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Abstract 

Whilst much emphasis in AI has been placed on the use 
of goals in problem solving, less emphasis has been 
placed on the role of perception and experience. In this 
paper we show that in the domain that may be 
considered the most abstract, namely mathematics, that 
perception and experience play an important role. The 
mathematician has a vast amount of mathematical 
knowledge, and yet is able to utilise the appropriate 
knowledge without diff iculty. We argue that it is 
essential to model how well the knowledge is grasped, 
so that mathematical knowledge can grow from partial 
knowledge to important results that are easily accessed. 
Not all knowledge is equal in its importance, and we 
argue that perception and experience play a key role in 
ordering our knowledge. Features play a role in both 
representing the information from the environment, and 
indexing the knowledge of our memories, but a key 
requirement is that the features should be dynamic and 
not be built in. This research is implemented in the 
program M U , the Mathematics Understander, which 
utilises the CMS, Contextual Memory System. MU has 
sucessfully "read" university level texts in pure 
mathematics, checking the proofs and solving the 
simple problems. 

1. Introduction 

Problem Solving has been thought of as the primary 
examplar of intelligence, and has been central to work in 
artificial intelligence from the early work of Newell 
and Simon's GPS, to expert systems and theorem proving. 
Laird, Rosenbloom and Newell's SOAR (1987) has 
problem solving as the cornerstone of its architecture. 
However, whilst expert systems, and in particular Lenat 
and Feigenbaum (1991), have shown the importance of a 
large amount of knowledge to give systems power, 
theorem proving in contrast has tended to concentrate on 
general methods such as resolution, tempered by meta-
level reasoning (eg Bundy 1983). Given the evidence that 
expert problem solving tends to have access to large 
amounts of knowledge and tends to use shallow search 
methods, it is surprising that much of the AI community 

continues to pursue methods which are knowledge thin 
rather than knowledge rich. 

It can be argued that if one is concerned with 
discovering powerful machine problem solving methods, 
then these do not necessarily have to be similar to 
human problem solving methods. Furthermore, it is 
clearly more elegant to have neat general problem 
solving methods, rather than a collection of special 
purpose methods. However, Schank (1981) has argued 
that even if one's goal is to build intelligent machines, it 
is a good first step to model how humans perform the 
task. We argue that the neat approaches to problem 
solving do not sufficiently model genuine ecological 
tasks, are of insufficient power, and since they take 
little account of learning are inadequate accounts of 
human cognition. 

Instead we present an alternative thesis on cognition 
which places learning at the centre of what it is to be 
intelligent, rather than placing problem solving at the 
centre. Interestingly, this is a view much nearer to Alan 
Turing's thought (1953), than his Turing machine 
conception of computation. Turing wanted to know not 
only how machines could solve problems, but how they 
could learn. Certainly SOAR places great impotance on 
learning, but it is in our view an impoverished view of 
learning to see it only as search within a problem space. 

For too long perception has been seen as almost a 
separate faculty from the mainstream of Al and 
cognition, and yet deGroot (1966) and Chase and Simon 
(1973) have convincingly showed that expert knowledge 
in chess is very largely a matter of 50,000 perceptual 
features. One could argue that board games are 
naturally prone to perceptual processing, but we show 
that the same arguments apply in the domain of pure 
mathematics. Given the highly abstract nature of pure 
mathematics, if perceptual features play an important 
part in problem solving in this domain, it may well be 
the case that they play an important role in many other 
types of problem solving. 

It is easy to demonstrate that perception plays an 
important part in problem solving. Consider the 
following proposition: 

[1) 
[1) is difficult to recognise, but by using the usual letter 
names as in [21: 
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[2] 
we have a proposition that is easily recognised by 
mathematicians as the definit ion of the l imit of the 
sequence xn as n tends to infinity is x. However, since [1 ] 
is obtained from [2] simply by a change of letters, it is 
logically equivalent to [1 ]. Thus there is more to problem 
solving than logic. What we are arguing is that 
expressons such as act as perceptual features 
which enable the expert to rapidly recognise the 
mathematical result. 

It is obvious that experience plays a role in an expert's 
ability to solve problems. However, apart from our own 
work, we believe there is no convincing account of how 
this might work. Too many models of expertise are 
relatively static, and yet all expertise must have been 
learned at some time, and experts continue to grow in 
expertise. Through the study of education, and in 
particular mathematics text books, one can see how 
knowledge is slowly acquired. We argue that in text 
books, any particular mathematical result goes through 
three stages of usage in problem solving: 
1. The result is stated explicitly, for example: 

2. The result is used implicitly, for example: 

(ie the same as (1) but without the explanation). 
3. The result is used in compound inferences, e.g.: 

Not all mathematical results get beyond stage (1), 
some results may only be used a few times, and may then 
be forgotten. In contrast, results which are frequently 
used become so well known through their stage (2) usage, 
that eventually they get used in stage (3). Thus, 
ironically the most important results are the ones which 
are not mentioned at all, precisely because they are so 
well known. 

If all of an expert's knowledge was of equal importance, 
and therefore equally easy/diff icult to access, most 
experts could not function at all. Yet most truth 
maintenance systems work on this basis. In contrast we 
argue that the expert has a perceptual system and 
memory so organised that important results are easily 
recognised and retrieved. Furthermore, we wi l l show 
how the Contextual Memory System, CMS, (Furse 1992, 
Furse and Nicolson 1992) allows a continuing change of 
the perceptual and memory systems, so that the novice 
can become the expert through sufficient learning 
experience. 

The CMS is a network architecture of features and 
items. The features are used to both encode the external 
object in the environment, and to index items in memory. 
Both features and items have an energy level, and the 
links between features and items have a strength. The 
novel characteristic of this architecture is that the 
features are generated dynamical ly f rom the 
environment, and the configuration of connections is 
frequently changed during memory processes. 
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2. Pure Mathematics 

Pure Mathematics is a good domain in which to study 
problem solving since although it is a genuinely 
ecologically valid task, it uses l itt le common sense 
knowledge, and all the mathematical knowledge has 
been acquired through learning. Indeed, some branches 
of pure mathematics, such as group theory, can be 
learned by arts undergraduates, illustrating the point 
that the subject can be learned w i th l i t t le prior 
knowledge. Within a course a large body of knowledge 
is built up which is used to understand proofs and solve 
problems. 

This research has concentrated on modelling the 
understanding of mathematics texts. Since about the 
beginning of this century pure mathematics texts have 
taken the form of definitions, theorems and lemmas (a 
lemma is a little theorem), their proofs and exercises. 
Clearly it would be a large scale exercise to develop a 
program to read verbatim mathematics texts, and so the 
natural language component has been factored out by 
rewriting the texts by hand in the language FEL (Formal 
Expression Language), Furse (1990). FEL has a formal 
syntax and is very expressive, as the example in Figure 1 
shows. 

There are many levels of understanding a mathematics 
text, but this research has focused on the ability to check 
proofs by giving explanations of the steps and solving 
the simple problems. The problem solver uses a number 
of built-in general heuristics and uses the CMS to filter 
the mathematical results to ensure there is no 
combinatorial explosion. Many theorem provers model 
an artificial task by carefull feeding of only the results 
needed to solve the problem. In contrast, MU has access 
to the whole body of mathematical knowledge it has 
learned at the time, and uses its experience to focus on 
the problem in hand. 



But the mathematician does not re-represent in his or 
her head the definition in this lower level. Rather the 
representation is at the original level, and can even be 
utilised at this level without further unpacking, for 
instance the lemma can be used in a step such as: 

is a homomorphism of G onto H with kernel K 
=> K is a normal subgroup of G 
simply by pattern matching. 

Rather, we represent the proposition in terms of its 
component concepts, namely "homomorphism", "kernel" 
and "normal-subgroup". If the student on encountering 
this lemma was very familiar wi th normal subgroups 
then this should be easy to encode, and the student 
should already have developed features for this 
purpose. 

In the CMS, features are generated dynamically from 
the environment using bui l t in feature generating 
mechanisms. There are no built in features (see Furse and 
Nicolson 1992, Furse 1993b). The program MU utilises a 
dynamic parser which converts the FEL propositions into 
a parse tree which is then fed to the feature generating 
processes. Thus, e.g., the above proposit ion is 
represented as the tree shown in Fig. 3. 

Figure 3, Extracting features from a tree 

Here, the leaves of the tree have been replaced by a 
canonical representation using the letters a,b,c,... By 
using mechanisms which construct different parts of this 
tree a very large number of features can be built. In the 
following we use LHS to represent the left hand side of 
the tree, RHS the right hand side, and RHS-LHS to 
represent the RHS of the LHS. Thus in this case the 
RHS-LHS is the proposition kernel(c). It is also possible 
to abstract a node, so for example if we abstract the 
whole of the left hand side we obtain the proposition a 
=> normal-subgroup(b,c), where again the letters have 
been replaced by their canonical form. Using such 
methods one obtains features such as: 
has-form-[homomorphism_a_b] 
has-form-[kernel_a 1 
rhs-has-form-[normal-subgroup_a_b] 
rhs-lhs-is-form-[kernel_al 
is-form-[=>Jand_a_b]_[normal-subgroup_c_d]) 
is-form-[=>_[and_[homomorphism_a_bLc]L[normal-
subgroup_d__a]] 
The last feature captures the notion that the student can 
remember that the lemma was something about being a 
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homomorphism imply ing that there was a normal-
subgroup. Thus these features enable a rich 
representation of partial knowledge. With sufficient 
features the original propostion can be reconstructed, and 
given the development of sufficiently specialised 
features, it can be represented exactly and compactly. 

4. Learning and Experience 

Not only does the expert mathematician learn a large 
body of mathematical results, but also a large number of 
features of these results. This then ensures that results 
are easily recongised and retrieved. Given a 
mathematical step such as: 

the mathematician has little difficulty in noticing that 
the result: 

has been used, or at least in checking the forward 
reasoning on applying this inference rule to produce the 
intermediate step: 

Given that the mathematician has hundreds or even 
thousands of results that might be relevant at any 
particular step, it is an important computational 
problem how the appropriate result is retrieved without 
difficulty. We argue that it is patterns or features that 
the mathematician learns to recognise. Thus, in the 
above example, the mathematician has no difficulty in 
seeing the pattern (x - y)(x + y) as being the left hand 
side of a well known result. 

If this result has been used sufficiently often then a 
specialised feature such as 
has-form-
may have been stored with which the result is indexed 
and retrieved. It remains to explain how items are first 
stored in memory in terms of features, and how these 
features change through experience. 

As explained in the previous section, when a result is 
first processed by the CMS it is broken up into a large 
number of features using knowledge free methods. Some 
of these features may already have been stored, others 
wil l be completely novel. The CMS stores a mixture of 
old and new features, where the old ones are selected 
from the ones with highest energy, all features being 
given an energy value which is adjusted wi th 
utilisation. If only old features were used, then we 
would soon be in a closed box representation, but at the 
time of storage one does not know which of the new 
features may be useful. For example, consider the 
definition of a normal subgroup: 
Definition. N isa normal-subgroup of G 
iff N isa subgroup of G and 
Here, on initial encoding features that might be used 
could include: 
has-form-[*_a_b] 
has-form- [ subgroup_a_b ] 
but the crucial feature is: 
has-form-[*_a_[*_bJinv_a]]] 

but i t is on ly through experience that the 
mathematician learns of the importance of recognising 
the feature gng-1. 

Within the CMS, when a result is retrieved (for 
example in proof checking or problem solving), the 
features are adjusted to ensure that retrieval is more 
efficient in future. Recall involves first computing the 
features of the probe. For example, in trying to prove 
that : 
log[(x - y)(x + y)l + 21og(y) = 21og(x) 
the system first searches for a whole matching result 
before just trying to reason from the left hand side. In 
reasoning from the left hand side, the LHS acts as the 
probe for the CMS, generating features such as: 
lhs-has-form-[log_a] 
has-form-[_*_ a_b] 
lhs-has-form-|-_a_bl 
lhs-lhs~has-form-[*_a_b] 
Al l these features must be existing ones, for clearly it is 
pointless to use a novel feature as an index to old 
knowledge. The feature generating mechanisms generate 
many features, and a subset is chosen of those of highest 
energy. 

In the second stage of recall this set of features is used 
to index a number of mathematical results. Results 
which do not match the probe are considered failures. 
Ideally the features should only index relevant results, 
which can be applied, but this only comes through 
experience as the feature space changes. The matching 
results are then applied and the outcome which has the 
highest plausibility in terms of being nearer to the goal 
and a simpler expression is chosen. 

In the third stage of recall learning takes place to 
ensure that the found item is more easy to retrieve in 
future. This means ensuring that the same set of input 
features should be more likely to retrieve the found item 
than the failures. This is achieved by four processes: 
• storing the uncomputed features 
• encouraging the useful features 
• discouraging the unuseful features 
• creating new distinguishing features 

Most of the features used in the probe wi l l already 
index the found item, but some of them may have arisen 
from storing other items, and may not be connected to the 
found item. These are known as uncomputed features, 
and provided the found item possesses the feature, they 
are now stored. By this means new connnections between 
features and items are regularly being made during 
retr ieval. 

Useful features are features which index the found 
item but not the failures. These features are encouraged 
by increasing both their energy and the l ink strength 
between feature and found item. Conversely, unuseful 
features index the failures but not the found item, and 
have their energy decreased. 

The final method of adjusting the CMS involves the 
dynamic creation of novel features which index the 
found item but not the failures, and do not already exist. 
This is achieved by means of comparing the large 
feature sets of the found item and the failures generated 
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by bottom-up methods. By such a mechanism, 
specialised features such as 

can be generated. 
By these means the CMS ensures that results which are 

important have a number of high energy specialised 
features so that such results are recognised easily. Thus 
as a result is used through the stages (l)-(3) described 
above, so its representation changes from initially being 
encoded only partially in terms of its features, and 
likely to be retrieved with other similar results, to 
ultimately being a result with specialised features easy 
to recall and use. See Furse (1992) for more details of the 
CMS. 

5. The Mathematics Understander 

The Mathematics Understander (MU), (Furse 1993a), is 
a computer program which utilises the CMS to 
"understand" mathematics texts expressed in FEL. The 
original text is translated by hand into FEL, which is 
then input to the program. MU parses the input using a 
parser whose syntactic knowledge is bui l t up 
dynamically from definitions and stored in the CMS. 
The parsed input is fed to the proof checker and problem 
solver which utilises the acquired knowledge in the 
CMS to produce explanations of the steps and solutions to 
the problems (see Fig. 4). 
MU thus has parsing, proof checking and problem 
solving knowledge built in, but no knowledge of 
mathematical results. Al l the mathematical results arc 
acquired through the reading of texts. Fig. 2 shows an 
example of a problem solution generated by MU. The 
built in heuristics used in problem solving are: 
• expand a definition 
• break a compound step into parts 
• suppose the left hand side 
• simplify 

Simplification involves the application of known 
results using the CMS to only retrieve relevant results 
rather than all possibly applicable results. The results 
retrieved are applied and their plausibility measured 
in terms of nearness to the goal and simplicity. The 
result which achieves the highest plausibility is the 
one chosen, and if necessary, MU wil l backrack, but this 
is very rarely found to be necessary. 

MU is implemented in Macintosh Common LISP and 
runs on Apple Macintosh computers. The CMS can be 
displayed in a graphical format, and navigated 
through. It is also possible to set parameters for 
individual modelling. See Fig. 5. MU has successfully 
read texts in group theory and classical analysis, and 
solved simple problems in group theory. 

Education in pure mathematics is often a process of the 
student understanding the proofs of theorems and solving 
the problems. This experience enables the student to 
develop appropriate features so that relevant results 
can easily be retrieved when necessary. The lazy 
student who skips the proofs and the simple problems 
runs the risk of not being able to solve the harder 
problems. If MU "reads" only the definitions and 
theorems, and skips the proofs and simple problems, it 
too cannot retrieve the results needed when trying to 
solve the problem in Figure 2 and gives up. 

6. D i s c u s s i o n 

In some sense an expert "sees" that in solving a problem a 
particular step should be taken. It seems implausible 
that a large scale search takes place of knowledge 
which might be useful. Rather the knowledge required 
almost springs out from the problem. It is this notion 
which places perception and learning centre stage in 
cogntion which this research attempts to address. We 
have shown how in the domain of pure mathematics 
expertise can be captured w i th a large body of 
knowledge indexed by features. Further the CMS allows 
the modelling of how these features are learned through 
experience. 
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Natura l l y the C M S uses several ideas wh ich are we l l -
k n o w n in the l i te ra tu re . For instance, the feature 
recogn i t ion mechan ism has s imi la r i t ies w i t h E P A M 
(Feigenbaum and S imon, 1986). The energy mechanism 
resembles the act ivat ion used by Anderson in ACT-R and 
A C T * (1983), t h o u g h the there i s no sp read ing 
act ivat ion in the CMS. We believe, however, that the 
CMS is d is t inc t ive in combin ing al l these ideas w i t h i n 
an integrated envi ronment . 

The C M S can, in pr inc ip le , be appl ied to other domains 
than mathematics, since there is no bu i l t in mathematics 
in i ts cons t ruc t i on . The major requ i rement is the 
d e v e l o p m e n t o f a p p r o p r i a t e fea tu re g e n e r a t i n g 
mechanisms. W o r k is in hand in app l y i ng the CMS to 
the learning of board games. 

Research in neural networks has brought learning back 
to the centre of w o r k in art i f ic ia l intel l igence, and there 
is a clear emphasis in their app l ica t ion to perceptual 
c lassi f icat ion prob lems. Howeve r , to our know ledge 
there has no t been m u c h success in a p p l y i n g such 
architectures to p rob lem solv ing in domains as complex 
as pure mathemat ics. Fur thermore, i t could be argued 
that a neu ra l n e t w o r k is restr ic ted in its in te rna l 
representations by the features used as the i npu t to the 
ne twork . In contrast, the CMS generates its features 
dynamica l ly f r om the env i ronment . 

The other ma in compet i tors to the CMS mode l are 
Anderson 's A C T * mode l and L a i r d , Rosenbloom and 
Newe l l ' s SOAR. W h i l s t bo th arch i tectures m o d e l 
p rob lem so l v i ng , and in par t icu lar mode l goal based 
reasoning, wh i ch the C M S does not mode l , the focus is 
qu i te d i f ferent . Both models are essentially based on a 
p r o d u c t i o n systems archi tecture, and this u l t ima te ly 
l im i ts their scope for adaptat ion. A l t h o u g h both ACT* 
and SOAR model learn ing, they do not appear to model 
dec larat ive learn ing w h i c h the C M S is designed for. 
Anderson has concentrated on model l ing how knowledge 
becomes procedural ised, but does not address the question 
of h o w the in i t i a l know ledge is learned in the f i rs t 
place. N e w e l l de f i ned lea rn ing as search w i t h i n a 
p rob lem space, bu t as both N o r m a n (1991), and Boden 
(1988), have r e m a r k e d , th is seems an impover i shed 
v i e w o f l e a r n i n g . Pure ma themat i cs cannot be 
represented as a prob lem space since new constructs are 
con t i nua l l y be ing i n t roduced in a re la t ive ly ad hoc 
manner. SOAR appears to wan t the doma in to be pre-
characterised as a p rob lem space in advance, before 
learning can take place. A s imi lar prob lem occurs w i t h 
exp lanat ion based genera l isat ion whereby a d o m a i n 
theory is required in advance. However , human learning 
is much more piecemeal, and teachers almost never map 
out in advance a characterisat ion of the doma in to be 
learned. 

In conc lus ion, percept ion and experience p lay an 
essential par t in problem solv ing. It is not sufficient to be 
an expert to k n o w a lot of facts. The expert also has to be 
able to recognise when they are relevant and be able to 
ret r ieve them. 
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