
Perception and Experience in Problem Solving

Edmund Furse
Department of Computer Studies
University of Glamorgan
Pontypridd, Mid Glamorgan
CD37 1DL
UK
efurse@uk.ac.glam.genvax

R o d N i c o l s o n
Department of Psychology
University of Sheffield
Sheffield
S10 2TN
UK
pclrin@uk.ac.sheffield.sunc

Abstract

Whilst much emphasis in AI has been placed on the use
of goals in problem solving, less emphasis has been
placed on the role of perception and experience. In this
paper we show that in the domain that may be
considered the most abstract, namely mathematics, that
perception and experience play an important role. The
mathematician has a vast amount of mathematical
knowledge, and yet is able to utilise the appropriate
knowledge without diff iculty. We argue that it is
essential to model how well the knowledge is grasped,
so that mathematical knowledge can grow from partial
knowledge to important results that are easily accessed.
Not all knowledge is equal in its importance, and we
argue that perception and experience play a key role in
ordering our knowledge. Features play a role in both
representing the information from the environment, and
indexing the knowledge of our memories, but a key
requirement is that the features should be dynamic and
not be built in. This research is implemented in the
program M U , the Mathematics Understander, which
utilises the CMS, Contextual Memory System. MU has
sucessfully "read" university level texts in pure
mathematics, checking the proofs and solving the
simple problems.

1. Introduction

Problem Solving has been thought of as the primary
examplar of intelligence, and has been central to work in
artificial intelligence from the early work of Newell
and Simon's GPS, to expert systems and theorem proving.
Laird, Rosenbloom and Newell's SOAR (1987) has
problem solving as the cornerstone of its architecture.
However, whilst expert systems, and in particular Lenat
and Feigenbaum (1991), have shown the importance of a
large amount of knowledge to give systems power,
theorem proving in contrast has tended to concentrate on
general methods such as resolution, tempered by meta-
level reasoning (eg Bundy 1983). Given the evidence that
expert problem solving tends to have access to large
amounts of knowledge and tends to use shallow search
methods, it is surprising that much of the AI community

continues to pursue methods which are knowledge thin
rather than knowledge rich.

It can be argued that if one is concerned with
discovering powerful machine problem solving methods,
then these do not necessarily have to be similar to
human problem solving methods. Furthermore, it is
clearly more elegant to have neat general problem
solving methods, rather than a collection of special
purpose methods. However, Schank (1981) has argued
that even if one's goal is to build intelligent machines, it
is a good first step to model how humans perform the
task. We argue that the neat approaches to problem
solving do not sufficiently model genuine ecological
tasks, are of insufficient power, and since they take
little account of learning are inadequate accounts of
human cognition.

Instead we present an alternative thesis on cognition
which places learning at the centre of what it is to be
intelligent, rather than placing problem solving at the
centre. Interestingly, this is a view much nearer to Alan
Turing's thought (1953), than his Turing machine
conception of computation. Turing wanted to know not
only how machines could solve problems, but how they
could learn. Certainly SOAR places great impotance on
learning, but it is in our view an impoverished view of
learning to see it only as search within a problem space.

For too long perception has been seen as almost a
separate faculty from the mainstream of Al and
cognition, and yet deGroot (1966) and Chase and Simon
(1973) have convincingly showed that expert knowledge
in chess is very largely a matter of 50,000 perceptual
features. One could argue that board games are
naturally prone to perceptual processing, but we show
that the same arguments apply in the domain of pure
mathematics. Given the highly abstract nature of pure
mathematics, if perceptual features play an important
part in problem solving in this domain, it may well be
the case that they play an important role in many other
types of problem solving.

It is easy to demonstrate that perception plays an
important part in problem solving. Consider the
following proposition:

[1)
[1) is difficult to recognise, but by using the usual letter
names as in [21:

Furse and Nicolson 181

[2]
we have a proposition that is easily recognised by
mathematicians as the definit ion of the l imit of the
sequence xn as n tends to infinity is x. However, since [1]
is obtained from [2] simply by a change of letters, it is
logically equivalent to [1]. Thus there is more to problem
solving than logic. What we are arguing is that
expressons such as act as perceptual features
which enable the expert to rapidly recognise the
mathematical result.

It is obvious that experience plays a role in an expert's
ability to solve problems. However, apart from our own
work, we believe there is no convincing account of how
this might work. Too many models of expertise are
relatively static, and yet all expertise must have been
learned at some time, and experts continue to grow in
expertise. Through the study of education, and in
particular mathematics text books, one can see how
knowledge is slowly acquired. We argue that in text
books, any particular mathematical result goes through
three stages of usage in problem solving:
1. The result is stated explicitly, for example:

2. The result is used implicitly, for example:

(ie the same as (1) but without the explanation).
3. The result is used in compound inferences, e.g.:

Not all mathematical results get beyond stage (1),
some results may only be used a few times, and may then
be forgotten. In contrast, results which are frequently
used become so well known through their stage (2) usage,
that eventually they get used in stage (3). Thus,
ironically the most important results are the ones which
are not mentioned at all, precisely because they are so
well known.

If all of an expert's knowledge was of equal importance,
and therefore equally easy/diff icult to access, most
experts could not function at all. Yet most truth
maintenance systems work on this basis. In contrast we
argue that the expert has a perceptual system and
memory so organised that important results are easily
recognised and retrieved. Furthermore, we wi l l show
how the Contextual Memory System, CMS, (Furse 1992,
Furse and Nicolson 1992) allows a continuing change of
the perceptual and memory systems, so that the novice
can become the expert through sufficient learning
experience.

The CMS is a network architecture of features and
items. The features are used to both encode the external
object in the environment, and to index items in memory.
Both features and items have an energy level, and the
links between features and items have a strength. The
novel characteristic of this architecture is that the
features are generated dynamical ly f rom the
environment, and the configuration of connections is
frequently changed during memory processes.

182 Cognitive Modeling

2. Pure Mathematics

Pure Mathematics is a good domain in which to study
problem solving since although it is a genuinely
ecologically valid task, it uses l itt le common sense
knowledge, and all the mathematical knowledge has
been acquired through learning. Indeed, some branches
of pure mathematics, such as group theory, can be
learned by arts undergraduates, illustrating the point
that the subject can be learned w i th l i t t le prior
knowledge. Within a course a large body of knowledge
is built up which is used to understand proofs and solve
problems.

This research has concentrated on modelling the
understanding of mathematics texts. Since about the
beginning of this century pure mathematics texts have
taken the form of definitions, theorems and lemmas (a
lemma is a little theorem), their proofs and exercises.
Clearly it would be a large scale exercise to develop a
program to read verbatim mathematics texts, and so the
natural language component has been factored out by
rewriting the texts by hand in the language FEL (Formal
Expression Language), Furse (1990). FEL has a formal
syntax and is very expressive, as the example in Figure 1
shows.

There are many levels of understanding a mathematics
text, but this research has focused on the ability to check
proofs by giving explanations of the steps and solving
the simple problems. The problem solver uses a number
of built-in general heuristics and uses the CMS to filter
the mathematical results to ensure there is no
combinatorial explosion. Many theorem provers model
an artificial task by carefull feeding of only the results
needed to solve the problem. In contrast, MU has access
to the whole body of mathematical knowledge it has
learned at the time, and uses its experience to focus on
the problem in hand.

But the mathematician does not re-represent in his or
her head the definition in this lower level. Rather the
representation is at the original level, and can even be
utilised at this level without further unpacking, for
instance the lemma can be used in a step such as:

is a homomorphism of G onto H with kernel K
=> K is a normal subgroup of G
simply by pattern matching.

Rather, we represent the proposition in terms of its
component concepts, namely "homomorphism", "kernel"
and "normal-subgroup". If the student on encountering
this lemma was very familiar wi th normal subgroups
then this should be easy to encode, and the student
should already have developed features for this
purpose.

In the CMS, features are generated dynamically from
the environment using bui l t in feature generating
mechanisms. There are no built in features (see Furse and
Nicolson 1992, Furse 1993b). The program MU utilises a
dynamic parser which converts the FEL propositions into
a parse tree which is then fed to the feature generating
processes. Thus, e.g., the above proposit ion is
represented as the tree shown in Fig. 3.

Figure 3, Extracting features from a tree

Here, the leaves of the tree have been replaced by a
canonical representation using the letters a,b,c,... By
using mechanisms which construct different parts of this
tree a very large number of features can be built. In the
following we use LHS to represent the left hand side of
the tree, RHS the right hand side, and RHS-LHS to
represent the RHS of the LHS. Thus in this case the
RHS-LHS is the proposition kernel(c). It is also possible
to abstract a node, so for example if we abstract the
whole of the left hand side we obtain the proposition a
=> normal-subgroup(b,c), where again the letters have
been replaced by their canonical form. Using such
methods one obtains features such as:
has-form-[homomorphism_a_b]
has-form-[kernel_a 1
rhs-has-form-[normal-subgroup_a_b]
rhs-lhs-is-form-[kernel_al
is-form-[=>Jand_a_b]_[normal-subgroup_c_d])
is-form-[=>_[and_[homomorphism_a_bLc]L[normal-
subgroup_d__a]]
The last feature captures the notion that the student can
remember that the lemma was something about being a

Furse and Nicolson 183

homomorphism imply ing that there was a normal-
subgroup. Thus these features enable a rich
representation of partial knowledge. With sufficient
features the original propostion can be reconstructed, and
given the development of sufficiently specialised
features, it can be represented exactly and compactly.

4. Learning and Experience

Not only does the expert mathematician learn a large
body of mathematical results, but also a large number of
features of these results. This then ensures that results
are easily recongised and retrieved. Given a
mathematical step such as:

the mathematician has little difficulty in noticing that
the result:

has been used, or at least in checking the forward
reasoning on applying this inference rule to produce the
intermediate step:

Given that the mathematician has hundreds or even
thousands of results that might be relevant at any
particular step, it is an important computational
problem how the appropriate result is retrieved without
difficulty. We argue that it is patterns or features that
the mathematician learns to recognise. Thus, in the
above example, the mathematician has no difficulty in
seeing the pattern (x - y)(x + y) as being the left hand
side of a well known result.

If this result has been used sufficiently often then a
specialised feature such as
has-form-
may have been stored with which the result is indexed
and retrieved. It remains to explain how items are first
stored in memory in terms of features, and how these
features change through experience.

As explained in the previous section, when a result is
first processed by the CMS it is broken up into a large
number of features using knowledge free methods. Some
of these features may already have been stored, others
wil l be completely novel. The CMS stores a mixture of
old and new features, where the old ones are selected
from the ones with highest energy, all features being
given an energy value which is adjusted wi th
utilisation. If only old features were used, then we
would soon be in a closed box representation, but at the
time of storage one does not know which of the new
features may be useful. For example, consider the
definition of a normal subgroup:
Definition. N isa normal-subgroup of G
iff N isa subgroup of G and
Here, on initial encoding features that might be used
could include:
has-form-[*_a_b]
has-form- [subgroup_a_b]
but the crucial feature is:
has-form-[*_a_[*_bJinv_a]]]

but i t is on ly through experience that the
mathematician learns of the importance of recognising
the feature gng-1.

Within the CMS, when a result is retrieved (for
example in proof checking or problem solving), the
features are adjusted to ensure that retrieval is more
efficient in future. Recall involves first computing the
features of the probe. For example, in trying to prove
that :
log[(x - y)(x + y)l + 21og(y) = 21og(x)
the system first searches for a whole matching result
before just trying to reason from the left hand side. In
reasoning from the left hand side, the LHS acts as the
probe for the CMS, generating features such as:
lhs-has-form-[log_a]
has-form-[_*_ a_b]
lhs-has-form-|-_a_bl
lhs-lhs~has-form-[*_a_b]
Al l these features must be existing ones, for clearly it is
pointless to use a novel feature as an index to old
knowledge. The feature generating mechanisms generate
many features, and a subset is chosen of those of highest
energy.

In the second stage of recall this set of features is used
to index a number of mathematical results. Results
which do not match the probe are considered failures.
Ideally the features should only index relevant results,
which can be applied, but this only comes through
experience as the feature space changes. The matching
results are then applied and the outcome which has the
highest plausibility in terms of being nearer to the goal
and a simpler expression is chosen.

In the third stage of recall learning takes place to
ensure that the found item is more easy to retrieve in
future. This means ensuring that the same set of input
features should be more likely to retrieve the found item
than the failures. This is achieved by four processes:
• storing the uncomputed features
• encouraging the useful features
• discouraging the unuseful features
• creating new distinguishing features

Most of the features used in the probe wi l l already
index the found item, but some of them may have arisen
from storing other items, and may not be connected to the
found item. These are known as uncomputed features,
and provided the found item possesses the feature, they
are now stored. By this means new connnections between
features and items are regularly being made during
retr ieval.

Useful features are features which index the found
item but not the failures. These features are encouraged
by increasing both their energy and the l ink strength
between feature and found item. Conversely, unuseful
features index the failures but not the found item, and
have their energy decreased.

The final method of adjusting the CMS involves the
dynamic creation of novel features which index the
found item but not the failures, and do not already exist.
This is achieved by means of comparing the large
feature sets of the found item and the failures generated

184 Cognitive Modeling

by bottom-up methods. By such a mechanism,
specialised features such as

can be generated.
By these means the CMS ensures that results which are

important have a number of high energy specialised
features so that such results are recognised easily. Thus
as a result is used through the stages (l)-(3) described
above, so its representation changes from initially being
encoded only partially in terms of its features, and
likely to be retrieved with other similar results, to
ultimately being a result with specialised features easy
to recall and use. See Furse (1992) for more details of the
CMS.

5. The Mathematics Understander

The Mathematics Understander (MU), (Furse 1993a), is
a computer program which utilises the CMS to
"understand" mathematics texts expressed in FEL. The
original text is translated by hand into FEL, which is
then input to the program. MU parses the input using a
parser whose syntactic knowledge is bui l t up
dynamically from definitions and stored in the CMS.
The parsed input is fed to the proof checker and problem
solver which utilises the acquired knowledge in the
CMS to produce explanations of the steps and solutions to
the problems (see Fig. 4).
MU thus has parsing, proof checking and problem
solving knowledge built in, but no knowledge of
mathematical results. Al l the mathematical results arc
acquired through the reading of texts. Fig. 2 shows an
example of a problem solution generated by MU. The
built in heuristics used in problem solving are:
• expand a definition
• break a compound step into parts
• suppose the left hand side
• simplify

Simplification involves the application of known
results using the CMS to only retrieve relevant results
rather than all possibly applicable results. The results
retrieved are applied and their plausibility measured
in terms of nearness to the goal and simplicity. The
result which achieves the highest plausibility is the
one chosen, and if necessary, MU wil l backrack, but this
is very rarely found to be necessary.

MU is implemented in Macintosh Common LISP and
runs on Apple Macintosh computers. The CMS can be
displayed in a graphical format, and navigated
through. It is also possible to set parameters for
individual modelling. See Fig. 5. MU has successfully
read texts in group theory and classical analysis, and
solved simple problems in group theory.

Education in pure mathematics is often a process of the
student understanding the proofs of theorems and solving
the problems. This experience enables the student to
develop appropriate features so that relevant results
can easily be retrieved when necessary. The lazy
student who skips the proofs and the simple problems
runs the risk of not being able to solve the harder
problems. If MU "reads" only the definitions and
theorems, and skips the proofs and simple problems, it
too cannot retrieve the results needed when trying to
solve the problem in Figure 2 and gives up.

6. D i s c u s s i o n

In some sense an expert "sees" that in solving a problem a
particular step should be taken. It seems implausible
that a large scale search takes place of knowledge
which might be useful. Rather the knowledge required
almost springs out from the problem. It is this notion
which places perception and learning centre stage in
cogntion which this research attempts to address. We
have shown how in the domain of pure mathematics
expertise can be captured w i th a large body of
knowledge indexed by features. Further the CMS allows
the modelling of how these features are learned through
experience.

Furse and Nicolson 185

Natura l l y the C M S uses several ideas wh ich are we l l -
k n o w n in the l i te ra tu re . For instance, the feature
recogn i t ion mechan ism has s imi la r i t ies w i t h E P A M
(Feigenbaum and S imon, 1986). The energy mechanism
resembles the act ivat ion used by Anderson in ACT-R and
A C T * (1983), t h o u g h the there i s no sp read ing
act ivat ion in the CMS. We believe, however, that the
CMS is d is t inc t ive in combin ing al l these ideas w i t h i n
an integrated envi ronment .

The C M S can, in pr inc ip le , be appl ied to other domains
than mathematics, since there is no bu i l t in mathematics
in i ts cons t ruc t i on . The major requ i rement is the
d e v e l o p m e n t o f a p p r o p r i a t e fea tu re g e n e r a t i n g
mechanisms. W o r k is in hand in app l y i ng the CMS to
the learning of board games.

Research in neural networks has brought learning back
to the centre of w o r k in art i f ic ia l intel l igence, and there
is a clear emphasis in their app l ica t ion to perceptual
c lassi f icat ion prob lems. Howeve r , to our know ledge
there has no t been m u c h success in a p p l y i n g such
architectures to p rob lem solv ing in domains as complex
as pure mathemat ics. Fur thermore, i t could be argued
that a neu ra l n e t w o r k is restr ic ted in its in te rna l
representations by the features used as the i npu t to the
ne twork . In contrast, the CMS generates its features
dynamica l ly f r om the env i ronment .

The other ma in compet i tors to the CMS mode l are
Anderson 's A C T * mode l and L a i r d , Rosenbloom and
Newe l l ' s SOAR. W h i l s t bo th arch i tectures m o d e l
p rob lem so l v i ng , and in par t icu lar mode l goal based
reasoning, wh i ch the C M S does not mode l , the focus is
qu i te d i f ferent . Both models are essentially based on a
p r o d u c t i o n systems archi tecture, and this u l t ima te ly
l im i ts their scope for adaptat ion. A l t h o u g h both ACT*
and SOAR model learn ing, they do not appear to model
dec larat ive learn ing w h i c h the C M S is designed for.
Anderson has concentrated on model l ing how knowledge
becomes procedural ised, but does not address the question
of h o w the in i t i a l know ledge is learned in the f i rs t
place. N e w e l l de f i ned lea rn ing as search w i t h i n a
p rob lem space, bu t as both N o r m a n (1991), and Boden
(1988), have r e m a r k e d , th is seems an impover i shed
v i e w o f l e a r n i n g . Pure ma themat i cs cannot be
represented as a prob lem space since new constructs are
con t i nua l l y be ing i n t roduced in a re la t ive ly ad hoc
manner. SOAR appears to wan t the doma in to be pre-
characterised as a p rob lem space in advance, before
learning can take place. A s imi lar prob lem occurs w i t h
exp lanat ion based genera l isat ion whereby a d o m a i n
theory is required in advance. However , human learning
is much more piecemeal, and teachers almost never map
out in advance a characterisat ion of the doma in to be
learned.

In conc lus ion, percept ion and experience p lay an
essential par t in problem solv ing. It is not sufficient to be
an expert to k n o w a lot of facts. The expert also has to be
able to recognise when they are relevant and be able to
ret r ieve them.

7. References

Ande rson J.R. (1983), The Arch i tec tu re of Cogn i t i on ,
Harva rd Un ivers i t y Press.
Boden, M. (1988) Computer models of mind. Cambr idge :
Cambr idge Univers i ty Press.
B u n d y A , (1983), The C o m p u t e r M o d e l l i n g o f
Mathemat ica l Reasoning, Academic Press.
Chase W.G. & Simon H.A. (1973) Percept ion in Chess,
Cognitive Psychology A pp55-81.
DeGroo t A . D . (1966) Percept ion and M e m o r y versus
t h o u g h t : Some o ld ideas and recent f i n d i n g s , In
B .K le inmuntz (ed) Problem Solving: Research, Method
and Theory, W i l ey .
Fe igenbaum, E.A. and S imon, H.A. (1986), EPAM- l i ke
models of recogni t ion and learning. Cognitive Science, 8:
305-336.
Furse E., (1990), A Formal Expression Lanuage for Pure
Mathemat ics, Technical Report CS-90-2, Depar tment of
Computer Studies, The Univers i ty of Glamorgan.
Furse E. (1992) The Con tex tua l M e m o r y System: A
Cogn i t i ve A rch i t ec tu re fo r Lea rn i ng W i t h o u t Pr ior
Know ledge , In Cognitive Systems 3-3, September 1992
pp305-330.
Furse E. and Nico lson R.I. (1992) Declarat ive Learning:
Cogn i t i on w i t h o u t P r im i t i ves , Proceedings of the 14th
Annua l Conference of the Cognitive Science Society, pp .
832-7.
Furse E, (1993a) The Mathemat ics Unders tander . In
' A r t i f i c i a l In te l l i gence in Ma thema t i cs ' , (eds) J H
Johnson, S. McKee, A. Vel la, Clarendon Press, Oxford (in
press).
Furse E, (1993b), Escaping f rom the Box. In Prospects for
In te l l i gence : Proceed ings o f A ISB93, (Eds) A a r o n
Sloman, Dav id Hogg , G lynn Humphreys , A l l an Ramsey,
Derek Partr idge, IOS Press, Amste rdam.
Lai rd J.E., Newe l l A. & Rosenbloom P.S.. (1987) SOAR :
An Arch i tec tu re for General In te l l igence, In A r t i f i c i a l
Intelligence 33 N o . l , Elsevier Science Publishers.
L a i r d J.E., Rosenb loom P.S. & N e w e l l A. (1986)
C h u n k i n g in SOAR the anatomy of a General Learn ing
Mechanism, In Machine Learning 1 p p l l - 4 6 .
Lenat , D.B. and Fe igenbaum, E..A. (1991). On the
thresholds of k n o w l e d g e . A r t i f i c i a l Intel l igence, 47:
185-250.
N o r m a n D.A, (1991), App roaches to the S t u d y o f
intel l igence, A r t i f i c ia l Intel l igence 47 (1991), 327-346.
Schank R.C. and Riesbeck C.K., (1981), Inside Computer
Understanding, Lawrence Er lbaum 1981.
Tu r ing A . M . (1953), Dig i ta l Computers appl ied to games.
In B.V. Bowden (Ed.), Faster than Thought, L o n d o n .
P i tman, 286-310.

186 Cognitive Modeling

