so its representation changes from initially being
encoded only partially in terms of its features, and
likely to be retrieved with other similar results, to
ultimately being a result with specialised features easy
to recall and use. See Furse (1992) for more details of the
CMS.

By such a mechanism,

5. The Mathematics Understander

The Mathematics Understander (MU), (Furse 1993a), is
a computer program which utilises the CMS to
"understand" mathematics texts expressed in FEL. The
original text is translated by hand into FEL, which is
then input to the program. MU parses the input using a
parser whose syntactic knowledge is built up
dynamically from definitions and stored in the CMS.
The parsed input is fed to the proof checker and problem
solver which utilises the acquired knowledge in the
CMS to produce explanations of the steps and solutions to
the problems (see Fig. 4).

MU thus has parsing, proof checking and problem
solving knowledge built in, but no knowledge of
mathematical results. All the mathematical results arc
acquired through the reading of texts. Fig. 2 shows an
example of a problem solution generated by MU. The
built in heuristics used in problem solving are:

« expand a definition

* break a compound step into parts

+ suppose the left hand side

* simplify

Simplification involves the application of known
results using the CMS to only retrieve relevant results
rather than all possibly applicable results. The results
retrieved are applied and their plausibility measured
in terms of nearness to the goal and simplicity. The
result which achieves the highest plausibility is the
one chosen, and if necessary, MU will backrack, but this
is very rarely found to be necessary.

MU is implemented in Macintosh Common LISP and
runs on Apple Macintosh computers. The CMS can be
displayed in a graphical format, and navigated
through. It is also possible to set parameters for
individual modelling. See Fig. 5. MU has successfully
read texts in group theory and classical analysis, and
solved simple problems in group theory.

Froof Euplanaiions ang
Froblem Solutions

Tesibook
A0 sbekan group s § groUp N
wiich gl The gl il alwry
Tor commumive
relatonehp 2 - e Froaf Checker and
Dedibon 2.1 7 Problem Sociumr
Agoup (& s 0 be phalan
[oormmriilen) i ar vary
nbnG -
FLL Parver
hetirution 2 7 idedaniteon {nunkemr “3.1.77)
. [t <=3 {alml 1
oo b fpgen 11y p“:?:r:n gi....i,?i.'. :T
LERETFRP R {prope =3 land {menmtmz » (cap g)!
i imamear b (m
Aut Ok s bl L aaYun

Figure 4. The Mathematics Understander (ML)

% Fiis Egll Ewel Tools Winssdw Need
i ol Lol
dayo e ze. Hnta A dGan
SNow s sne ainces'sas
G=>e”'(n'} = o0 by combining 4
Twr{n 1" eabylomme 2323 4
since ol - 6w =) U= W

mpiny
LT T
. ...
Lomd ...

B OEP since follows lsgicelly Recall faaiuras
K L . ecay rse
MMamory Clesa Up ~hn Inarg)
'R [t Emry Tap Fasturm
LM BAL-PORN{AND A 3 £ Racaii frace
saarch Fath

Fenture Learning

kMamory Plciurs
Aniz Choss ¥p

Figure 5, MU and the CMS menu

Education in pure mathematics is often a process of the
student understanding the proofs of theorems and solving
the problems. This experience enables the student to
develop appropriate features so that relevant results
can easily be retrieved when necessary. The lazy
student who skips the proofs and the simple problems
runs the risk of not being able to solve the harder
problems. If MU "reads" only the definitions and
theorems, and skips the proofs and simple problems, it
too cannot retrieve the results needed when trying to
solve the problem in Figure 2 and gives up.

6. Discussion

In some sense an expert "sees" that in solving a problem a
particular step should be taken. It seems implausible
that a large scale search takes place of knowledge
which might be useful. Rather the knowledge required
almost springs out from the problem. It is this notion
which places perception and learning centre stage in
cogntion which this research attempts to address. We
have shown how in the domain of pure mathematics
expertise can be captured with a large body of
knowledge indexed by features. Further the CMS allows
the modelling of how these features are learned through
experience.

Furse and Nicolson 185

Naturally the CMS uses several ideas which are well-
known in the literature. For instance, the feature
recognition mechanism has similarities with EPAM
(Feigenbaum and Simon, 1986). The energy mechanism
resembles the activation used by Anderson in ACT-R and
ACT* (1983), though the there is no spreading
activation in the CMS. We believe, however, that the
CMS is distinctive in combining all these ideas within
an integrated environment.

The CMS can, in principle, be applied to other domains
than mathematics, since there is no built in mathematics
in its construction. The major requirement is the
development of appropriate feature generating
mechanisms. Work is in hand in applying the CMS to
the learning of board games.

Research in neural networks has brought learning back
to the centre of work in artificial intelligence, and there
is a clear emphasis in their application to perceptual
classification problems. However, to our knowledge
there has not been much success in applying such
architectures to problem solving in domains as complex
as pure mathematics. Furthermore, it could be argued
that a neural network is restricted in its internal
representations by the features used as the input to the
network. In contrast, the CMS generates its features
dynamically from the environment.

The other main competitors to the CMS model are
Anderson's ACT* model and Laird, Rosenbloom and
Newell's SOAR. Whilst both architectures model
problem solving, and in particular model goal based
reasoning, which the CMS does not model, the focus is
quite different. Both models are essentially based on a
production systems architecture, and this ultimately
limits their scope for adaptation. Although both ACT*
and SOAR model learning, they do not appear to model
declarative learning which the CMS is designed for.
Anderson has concentrated on modelling how knowledge
becomes proceduralised, but does not address the question
of how the initial knowledge is learned in the first
place. Newell defined learning as search within a
problem space, but as both Norman (1991), and Boden
(1988), have remarked, this seems an impoverished
view of learning. Pure mathematics cannot be
represented as a problem space since new constructs are
continually being introduced in a relatively ad hoc
manner. SOAR appears to want the domain to be pre-
characterised as a problem space in advance, before
learning can take place. A similar problem occurs with
explanation based generalisation whereby a domain
theory is required in advance. However, human learning
is much more piecemeal, and teachers almost never map
out in advance a characterisation of the domain to be
learned.

In conclusion, perception and experience play an
essential part in problem solving. It is not sufficient to be
an expert to know a lot of facts. The expert also has to be
able to recognise when they are relevant and be able to
retrieve them.

186 Cognitive Modeling

7. References

Anderson J.R. (1983), The Architecture of Cognition,
Harvard University Press.

Boden, M. (1988) Computer models of mind.
Cambridge University Press.

Bundy A, (1983), The Computer Modelling of
Mathematical Reasoning, Academic Press.

Chase W.G. & Simon H.A. (1973) Perception in Chess,
Cognitive Psychology A pp55-81.

DeGroot A.D. (1966) Perception and Memory versus
thought: Some old ideas and recent findings, In
B.Kleinmuntz (ed) Problem Solving: Research, Method
and Theory, Wiley.

Feigenbaum, E.A. and Simon, H.A. (1986), EPAM-like
models of recognition and learning. Cognitive Science, 8:
305-336.

Furse E., (1990), A Formal Expression Lanuage for Pure
Mathematics, Technical Report CS-90-2, Department of
Computer Studies, The University of Glamorgan.

Furse E. (1992) The Contextual Memory System: A
Cognitive Architecture for Learning Without Prior
Knowledge, In Cognitive Systems 3-3, September 1992
pp305-330.

Furse E. and Nicolson R.l. (1992) Declarative Learning:
Cognition without Primitives, Proceedings of the 14th
Annual Conference of the Cognitive Science Society, pp.
832-7.

Furse E, (1993a) The Mathematics Understander. In
'Artificial Intelligence in Mathematics', (eds) J H
Johnson, S. McKee, A. Vella, Clarendon Press, Oxford (in
press).

Furse E, (1993b), Escaping from the Box. In Prospects for
Intelligence: Proceedings of AISB93, (Eds) Aaron
Sloman, David Hogg, Glynn Humphreys, Allan Ramsey,
Derek Partridge, 10S Press, Amsterdam.

Laird J.E., Newell A. & Rosenbloom P.S.. (1987) SOAR :
An Architecture for General Intelligence, In Artificial
Intelligence 33 No.l, Elsevier Science Publishers.

Laird J.E., Rosenbloom P.S. & Newell A. (1986)
Chunking in SOAR the anatomy of a General Learning
Mechanism, In Machine Learning 1 ppll-46.

Lenat, D.B. and Feigenbaum, E..A. (1991). On the
thresholds of knowledge. Artificial Intelligence, 47:
185-250.

Norman D.A, (1991), Approaches to the Study of
intelligence, Artificial Intelligence 47 (1991), 327-346.
Schank R.C. and Riesbeck C.K., (1981), Inside Computer
Understanding, Lawrence Erlbaum 1981.

Turing A.M. (1953), Digital Computers applied to games.
In B.V. Bowden (Ed.), Faster than Thought, London.
Pitman, 286-310.

Cambridge:

