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Abs t rac t 
Po lynomia l t i m e complex i ty is the usual 
' t h resho ld ' for d is t ingu ish ing the t rac tab le f r o m 
the in t rac tab le and i t may seem reasonable to 
adopt th is no t i on o f t rac tab i l i t y in the context 
o f knowledge representat ion and reasoning. I t 
is argued tha t do ing so may be inappropr ia te in 
the context of c o m m o n sense reasoning under­
l y i ng language unders tand ing. A more s t r in ­
gent c r i te r ia of t r ac tab i l i t y is proposed. A re­
sul t about reasoning t ha t is t rac tab le in th is 
stronger sense is ou t l i ned . Some unusual prop­
erties of t rac tab le reasoning emerge when the 
fo rma l speci f icat ion is grounded in a neural ly 
p lausible archi tecture. 

1 In t roduc t i on 
Unders tand ing language is a complex task. It involves 
among other th ings, ca r ry ing ou t inferences in order to 
establ ish referent ial and causal coherence, generate ex­
pectat ions, and make predict ions. Nevertheless we can 
understand language at the rate of several hundred words 
per minute [Carpenter and Just , 1977]. T h i s rap id rate 
of language unders tand ing suggests t ha t we can (and 
do) per fo rm a wide range of inferences very rap id ly , au­
toma t i ca l l y and w i t h o u t conscious effort — as though 
they are a reflex response of our cogni t ive apparatus. In 
view of th is such reasoning may be described as reflexive 
[Shastr i , 1991]. 

As an example of reflexive reasoning consider the sen­
tence ' John seems to have suic idal tendencies, he has 
jo ined the C o l u m b i a n drug enforcement agency.' We 
can understand th is sentence spontaneously and w i thou t 
any del iberate effort even though , do ing so involves the 
use of background knowledge and reasoning. I n fo rma l l y , 
th is reasoning may be as fo l lows: j o i n i n g the C o l u m b i a n 
d rug enforcement agency has dangerous consequences, 
and as John may be aware of th is , his decision to j o i n 
the agency suggests t ha t he has suic idal tendencies. As 
another example of reflexive reasoning consider the in ­
ference ' John owns a car ' upon hear ing 'John bought 
a Rol ls -Royce ' . We can make th is inference effortlessly 
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even though i t requires mu l t i p l e steps of inference using 
background knowledge such as Rol ls-Royce is a car and 
if x buys y then x owns y. 

Not a l l reasoning is, and as complex i t y theory tells 
us, cannot be, ref lexive. We contrast reflexive reason­
ing w i t h reflective reasoning — reasoning t h a t requires 
ref lect ion, conscious de l ibera t ion , and at t imes, the use 
of external props such as paper and penci l (e.g., solv­
ing logic puzzles, do ing c r yp ta r i t hme t i c , or p lann ing a 
vacat ion) . 

2 Reflexive reasoning necessitates a 
st rong not ion of t rac tab i l i t y 

In order to quant i f y the no t ion of reflexive reasoning i n ­
t roduced above, let us make a few observat ions about 
such reasoning. 

• Reflexive reasoning occurs with respect to a large 
body of background knowledge. A serious a t t e m p t 
at comp i l i ng common sense knowledge suggests tha t 
our background knowledge base may contain as 
many as 107 to 108 i tems [Guha and Lenat , 1990]. 
Th i s should not be very surpr is ing given tha t th is 
knowledge includes, besides other th ings, our knowl ­
edge of naive physics and naive psychology; facts 
about ourselves, our f am i l y , f r iends, colleagues, his­
to ry and geography; our knowledge of ar t i facts , 
sports, a r t , music; some basic pr inc ip les of science 
and mathemat i cs ; and our models of social , c iv ic, 
and po l i t i ca l in teract ions. 

• I tems in the background knowledge base are fa i r l y 
stable and persist for a l ong- t ime once they are 
acquired. Hence th is knowledge is best described 
as long-term knowledge and we w i l l refer to th is 
body of knowledge as the long- te rm knowledge base 
( L T K B ) . 

• Episodes of reflexive reasoning are t r iggered by 
' s m a l l ' i npu ts . In the context o f language under­
s tand ing , an i npu t ( t yp i ca l l y ) corresponds to a sen­
tence tha t wou ld m a p in to a sma l l number of as-
sert ions. For example , the i n p u t ' John bought a 
Rol ls Royce' maps in to j u s t one assertion (or a few, 
depending on the under l y ing representat ion) . T h e 
cr i t i ca l observat ion is t h a t the size of the input, \In\, 
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is insigni f icant compared to the size of the long- term 
knowledge base \ L T K B \ 1 2 

• T h e vast difference in the magn i tude of \ L T K B \ 
(about 108) and \ I n \ (a few) becomes crucial when 
analyz ing the t rac tab i l i t y of common sense reason­
ing . G iven the actual values of \ I n \ t h a t occur dur­
ing c o m m o n sense reasoning, there is a d is t inc t pos­
s ib i l i t y t h a t the overal l cost of a der ivat ion may be 
domina ted by the " f i xed" con t r ibu t ion o f \ L T K B l . 
Thus we cannot ignore the cost a t t r i bu tab le to 
\ L T K B \ and we must analyze the complexity of rea­
soning in terms o f \ L T K B \ as wel l as \ I n \ . 

In view of the magn i tude of \ L T K B \ , even a cursory 
analysis suggests t ha t any inference procedure whose 
t ime complex i ty is quadrat ic or worse in \ L T K B \ cannot 
provide a plausible compu ta t i ona l account of reflexive 
reasoning. However, a process tha t is po l ynomia l in \ I n \ 
remains v iable. 

2 .1 T i m e c o m p l e x i t y o f r e f l e x i v e r e a s o n i n g 

Observe tha t a l though the size of a person's \ L T K B \ 
increases considerably f r o m , say, age seven to th i r t y , 
the t ime taken by a person to understand na tura l lan­
guage does not . Th i s suggests tha t the t ime taken by 
an episode of reflexive reasoning does not depend on the 
\ L T K B \ . In view of th is i t is proposed tha t a realistic 
cr i ter ia of t rac tab i l i t y for reflexive reasoning is one where 
the t ime taken by an episode of reflexive reasoning is i n ­
dependent of \ L T K B \ and on ly depends on the depth of 
the der ivat ion tree associated w i t h the inference.3 

2.2 S p a c e c o m p l e x i t y o f r e f l e x i v e r e a s o n i n g 

The expected size of the L T K B also rules out any com-
pu ta t iona l scheme whose space requirement is quadrat ic 
(or higher) in the size of the K B . For example, the brain 
has only about 101 2 cells most of which are involved 
in processing of sensorimotor i n fo rma t i on . Hence even 
a l inear space requirement is fa i r ly generous and leaves 
room only for a modest 'constant of p ropor t i ona l i t y ' . In 
view of th is , i t is proposed tha t the admissible space re­
qui rement of a model of reflexive reasoning be no more 
than l inear i n \ L T K B \ . 

To summar ize , it is proposed tha t as far as (reflex­
ive) reasoning under ly ing language understanding is con-

1A small input may, however, lead to a potentially large 
number of elaborate inferences. For example, the input 'John 
bought a Rolls-Royce' may generate a number of reflexive 
inferences such as 'John bought a car', 'John owns a car', 
'John has a driver's license', 'John is perhaps a wealthy man', 
etc. 

2Some of these inferences may be 'soft' inferences, but the 
issue of deductive versus evidential nature of inferences is 
irrelevant to our current concerns. 

3The restriction that the reasoning time be independent 
of \ L T K B \ may seem overly strong and one might argue that 
perhaps logarithmic t ime may be acceptable. Our belief that 
the stronger notion of effectiveness is relevant, however, is 
borne out by results which demonstrate that there does ex­
ists a class of reasoning that can be performed in time inde­
pendent of \ L T K B \ . 

cerned, the appropr ia te not ion of t rac tab i l i t y is one 
where 

• the reasoning t ime is independent of \ L T K B \ and is 
on ly dependent on \ I n \ and the depth of the deriva­
t ion tree associated w i t h the inference, and 

• the associated space requirement, i.e., the space 
required to encode the L T K B plus the space re­
quired to hold the work ing memory dur ing reason­
ing should be no worse than l inear in \ L T K B \ . 

In spite of the apparent significance of reflexive rea­
soning there have been very few a t tempts at develop­
ing a computa t iona l account of such inference. Some 
past exceptions being Fah lman 's work on N E T L [1979] 
and Shastr i 's work on a connect ionist semantic mem­
ory [1988]. However these models dealt p r ima r i l y w i t h 
inher i tance and classif ication w i t h i n an IS~A hierarchy. 
Hol ldobler [ l 990] and U l l m a n and van Gelder [1988] nave 
proposed paral le l systems for pe r fo rm ing qui te complex 
logical inferences, however, bo th these systems have un­
realistic space requirements. T h e number of nodes in 
Hol ldobler 's system is quadrat ic in the the size of the 
knowledge base ( K B ) the number of processors required 
by U l l m a n and van Gelder is even higher. U l l m a n and 
van Gelder t reat the number of nodes required to encode 
the background KB as a fixed cost, and hence, do not re-
fer to its size in compu t i ng the space complex i ty of their 
system. If the size of such a KB is taken in to account, 
the number of processors required by their system turns 
out to be a h igh degree po l ynomia l . 

A signif icant amount of work has been done by re-
searchers in knowledge representat ion and reasoning to 
ident i fy classes of l im i t ed inference t ha t can be per­
formed eff iciently (e.g., see [Frisch and A l len , 1982]; 
[Brach man and Levesque, 1984]; [Patel-Schneider, 1985]; 
[Dowl ing and Gal l ier , 1984]; [Levesque, 1988]; [Selman 
and Levesque, 1989]; [Mc A Hester, 1990]; [Bylander et 
a/., 1991]; [Kautz and Selman, 1991]). Th i s work has 
covered a wide band of the complex i ty spect rum but 
none tha t meets the s t rong t rac tab i l i t y requirement dis­
cussed above. Most results s t ipu la te po l ynomia l t ime 
complex i ty , restr ict inference in implaus ib le ways (e.g., 
by exc luding chain ing of rules), and /o r deal w i t h l im i ted 
expressiveness (e.g., deal only w i t h proposi t ions) . 

3 A t ractable reasoning class 
Below we describe a class of reasoning tha t is t ractable 
w i t h reference to the cr i ter ia stated above. The charac­
ter izat ion of such a class is dif ferent (bu t analogous) for 
forward and backward reasoning. In this paper we wi l l 
focus on backward reasoning. 

S o m e d e f i n i t i o n s : 
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Facts are pa r t i a l or complete instant ia t ions of predicates. 
Thus facts are a tomic formulae of the fo rm 
where t^a are either constants or d is t inct existent ia l ly 
quant i f ied variables. 

Queries have the same fo rm as facts. Let us d ist inguish 
between yes-no queries and wh-queries. A query, a l l of 
whose arguments are bound to constants corresponds to 
the yes-no query: 'Does the query fol low f rom the rules 
and facts encoded in the long- term memory of the sys­
tem?* A query w i t h existent ia l ly quant i f ied variables, 
however, has several in terpretat ions. For example, the 
query P ( a , x ) , where a is a constant and x is an existen­
t ia l l y quant i f ied argument , may be viewed as the yes-no 
query: 'Does P ( a , x ) fo l low f r o m the rules and facts for 
some value of x ? ' A l te rna te ly th is query may be viewed 
as the wh-query: T o r wha t values of x does P(a,x) fo l ­
low f r o m the rules and facts in the system's long- term 
m e m o r y ? ' D 

Consider a query Q and a L T K B consist ing of facts and 
balanced rules. A der ivat ion of Q obta ined by back­
ward chain ing is threaded i f al l p ivo ta l variables occur­
r ing in the der iva t ion get bound and their b indings can 
be traced back to the b ind ings in t roduced in Q. 

Given a L T K B consist ing of facts and balanced rules, a 
reflexive query is one for which there exists a threaded 
proof. 

3 .1 A c lass o f t r a c t a b l e r e a s o n i n g 

The worst-case t i m e for answering a reflexive yes-no 
query, Q, is p ropor t iona l to d, where: 

• is the number of distinct constants in Q. 

• V is as fo l lows: Let V i be the ar i ty of the predicate 
Pi. Then V equals rang ing over al l the 
predicates in the L T K B . 

• d equals the depth of the shallowest der ivat ion of Q 
given the L T K B . 

Observe t ha t the worst-case t ime is i) independent of 
\LTKB\, i i ) po l ynom ia l in \In\ and i i i ) only p ropor t iona l 
to d. 

As observed in Section 2, whi le \LTKB\ may be as 
much as \In\ is s imp ly the number of (d is t inc t ) 'en­
t i t ies ' referred to in the i npu t . In the context o f na tu ra l 
language unders tand ing, \In\ wou ld be qui te smal l ( t yp ­
ical ly, less t han 5) . We also expect V, the m a x i m u m 
ar i t y o f predicates in the L T K B to be qu i te sma l l . 

An answer to a wh-query can also be computed in time 
proportional to d, except that \In\ now equals the 
arity of the query predicate Q. 

The space requirement is linear in \LTKB\ and poly­
nomial in \In\. This includes the cost of encoding the 
LTKB as well as the cost of maintaining the dynamic 
state of the 'working memory' during reasoning. 

A n i n f o r m a l exp lana t i on o f t he resu l t 

The number of times a predicate P may get instantiated 
in a threaded derivation of a query cannot exceed 
This follows from the observation that P has at most V 
arguments and each of these can get bound to at most 
\In\ distinct constants. Since each predicate instantia­
tion can contain at most V bindings, the propagation 
of argument bindings from one predicate to another can 
be carried out in time proportional to . This as­
sumes that the correspondence (specified by the rules in 
the LTKB) between the arguments of the antecedent and 
consequent predicates are hard-wired. 

It can be shown that the propagation of argument 
bindings from multiple predicates to a predicate can be 
carried out in parallel (see [Mani and Shastri, 1992] for a 
possible implementation of such a parallel binding prop­
agation scheme). This means that the time required to 
carry out one step of a parallel breadth-first derivation 
is only proportional to . It follows that the time 
required to carry out a d step parallel derivation is pro­
portional to 

Lower b o u n d n a t u r e o f above resu l t 

In general, derivations that involve unbalanced rules 
or those that do not satisfy the threaded property can­
not be computed in time independent of \LTKB\, if 
the available space is no more than linear in \LTKB\ 
[Dietz et al, 1993). This result follows from the obser­
vations that i) the common-element problem, i.e., the 
problem of determining whether two sets share a com­
mon element, can be reduced to the problem of com­
puting a derivation involving unbalanced rules and/or 
non-threaded derivations, ii) the sorting problem can be 
reduced to the common-element problem, and ii i) the 
lower bound on the sorting problem is nlogn (where n 
would correspond to \LTKB\). Thus derivations in­
volving unbalanced rules and non-threaded derivations 
may not be computed in time independent of \LTKB\ 
unless one makes use of more than linear space. 

3.2 W o r s t - c a s e v e r s u s e x p e c t e d case 

The above result offers a worst-case character izat ion 
which assumes t ha t du r i ng the der i va t ion , all variables 
will get instantiated with all possible bindings involving 
constants in Q. Th i s w i l l no t be the case in a typ ica l 
s i tua t ion . In fact i t may be conjectured t h a t in a typ ica l 
episode of reasoning, the actual t i m e w i l l seldom exceed 
50d (see next sect ion). 
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4 A neural ly mot iva ted model of 
t ractable reasoning 

We have proposed a neural ly plausible mode l ( S H R U T I ) 
t ha t can encode a L T K B of the type described above, 
together w i t h a t e r m hierarchy and per fo rm a class of 
fo rward as wel l as backward reasoning w i t h ext reme ef­
f ic iency [Shastr i and A j janagadde, 1990]; [A j ianagadde 
and Shastr i , 1991]; [Man i and Shastr i , 1991]; [Man i and 
Shast r i , 1992]; [Shastr i , 1992]. S H R U T I can draw in ­
ferences in t i m e tha t is on ly p ropor t iona l to the depth 
of the shallowest der ivat ion leading to the conclusion. 
A S H R U T I l ike mode l has also been used by Hender­
son [1992] to design a parser for Engl ish. T h e parser's 
speed is independent of the size of the lexicon and the 
g rammar , and it offers a na tu ra l exp lanat ion for a va­
r iety of da ta on long distance dependencies and center 
embedding. 

I f we set aside S H R U T U s ab i l i t y to per fo rm te rmino­
logical reasoning, the class of reasoning tha t S H R U T I 
can per fo rm eff iciently is a subclass of the class of rea­
soning specified in the previous section. The add i t iona l 
restr ict ions placed on S H R U T I ' s reasoning ab i l i t y are 
mot i va ted by gross constraints on the speed at which 
humans can per fo rm reflexive reasoning and gross neu­
rophys io log ies parameters such as: 

1. , the m a x i m u m per iod at which nodes can be 
expected to sustain synchronous ac t iv i ty , 

2 . w, the tolerance or the m i n i m u m lead/ lag tha t must 
be al lowed between the sp ik ing of two nodes tha t are 
f i r ing in synchrony, 

3. the t ime it takes a cluster of synchronous nodes to 
dr ive a connected cluster of nodes to fire in syn­
chrony. 

The detai ls of the model are beyond the scope of this 
paper and the reader is referred to [Shastri and A j jana­
gadde, 1990]. Let us however, state the add i t iona l con­
st ra ints on the class of reasoning S H R U T I can per form. 

4 . 1 A d d i t i o n a l c o n s t r a i n t s o n t h e r e a s o n i n g 
p e r f o r m e d b y S H R U T I 

S H R U T I can encode a L T K B of facts and balanced rules 
and answer yes to any reflexive yes-no query in t ime 
p ropor t iona l to the depth of the shallowest der ivat ion 
leading to a der ivat ion of the query prov ided: 

1. T h e number of d is t inc t constants specified in the 
query does not exceed k1, where k\ is bounded by 

(b io logical da ta suggests tha t k1 is sma l l , 
perhaps between 5 and 10). 
T h e mode l suggests t h a t as long as the number of 
ent i t ies in t roduced by the query is 5 or less, there 
w i l l essentially be no cross-talk among the facts in ­
ferred du r i ng reasoning. I f more than 5 enti t ies oc­
cur, the w indow of synchrony wou ld have to shr ink 
appropr ia te ly in order to accommodate a l l the ent i ­
t ies. As th is w indow shr inks, the possib i l i ty of cross-
ta lk between b ind ings wou ld increase un t i l eventu­
al ly, the cross-talk wou ld become excessive and dis­
r up t the system's ab i l i t y to per fo rm systematic rea­
soning. T h e b io logical da ta suggests tha t a neural ly 

plausible upper bound on the number of d is t inc t ent i ­
ties t ha t can occur in the reasoning process is about 
10. Of course, these entit ies may occur in mu l t i p l e 
facts and par t ic ipate in a number of inferences. 
I t may be signif icant t ha t the bound on the n u m ­
ber of ent i t ies t ha t may be referenced by the ac­
t ive facts du r ing a der ivat ion relates well to 7 ± 2, 
the robust measure of shor t - te rm memory capacity 
[Mi l ler , 1956]. Note however, tha t S H R U T I does 
not place a smal l l i m i t on the number of facts t ha t 
can be s imul taneously active — indeed a very large 
number of facts can be involved in each der ivat ion 
carr ied out by S H R U T I . 

2. D u r i n g the processing of the query, each predicate 
may only be ins tant ia ted at most k2 t imes. 
Note tha t th is rest r ic t ion only applies to run - t ime 
or ' dynamic ' ins tant ia t ions of predicates and not to 
i o n g - t e r m ' facts stored in the system. As argued in 
[Shastr i , 1992] a plausible values of k2 is somewhere 
between 3-5 . A lso, k2 need not be the same for 
al l predicates. T h e app l ica t ion of a S H R U T l - l i k e 
model to parsing by Henderson also suggests tha t 
a value of k2 under 3 may be sufficient for parsing 
Engl ish sentences. 

S o m e t y p i c a l r e t r i e v a l a n d i n f e r e n c e t i m i n g s 

I f we set system parameters of S H R U T I to some neural ly 
mo t i va ted values, S H R U T I demonstrates t ha t a system 
made up of s imple and slow neuron-l ike elements can 
per form a wide range of inferences (bo th fo rward , back­
ward and those invo lv ing a type hierarchy) w i t h i n a few 
hundred mil l iseconds. 

I f we choose the per iod of osci l la t ion of nodes to 
be 20 mil l iseconds, assume tha t nodes can synchronize 
w i t h i n two periods of osci l lat ions and pick k2 equal to 3, 
S H R U T I takes 320 mil l iseconds to infer ' John is jealous 
of T o m ' after being given the dynamic facts ' John loves 
Susan' and 'Susan loves T o m ' ( th is involves the rule ' i f x 
loves y and y loves z then x is jealous of z). T h e system 
takes 260 mil l iseconds to infer ' John is a s ib l ing of Jack' 
given 'Jack is a s ib l ing of J o h n ' ( th is involves the rule ' i f 
x is a s ib l ing of y then y is a s ib l ing of x ) . S imi la r ly , the 
system takes 320 mi l l iseconds to infer 'Susan owns a car' 
after i ts in terna l state is in i t ia l i zed to represent 'Susan 
bought a Rol ls-Royce' (using the rule ' i f x buys y then x 
owns y' and the IS-A re la t ion , 'Rol ls-Royce is a car ' ) . 

I f S H R U T I ' s long- te rm memory contains the fact 
'John bought a Rol ls-Royce' , S H R U T I takes 140 m i l ­
liseconds, 420 mi l l iseconds, and 740 mi l l iseconds, respec­
t ively, to answer 'yes' to the queries ' D i d John buy a 
Rol ls-Royce' , 'Does John own a car?' and 'Can John 
sell a car?' ( the last query also makes use of the rule ' i f 
x owns y then x can sell y). Note t ha t the second and 
t h i r d queries also involve inferences using rules as well 
as IS-A relat ions. 

T h e above t imes are independent of \LTKB\ and do 
not increase when add i t i ona l rules, facts, and IS-A re­
lat ionships are added. If any th ing , these t imes may de-
crease if a new rule is added tha t leads to a shorter in ­
ference pa th . 
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5 Conclusion 

We have proposed a cr i te r ia for t ractable reasoning tha t 
is appropr ia te in the context of common sense reasoning 
under ly ing language unders tand ing. We have suggested 
tha t an appropr ia te measure of t rac tab i l i t y for such rea­
soning is one where the t i m e complex i ty is independent 
of, and the space complex i ty is no more than l inear i n , 
the size of the long- term knowledge base. We have also 
ident i f ied a class of reasoning tha t is t ractable in th is 
sense. Th i s character izat ion of t rac tab i l i t y can be fur­
ther refined by cogni t ive and biological considerations. 
T h i s work suggests tha t the expressiveness and the infer­
ent ia l ab i l i t y of a representation and reasoning systems 
may be l i m i t e d in unusual ways to arr ive at ext remely ef­
f ic ient yet fa i r l y powerfu l knowledge representat ion and 
reasoning systems. 
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