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Abstract

Polynomial time complexity is the usual
'threshold’ for distinguishing the tractable from
the intractable and it may seem reasonable to
adopt this notion of tractability in the context
of knowledge representation and reasoning. It
is argued that doing so may be inappropriate in
the context of common sense reasoning under-
lying language understanding. A more strin-
gent criteria of tractability is proposed. A re-
sult about reasoning that is tractable in this
stronger sense is outlined. Some unusual prop-
erties of tractable reasoning emerge when the
formal specification is grounded in a neurally
plausible architecture.

1 Introduction

Understanding language is a complex task. It involves
among other things, carrying out inferences in order to
establish referential and causal coherence, generate ex-
pectations, and make predictions. Nevertheless we can
understand language at the rate of several hundred words
per minute [Carpenter and Just, 1977]. This rapid rate
of language understanding suggests that we can (and
do) perform a wide range of inferences very rapidly, au-
tomatically and without conscious effort — as though
they are a reflex response of our cognitive apparatus. In
view of this such reasoning may be described as reflexive
[Shastri, 1991].

As an example of reflexive reasoning consider the sen-
tence 'John seems to have suicidal tendencies, he has
joined the Columbian drug enforcement agency." We
can understand this sentence spontaneously and without
any deliberate effort even though, doing so involves the
use of background knowledge and reasoning. Informally,
this reasoning may be as follows: joining the Columbian
drug enforcement agency has dangerous consequences,
and as John may be aware of this, his decision to join
the agency suggests that he has suicidal tendencies. As
another example of reflexive reasoning consider the in-
ference 'John owns a car' upon hearing 'John bought
a Rolls-Royce'. We can make this inference effortlessly

*This work was supported by NSF grants IRl 88-05465
and the ARO grant DAAL 03-89-C-0031.

202 Cognitive Modeling

even though it requires multiple steps of inference using
background knowledge such as Rolls-Royce is a car and
if x buys y then x owns y.

Not all reasoning is, and as complexity theory tells
us, cannot be, reflexive. We contrast reflexive reason-
ing with reflective reasoning — reasoning that requires
reflection, conscious deliberation, and at times, the use
of external props such as paper and pencil (e.g., solv-
ing logic puzzles, doing cryptarithmetic, or planning a
vacation).

2 Reflexive reasoning necessitates a
strong notion of tractability

In order to quantify the notion of reflexive reasoning in-
troduced above, let us make a few observations about
such reasoning.

* Reflexive reasoning occurs with respect to a large
body of background knowledge. A serious attempt
at compiling common sense knowledge suggests that
our background knowledge base may contain as
many as 107 to 10% items [Guha and Lenat, 1990].
This should not be very surprising given that this
knowledge includes, besides other things, our knowl-
edge of naive physics and naive psychology; facts
about ourselves, our family, friends, colleagues, his-
tory and geography; our knowledge of artifacts,
sports, art, music; some basic principles of science
and mathematics; and our models of social, civic,
and political interactions.

* Items in the background knowledge base are fairly
stable and persist for a long-time once they are
acquired. Hence this knowledge is best described
as long-term knowledge and we will refer to this
body of knowledge as the long-term knowledge base
(LTKB).

 Episodes of reflexive reasoning are triggered by
'small' inputs. In the context of language under-
standing, an input (typically) corresponds to a sen-
tence that would map into a small number of as-
sertions. For example, the input 'John bought a
Rolls Royce' maps into just one assertion (or a few,
depending on the underlying representation). The
critical observation is that the size of the input, \In\



is insignificant compared to the size ofthe long-term
knowledge base \LTKB\' 2

» The vast difference in the magnitude of \LTKB\
(about 10%) and \In\ (a few) becomes crucial when
analyzing the tractability of common sense reason-
ing. Given the actual values of \In\ that occur dur-
ing common sense reasoning, there is a distinct pos-
sibility that the overall cost of a derivation may be
dominated by the "fixed" contribution of \LTKBI.
Thus we cannot ignore the cost attributable to
\LTKB\ and we must analyze the complexity of rea-
soning in terms of \LTKB\ as well as \In\.

In view of the magnitude of \LTKB\, even a cursory
analysis suggests that any inference procedure whose
time complexity is quadratic or worse in \LTKB\ cannot
provide a plausible computational account of reflexive
reasoning. However, a process that is polynomial in \In\
remains viable.

2.1 Time complexity of reflexive reasoning

Observe that although the size of a person's \LTKB\
increases considerably from, say, age seven to thirty,
the time taken by a person to understand natural lan-
guage does not. This suggests that the time taken by
an episode of reflexive reasoning does not depend on the
\LTKB\. In view of this it is proposed that a realistic
criteria of tractability for reflexive reasoning is one where
the time taken by an episode of reflexive reasoning is in-
dependent of \LTKB\ and only depends on the depth of
the derivation tree associated with the inference.’

2.2 Space complexity of reflexive reasoning

The expected size of the LTKB also rules out any com-
putational scheme whose space requirement is quadratic
(or higher) in the size of the KB. For example, the brain
has only about 10'? cells most of which are involved
in processing of sensorimotor information. Hence even
a linear space requirement is fairly generous and leaves
room only for a modest 'constant of proportionality'. In
view of this, it is proposed that the admissible space re-
quirement of a model of reflexive reasoning be no more
than linear in \LTKB\.

To summarize, it is proposed that as far as (reflex-
ive) reasoning underlying language understanding is con-

'A small input may, however, lead to a potentially large
number of elaborate inferences. For example, the input 'John
bought a Rolls-Royce' may generate a number of reflexive
inferences such as 'John bought a car', 'John owns a car’,
'John has a driver's license', 'John is perhaps a wealthy man’',
etc.

2Some of these inferences may be 'soft' inferences, but the
issue of deductive versus evidential nature of inferences is
irrelevant to our current concerns.

3The restriction that the reasoning time be independent
of \LTKB\ may seem overly strong and one might argue that
perhaps logarithmic time may be acceptable. Our belief that
the stronger notion of effectiveness is relevant, however, is
borne out by results which demonstrate that there does ex-
ists a class of reasoning that can be performed in time inde-
pendent of \LTKB\.

cerned,
where

the appropriate notion of tractability is one

+ the reasoning time is independent of \LTKB\ and is
only dependent on \In\ and the depth of the deriva-
tion tree associated with the inference, and

* the associated space requirement, i.e., the space
required to encode the LTKB plus the space re-
quired to hold the working memory during reason-
ing should be no worse than linearin \LTKB\.

In spite of the apparent significance of reflexive rea-
soning there have been very few attempts at develop-
ing a computational account of such inference. Some
past exceptions being Fahlman's work on NETL [1979]
and Shastri's work on a connectionist semantic mem-
ory [1988]. However these models dealt primarily with
inheritance and classification within an IS~A hierarchy.
Holldobler [1990] and Ullman and van Gelder [1988] nave
proposed parallel systems for performing quite complex
logical inferences, however, both these systems have un-
realistic space requirements. The number of nodes in
Holldobler's system is quadratic in the the size of the
knowledge base (KB) the number of processors required
by Ullman and van Gelder is even higher. Ullman and
van Gelder treat the number of nodes required to encode
the background KB as a fixed cost, and hence, do not re-
fer to its size in computing the space complexity of their
system. If the size of such a KB is taken into account,
the number of processors required by their system turns
out to be a high degree polynomial.

A significant amount of work has been done by re-
searchers in knowledge representation and reasoning to
identify classes of limited inference that can be per-
formed efficiently (e.g., see [Frisch and Allen, 1982];
[Brachman and Levesque, 1984]; [Patel-Schneider, 1985];
[Dowling and Gallier, 1984]; [Levesque, 1988]; [Selman
and Levesque, 1989]; [Mc A Hester, 1990]; [Bylander et
al., 1991]; [Kautz and Selman, 1991]). This work has
covered a wide band of the complexity spectrum but
none that meets the strong tractability requirement dis-
cussed above. Most results stipulate polynomial time
complexity, restrict inference in implausible ways (e.g.,
by excluding chaining of rules), and/or deal with limited
expressiveness (e.g., deal only with propositions).

3 A tractable reasoning class

Below we describe a class of reasoning that is tractable
with reference to the criteria stated above. The charac-
terization of such a class is different (but analogous) for
forward and backward reasoning. In this paper we will
focus on backward reasoning.

Some definitions:

Let us define rules to be first-order sentences of the form:
Ve, oo [P IA P AP (L) = T2y, QL))

where the arguments of P;’s are elements of {z,), ...2m},
and an argument of Q is either an element of {z,,...2,},
an element of {z,...z;}, or a constant. O

Any vanable that occurs in multiple argument positions
in the antecedent of a rule is a pivotal variable. O
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Note that the notion of a pivotal variable is local to a
rule.

A rule is balanced if all pivotal variables occurring in the
rule also appear in its consequent. O

For example, the rule Yz,y,2z P(z,y) A R(z,z) =
S(y, z} is not balanced because the pivotal variable z
does not occur in the consequent. On the other hand,
the rule Vz,y,z P(z,y) A R(z,z) = S{z,z) is balanced
because the pivotal variable » does occur in the conse-
quent. The fact that y does not appear in the conse-
quent i8 immaterial because y occurs only once in the
antecedent and hence, is not a pivotal variable.

Facts are partial or complete instantiations of predicates.
Thus facts are atomic formulae of the form P(t,12...0¢)
where t"a are either constants or distinct existentially
quantified variables. 1O

Queries have the same form as facts. Let us distinguish
between yes-no queries and wh-queries. A query, all of
whose arguments are bound to constants corresponds to
the yes-no query: 'Does the query follow from the rules
and facts encoded in the long-term memory of the sys-
tem?* A query with existentially quantified variables,
however, has several interpretations. For example, the
query P(a, x), where a is a constant and x is an existen-
tially quantified argument, may be viewed as the yes-no
query: 'Does P(a,x) follow from the rules and facts for
some value of x?' Alternately this query may be viewed
as the wh-query: Tor what values of x does P(a,x) fol-
low from the rules and facts in the system's long-term
memory?' D

Consider a query Q and a LTKB consisting of facts and
balanced rules. A derivation of Q obtained by back-
ward chaining is threaded if all pivotal variables occur-
ring in the derivation get bound and their bindings can
be traced back to the bindings introduced in Q. O

Given a LTKB consisting of facts and balanced rules, a
reflexive query is one for which there exists a threaded
proof. O

3.1 A class of tractable reasoning

The worst-case time for answering a reflexive yes-no
query, Q, is proportional to V|Ta|¥Y  where:

- |In| is the number of distinct constants in Q.

« Vs as follows: Let Vi_ be the arity of the predicate
P. Then V equals maz{V¥;}, i ranging over all the
predicates in the LTKB.

* d equals the depth of the shallowest derivation of Q
given the LTKB.

Observe that the worst-case time is i) independent of
\LTKB\, ii) polynomial in \In\ and iii) only proportional
to d.

As observed in Section 2, while \LTKB\ may be as
much as 108, Vnl is simply the number of (distinct) 'en-
tities' referred to in the input. In the context of natural
language understanding, \In\ would be quite small (typ-
ically, less than 5). We also expect V, the maximum
arity of predicates in the LTKB to be quite small.
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An answer to a wh-query can also be computed in time
proportional to V|Ir|Yd, except that \In\ now equals the
arity of the query predicate Q.

The space requirement is linear in \LTKB\ and poly-
nomial in \In\. This includes the cost of encoding the
LTKB as well as the cost of maintaining the dynamic
state of the 'working memory' during reasoning.

An informal explanation of the result

The number of times a predicate P may get instantiated
in a threaded derivation of a query cannot exceed [In|Y.
This follows from the observation that P has at most V
arguments and each of these can get bound to at most
\In\ distinct constants. Since each predicate instantia-
tion can contain at most V bindings, the propagation
of argument bindings from one predicate to another can
be carried out in time proportional to ViIn|¥. This as-
sumes that the correspondence (specified by the rules in
the LTKB) between the arguments of the antecedent and
consequent predicates are hard-wired.

It can be shown that the propagation of argument
bindings from multiple predicates to a predicate can be
carried out in parallel (see [Mani and Shastri, 1992] for a
possible implementation of such a parallel binding prop-
agation scheme). This means that the time required to
carry out one step of a parallel breadth-first derivation
is only proportional to V}In|Y . It follows that the time
required to carry out a d step parallel derivation is pro-
portional to V}in|Vd.

Lower bound nature of above result

In general, derivations that involve unbalanced rules
or those that do not satisfy the threaded property can-
not be computed in time independent of \LTKB)\ if
the available space is no more than linear in \LTKB\
[Dietz et al, 1993). This result follows from the obser-
vations that i) the common-element problem, i.e., the
problem of determining whether two sets share a com-
mon element, can be reduced to the problem of com-
puting a derivation involving unbalanced rules and/or
non-threaded derivations, ii) the sorting problem can be
reduced to the common-element problem, and iii) the
lower bound on the sorting problem is nlogn (where n
would correspond to \LTKB\). Thus derivations in-
volving unbalanced rules and non-threaded derivations
may not be computed in time independent of \LTKB\
unless one makes use of more than linear space.

3.2 Worst-case versus expected case

The above result offers a worst-case characterization
which assumes that during the derivation, all variables
will get instantiated with all possible bindings involving
constants in Q. This will not be the case in a typical
situation. In fact it may be conjectured that in a typical
episode of reasoning, the actual time will seldom exceed
50d (see next section).



4 A neurally motivated model of
tractable reasoning

We have proposed a neurally plausible model (SHRUTI)
that can encode a LTKB of the type described above,
together with a term hierarchy and perform a class of
forward as well as backward reasoning with extreme ef-
ficiency [Shastri and Ajjanagadde, 1990]; [Ajianagadde
and Shastri, 1991]; [Mani and Shastri, 1991]; [Mani and
Shastri, 1992]; [Shastri, 1992]. SHRUTI can draw in-
ferences in time that is only proportional to the depth
of the shallowest derivation leading to the conclusion.
A SHRUTI like model has also been used by Hender-
son [1992] to design a parser for English. The parser's
speed is independent of the size of the lexicon and the
grammar, and it offers a natural explanation for a va-
riety of data on long distance dependencies and center
embedding.

If we set aside SHRUTUs ability to perform termino-
logical reasoning, the class of reasoning that SHRUTI
can perform efficiently is a subclass of the class of rea-
soning specified in the previous section. The additional
restrictions placed on SHRUTI's reasoning ability are
motivated by gross constraints on the speed at which
humans can perform reflexive reasoning and gross neu-
rophysiologies parameters such as:

1. Mmaz, the maximum period at which nodes can be
expected to sustain synchronous activity,

2. w, the tolerance or the minimum lead/lag that must
be allowed between the spiking of two nodes that are
firing in synchrony,

3. the time it takes a cluster of synchronous nodes to
drive a connected cluster of nodes to fire in syn-
chrony.

The details of the model are beyond the scope of this
paper and the reader is referred to [Shastri and Ajjana-
gadde, 1990]. Let us however, state the additional con-
straints on the class of reasoning SHRUTI can perform.

4.1 Additional constraints on the reasoning
performed by SHRUTI

SHRUTI can encode a LTKB of facts and balanced rules
and answer yes to any reflexive yes-no query in time
proportional to the depth of the shallowest derivation
leading to a derivation of the query provided:

1. The number of distinct constants specified in the
query does not exceed ki, where k\ is bounded by
Fmaz/w) (biological data suggests that k; is small,
perhaps between 5 and 10).

The model suggests that as long as the number of
entities introduced by the query is 5 or less, there
will essentially be no cross-talk among the facts in-
ferred during reasoning. If more than 5 entities oc-
cur, the window of synchrony would have to shrink
appropriately in order to accommodate all the enti-
ties. As this window shrinks, the possibility of cross-
talk between bindings would increase until eventu-
ally, the cross-talk would become excessive and dis-
rupt the system's ability to perform systematic rea-
soning. The biological data suggests that a neurally

plausible upper bound on the number of distinct enti-
ties that can occur in the reasoning process is about
10. Of course, these entities may occur in multiple
facts and participate in a number of inferences.

It may be significant that the bound on the num-
ber of entities that may be referenced by the ac-
tive facts during a derivation relates well to 7 % 2,
the robust measure of short-term memory capacity
[Miller, 1956]. Note however, that SHRUTI does
not place a small limit on the number of facts that
can be simultaneously active — indeed a very large
number of facts can be involved in each derivation
carried out by SHRUTI.

2. During the processing of the query, each predicate
may only be instantiated at most k, times.
Note that this restriction only applies to run-time
or 'dynamic' instantiations of predicates and not to
iong-term' facts stored in the system. As argued in
[Shastri, 1992] a plausible values of k, is somewhere
between 3-5. Also, k; need not be the same for
all predicates. The application of a SHRUTI-like
model to parsing by Henderson also suggests that
a value of k; under 3 may be sufficient for parsing
English sentences.

Some typical retrieval and inference timings

If we set system parameters of SHRUTI to some neurally
motivated values, SHRUTI demonstrates that a system
made up of simple and slow neuron-like elements can
perform a wide range of inferences (both forward, back-
ward and those involving a type hierarchy) within a few
hundred milliseconds.

If we choose the period of oscillation of nodes to
be 20 milliseconds, assume that nodes can synchronize
within two periods of oscillations and pick k, equal to 3,
SHRUTI takes 320 milliseconds to infer 'John is jealous
of Tom' after being given the dynamic facts 'John loves
Susan' and 'Susan loves Tom' (this involves the rule 'if x
loves y and y loves z then x is jealous of z). The system
takes 260 milliseconds to infer 'John is a sibling of Jack'
given 'Jack is a sibling of John' (this involves the rule 'if
x is a sibling of y then y is a sibling of x). Similarly, the
system takes 320 milliseconds to infer 'Susan owns a car'
after its internal state is initialized to represent 'Susan
bought a Rolls-Royce' (using the rule 'if x buys y then x
owns y' and the [S-A relation, 'Rolls-Royce is a car').

If SHRUTI's long-term memory contains the fact
'‘John bought a Rolls-Royce', SHRUTI takes 140 mil-
liseconds, 420 milliseconds, and 740 milliseconds, respec-
tively, to answer 'yes' to the queries 'Did John buy a
Rolls-Royce', 'Does John own a car?' and 'Can John
sell a car?' (the last query also makes use of the rule 'if
x owns y then x can sell y). Note that the second and
third queries also involve inferences using rules as well
as IS-A relations.

The above times are independent of \LTKB\ and do
not increase when additional rules, facts, and IS-A re-
lationships are added. If anything, these times may de-
crease if a new rule is added that leads to a shorter in-
ference path.
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5 Conclusion

We have proposed a criteria for tractable reasoning that
is appropriate in the context of common sense reasoning
underlying language understanding. We have suggested
that an appropriate measure of tractability for such rea-
soning is one where the time complexity is independent
of, and the space complexity is no more than linear in,
the size of the long-term knowledge base. We have also
identified a class of reasoning that is tractable in this
sense. This characterization of tractability can be fur-
ther refined by cognitive and biological considerations.
This work suggests that the expressiveness and the infer-
ential ability of a representation and reasoning systems
may be limited in unusual ways to arrive at extremely ef-
ficient yet fairly powerful knowledge representation and
reasoning systems.
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