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Abstract

For more than two decades there has been
consensus that bidirectional heuristic search is
afflicted by the problem of search wavefronts
missing each other. However, our results indi-
cate that a different problem appears to be of
primary importance. The fronts typically meet
rather early even without using wave-shaping
techniques. Especially when aiming for optimal
solutions, however, much effort has to be spent
for subsequently improving the solution qual-
ity, and finally for proving that there is indeed
no better solution possible. Therefore, only
slightly relaxing the requirements on the solu-
tion quality already leads to strong improve-
ments in efficiency.

We describe several new e-admissible bidi-
rectional search algorithms which do not use
wave-shaping techniques. The most efficient
of these use a novel termination criterion de-
signed to address the suspected primary prob-
lem of bidirectional heuristic search. We prove
£-admissibility and a dominance result based
on this termination criterion. In summary,
we show that and how bidirectional best-first
search can be more efficient than the cor-
responding unidirectional counterpart without
using computationally very demanding wave-
shaping techniques.

Notation

st Start node and goal node, respectively.

I ‘f“g Successors of node n in the problem graph.
Iin Parents of node u in the problem graph.

d Current search direction index; when search is

in the forward direction 4 = 1, and when in
the backward direction d = 2.

a' 3 — d; it is the index of the direction opposite
to the current search direction.

&(m,n) Cost of the direct arc fromm tonifs=1, or
fromntomifi=2

ki(m,n) Cost of an optimal path fromm tonifi =1,
or fromrtomifi=2

l(n) Cost of an optimal path from ston if i =1,
or fromttonif 1 =2

hi(n) Cost of an optimal path from n to tif i =1,
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or fromntosif: =2

gi{n), hi(n}) Estimates of g;(n} and A (n), respectively.
by, FocaL-heuristic.

fi{n) Static evaluation function.

c* Cost of an optimal path from s to t.

Lenin Cost of the best (least costly) complete path
found so far from s to t.

TREE; The forward search tree.
TREEz The backward search tree.
OPEN, The set of open nodes in TREE..
FocaL, {m]|(m € OPEN,) A (gi{m)+ hi(m))} <
(1+8){ min (g(n)+ hi(n))}.
nelJPEN,
[OPEN,| Number of nodes in OpeN,.
CLOSED, The set of closed nodes in TREE,.
pi(n) Parent of node n in TREE,-
Pu(») pa(pd. .. (pain))...).
e, re—
—lhimes
2m The set of nodes in OPENg which are

descendants of m in TREE .
MeetingNode Node where TREE: met TREE; and yielded
the best complete path found so far.

1 Introduction and Background

Much research in heuristic search has been devoted to al-
gorithms finding optimal solutions. In the unidirectional
case A* [4] and its derivatives received much attention.
Especially related to NP-complete problems, an impor-
tant approach in relaxing the search for optimality is to
provide a bound for the worst case quality of a solution
compared to an optimal one [5], A search algorithm is
said to be e-admissible if it guarantees that the costs of
its solutions are bounded by {1+ ¢)}C* [14, 13]. An early
example is dynamic weighting in the form used in [18].
It uses an upper bound N on the depth of the deep-
est node to be evaluated, which has to be given as a
parameter." With ¥ — oo, asymptotically the heuristic
evaluation function with constant weighting of [15] arises
(f = g + wh).2 Such an evaluation function is used by
EPA f!IG].g A more recent approach to dynamic weight-

 n fact, besides using an admissible heuristic component

h the algorithm must have the possibility to reopen nodes,
i.e., to move nodes back from CLOSED to OPEN whenever a
new better path is found to them.

2For constant w, this is equivalent to f = (1 — w’}g + w'k
with w' = =

*For our comparisons, we use a slight variant of HPA,
which includes the option to move nodes back {from CLosED
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ing [7] compensates for the error made by the heuristic
component using learnt weights, and it is *-admissible
without the need for a given upper bound like N. The
e-admissible algorithm A* [14] is designed to allow for in-
corporating an additional heuristic to estimate the effort
for finishing a search, which is used as FOCAL-heuristic.
All these algorithms perform unidirectional search, and
for £ > () they are typically more efficient than A*

BHPA* [15, 17] was the first bidirectional algorithm
using a heuristic evaluation function for finding optimal
solutions. While BS* [10] improved BHPA technically,
its performance was only nearly as good as the unidi-
rectional A* There was consensus that the main reason
for the superiority of unidirectional search is that the
bidirectional heuristic search is afflicted by the problem
of search wavefronts missing each other (cf. the missile
metaphor in [15]).

Wave-shaping techniques like those used in BHFFA
[3], BHFFA2 [2] and d-node retargeting [19] showed that
bidirectional heuristic search can be rather efficient, es-
pecially in terms of the number of expanded nodes.
Davis [1] presented a generalized algorithm (contain-
ing BHPA and BHFFA2) and analyzed it theoretically.
However, these algorithms are either excessively compu-
tationally demanding, or they have no restriction on the
solution quality.

Considering the missile metaphor of Pohl, the use of
£-admissible approaches in bidirectional search should
be dangerous without wave-shaping, since the chance
of search wavefronts missing each other could be even
increased. However, we found that in bidirectional
searches the first meeting of the fronts typically occurred
early, compared to the effort for finally satisfying the ter-
mination condition.

Fig. 1 illustrates this phenomenon.® These data are
normalized in the sense that every data point represents
the ratio of the number of nodes expanded by the cor-
responding algorithm to that expanded by A* In the
average, the fronts meet rather early even without using
wave-shaping techniques, requiring only slightly more
than half the effort of complete A* on the 8-Puzzle for
€ = 0. On the much more difficult 15-Puzzle, the fronts
meet already when about 3 orders of magnitude fewer
nodes are generated than by complete IDA* [9] searches
(data for A* are unavailable here).

Especially when aiming for optimal solutions, how-
ever, much effort has to be spent for subsequently im-
proving the solution quality. (In the average, this is
achieved with less effort than that of a complete A*
search on the 8-Puzzle.) Finally, for proving that there
is indeed no better solution possible, many more nodes
have to be expanded. Therefore, we were interested in in-
vestigating e-admissible bidirectional search and in com-
paring its efficiency to the corresponding unidirectional
case.

to OPEN, if a new better g-value is found. Moreover, we
include a check whether OPEN has become empty. Since this
is like A* [4], we call this variant HPA*

“The earlier version named VGHA in [15] did not move
nodes back from CLOSED to OPEN. Hence, it needed a con-
sistent heuristic function for being admissible.

*For ¢ = 0, IBS? — one of our new algorithms as intro-
duced below — is identical to BS*
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Figure 1: Phases of IBS; {on the 8-Puzzle).

2 Improved Bidirectional Search

In the following, we describe several *-admissible bidirec-
tional search algorithms which do not use wave-shaping
techniques. We relate them to the earlier known al-
gorithms in pointing out the differences. The origin is
clearly BHPA [15, 17], which can be intuitively viewed to
consist of two HPA searches in opposing directions. The
termination condition compares the length of the best
path found so far to an optimistic estimate computed
from the nodes in both search frontiers (see also below).
While BHPA only considered meeting points between
CLOSED nodes from both sides, Kwa [10] showed that
meeting of a newly generated node with any node in the
opposing front is sufficient. All the algorithms described
below use this improvement. This technical change to-
gether with the incorporation of checks for empty OPEN
lists results in a version we call BHPA'

2.1 Constant weighting (/BHPA, and IBS})

There are two ways of achieving an *-admissible variant
of BHPA"

*» BHPA, using an evaluation function of the form
f = g+wh, where [ can be rewrilten as f = g+(1+
£}h. The original termination condition of BHPA
Loun € ma't[m‘“:EOPEN;fj'(z)’mianOPENsz{I)](I)
turns oul to include (1 4 £}h 1mplicitly in BHPA,:

me S max[mfn,,eOpEN‘(gl{I)“}’ {l +5}hl{£})|
R . OPEN, (g2{z) + (1 + e}h2(2))}.(2)
In fact, Pohl [17] proposed such a change in the
evaluation function, when not concerned with find-
ing a shortest path. For this reason, he suggested
to simplify the termination condition to just meet-
ing. In contrast, BHPAy using (1) or equivalently

(2) as termination condition is £-admissible when h
is admissible.

* BHPA, using f = g+h (like BHPA or a bidirectional
admissible version of A*), but using the termination
criterion

Lmwn £ (1+e}maz[min Qpey, (0:(2) + ki(2)),
BHPA, is also e-admissible when h is admiasible.



These ideas can be combined in an improved version
as follows: TBHPA, uses f = g+ (1 +¢e)h withe 2 0
and the termination criterion (3) still guaranteeing e-
admissibility.

Another approach is to modify BS* [10] similarly, in
order to utilize its technical improvements. When a node
is selected for expansion which is already closed in the
opposite search tree, it can just be closed without ex-
pansion (nipping). Moreover, it is possible in such a
situation to remove the descendants of this node in the
opposing open set (pruning). Likewise, it is possible to
remove all those open nodes (in both directions) whose
/-values are greater or equal than Ly, (trimming). Of
course, such newly generated nodes are not placed in the
open sets at all (screening). The interested reader will
find a pseudo-code formulation of these improvements in
Appendix A.

Generally, the provision for reopening nodes must be
incorporated, since otherwise e-admissibility cannot be
guaranteed. |In particular, without this provision there
could be no guarantee that the shallowest open node n'
on an optimal path always satisfies g{n') = g*(n’). In
addition, we have to assume a consistent h because of
the BS* specific actions nipping and pruning.®

BS, using f = ¢+wh with w > 1 like HPA (in step
14 of [10, p. 101]).7

- BS; using f =g+ & and the following termination
criterion (in step 3 of [10, p. 100]): OPEN; or OPEN,
is empty or (3).
Again, these modifications can be combined, resulting
in an improved algorithm we call IBS*.

2.2 Derivatives of A; (BA;, and BSA;,)

Especially, when there is another heuristic function avail-
able that estimates the effort for completing a search, it
can serve as a FoCAL-heuristic in the unidirectional A¢*
[14].8 Using A} type of search in both directions and
the termination condition (3), BA; arises, which is e-
admissible.

In contrast to the bidirectional algorithms IBHPA¢
and IBSb* described above, BA; is normally less efficient
than the corresponding unidirectional algorithm {Ag).
We found out that its searches are too greedy, leading
to comparably bad solutions at the first meeting and
consequently to much effort for subsequent satisfaction
of the termination condition guaranteeing e-adrnissible
solutions. Generally, we conjecture that bidirectional
searches without wave-shaping tend to meet first with a
solution quality which is worse than that achieved by the
respective evaluation function in a corresponding unidi-
rectional search.

®Despite consistency, reopening of nodes is necessary be-
cause of the (1 + &)-factor in the evaluation function.

"This variant is only of interest for showing the genesis of
the improved algorithm below, since by itself it is very inef-
ficient due to lacking an appropriate termination condition.

8pPearl and Kim propose to use the same heuristic for both
purposes if no estimator for the effort of completion is avail-
able. We wanted to compare all the algorithms with the
same domain-specific knowledge, and consequently used the
available admissible heuristic h also as a FoCAL-heuristic.

Bs"
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Figure 2: Overview of e-admissible bidirectional search

algorithms.

Therefore, we found an improvement by adding an-
other parameter §. BAjy, uses 6 for creating the FOCAL-
lists, and £ for termination. Much better results were
achieved, for instance, with & = % and & = %.

Of course, it is also possible to incorporate the ap-
proach of A} into the framework of BS*. BSA* arises

from BS* by the following changes:

* reopening of closed nodes if a new better path to
them has been found,

+ the termination condition (in step 3 of [10, p. 101])
analogously to BS: (see above),

+ the selection of a node m for expansion (in step 7 of
[10, p. 100]) as usual for Ay.

Moreover, another parameter can be used, BSAj,
arises from BSA; analogously to BAj, from BA;. Since
this algorithm is already somewhat different from BS*,
we present a complete pseudo-code description in Ap-
pendix A.°

Fig. 2 provides an overview of all the presented algo-
rithms and their genesis.

3 Theoretical Results

Due to lack of space we cannot present here all the proofs
for the various algorithms introduced above (the inter-
ested reader is referred to [6]). Since the proofs for
BSA; and BSAj, are the ones most different from simi-
lar proofs for Ay, BHPA and BS*, we selected them for
presentation below. Moreover, we will show an interest-
ing result about dominance between bidirectional algo-
rithms which is due to the improved termination condi-
tion (3). We assume that the branching degrees of all
nodes are finite, the arc costs c,-(m.n) ZE> 0 for some
c, and a consistent heuristic estimator is used.
Definition 3.1 A path P from s to t is £-optimal, if
costfP)< {1+ eC*.

Definition 3.2 A search algorithm is said to be &-
admissible, if it terminates with an ¢-optimal solution
whenever a solution exists [14,13 ].

Definition 3.3 An algorithm A\ is said to dominate A,
if every node expanded by A\ is also expanded by A, [13].

°Due to the inclusion of reopening of nodes in our algo-

rithms and a technical bug in step 22 of the BS* description
in [10, p. 101], we restructured the code.
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Lemma 3.1 Before BSA;, (6 < £} terminates either

an ¢-optimal patk P’ has almdy been found or there
cxist n; and n; in OPEN;, OPEN; respectively, such
thet n; and n; are shallowest open nodes along an op-
timal path P = (8 = n,,. ,n., Ry, ..t = ny) wilh
g1(mi) = g1(n) and ga(n;) = g3(n;).

Proof: Ezcept for the BS apecific actions such nodes must
enist at any time before termination, since we account for re-
opening of nodes {cf. [13]), and before the first meeting no
such actions can occur. Furthermore, 1 < 3. Otherunse the
optimal path would have been found. There are four cases
where theses nodes could be removed from OrENg without in-
stalling a successor substituting them along P. We consider
the care of n, to be removed from OPEN, (the case of n, to
be removed from OPEN; is analogous).

1. Nipping: Node n, is nipped in TREE), f.c. n, must be
in CLOSEDz. ny is a node in OPEN2 hauving the amallest
f2 value. Since n, is closed in TREE2, n, was selected
Jor expansion before n, (while searching in the backward
direction} and we have

fa(ni) € (1 +68)fa m.g n. from Focalsz
5 142)fa{nx §<e
1+4e)fa(ny)  fa(ne) < fa(ny)  (4)

We distinguish two cases
(1.1) {1+e)[g2(n;)+ka(ni, 15 )]+egr (n:) 2 ga(ns)
cost(P") 9 En.'% + ga{ni}
g1(ni) +egy(ni)
+(1 +)[ga(n,) + ka(ni, ;)]
§1 + 5}[91{“-) + g3(n;)} + ka(ni, m,)]
14 ¢)C
This implies Lmin € {1+ £)C".
(1.2) (14€)[g3 (n, )4+-k2(ms, m, )] Hegr(m)) < g2(m))
Due to consistency ha(n,) < ka(n,, n,) + ha{n,}.
92(n,) + ha(n g < ga(my) + ka(ni, my} + ha(n)
(14 e)galnsd + ha(m,)) < (1+ )gi(my) + kalni, my)]
+(1 + e)ha(n,
+egi(n) — £g1(ni)
g2 (n.-) + ha(n;)
~e[gi (ne} = ha(ni))
e

Al

IALA

A

(1 +€)f2(n;)

>0
< fa{n.) contradicting (4)

2. Pruning: Node n; has an ancestor node n; in TREE,
which was nipped in TREE2. 52 must be on an optimal
path {say P), otherwise n, cannot have ils parent pointer
set to n,. Therefore, g1{ns) = gi(n,) and the proof is
analogous to case I, substiluting ny for n,.

8. Trimming: If n, would be trimmed from QPEN,, then

0N (ﬂ.‘) + bl. (fli) 2 Lmin (5)
Since n, is on an optimgl path and g,(ni} = gi(ni),
and stnce ky is consistent and consegquently admisaible,

hi(n,) € fxl (n.), this smplies g1 (r:) + hi(ni) < g1 (ni) +

At{ni) = If nio path P' with coat(P') < (1 + €)C*
was found yet C* <€ (14 €)C* < Lmin, contradicting
(5).

4. Sereening: If n, is expanded and not nipped, there is one
of its successors niyy substituling it as the shallowest
open node on P. If niy1 would be screened and C* <
Lmin, this would lead to an analogous contradiction as
in case 3. u}

Lemma 3.2 if a path ezists from s to t, BSA;, will not
terminate before finding an c-oplimal path.

Proof: The proof is analogous to the one in {17, p. 138], but
using our termination condition {8).
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Lemma 3.3 // a path exists from s to t, BSA;', termi-
nates.

Proof: Either the graph is finite and exhausted, or it is in-
finite and the costs become unbounded (analogous proofs can
be found in [4, 12, IS, 10]). D

Theorem 3.1 If a path exists from s to t, BSA%. ter-
minates with a solution whose cost does not exceed the
optimal cost by more than a factor {1 + ¢}, t.e., BSA3,
is €-admissible.

Proof: This result follows from the lemmas above. O

Corollary 3.1 BSA{ ts e-admissible.

Theorem 3.2 A bidirectional algorithm B\ using the
termination condition (S) dominates another bidirec-
tional algorithm B, differing from B\ only in using the
condition (2) instead.

Proof: Since the right side of (S) is always greater than or
equal to the right side of (2), algorithm B\ cannot terminate
later than B;. D

Corollary 3.2 IBHFPA, dominates BHPA, .

4 Experimental Results

Experiments were conducted to compare the per-
formance of these bidirectional algorithms. The
test domains used were sliding-tile puzzles and route
planning.’® These puzzles have been often used in the
literature for explanations and comparisons of search al-
gorithms in Al. Therefore, we also used them in order
to make it easier to compare our results with published
ones. Since finding optimal solutions is NP-complete,
it is interesting to study finding approximate solutions,
and the effects of scaling up.

However, while the puzzle is illustrative, it is just a
game. In contrast, the route planning domain we se-
lected has more real world flavor (though it is easier to
scale up). We used randomly generated route planning
problems in a map of the Viennese network of public
transportation [6] rather than synthetically generated
problems as used in [10].

4.1 Constant weighting

We were primarily interested in comparing the bidirec-
tional best-first search algorithms with their correspond-
ing unidirectional counterparts. Let us first summarize
the 8-Puzzle results. The case of £ = (} is identical to a
comparison of HPA* with BS* and BHPA’. There, the
unidirectional HPA* is clearly more efficient. However,
already for € > 0.2 the bidirectional search algorithms
are in terms of the number of generated nodes more ef-
ficient than the corresponding unidirectional algorithm.
The linear-space algorithms WIDA* (an e-admissible ex-
tension of IDA*) and RBFS [8] showed relatively bad
performance in terms of generated nodes. However, since
node generation and evaluation is very efficient for the
puzzle, they are still competitive in terms of running
time, due to avoiding the overhead for managing the
lists used for implementing classical best-first search.

These domains are not especially selected to fulfill the
conditions under which classical best-first search is best. In
particular, the puzzles have uniform cost and the usual eval-
uation functions there do not have many distinct values.
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Figure 3: Comparison on the 15-Puzzle (100 instances).

An important question is how significant the results
are. In addition to comparing the numbers of nodes
searched, we look at the empirical data from a differ-
ent viewpoint. Instead of summing up the numbers of
generated nodes for each sample, we compare the per-
formance on each instance. We count how often one or
the other algorithm "wins" in the sense that it expands
fewer nodes than its competitor when solving the same
instance. The statistical details of using the sign test can
be found in [6]. Although it is statistically significant ac-
cording to this test that for € < (.1 HPA* expands more
often fewer nodes than IBS: on the same instance, the
inverse is true for £ > 0.3.

Since the sliding-tile puzzle is NP-complete, it is in-
teresting to investigate scaling up. |In particular, it is
interesting to see the effect of relaxing the solution qual-
ity [5]. Fig. 3 compares 1BHPA; and IBS; with HPA*,
WIDA* and RBFS on the 15-Puzzle (using the sample
of 100 instances in [9]). Due to their memory problem,
it is infeasible for JBHPA,, IBS} and HPA® to find or
even to guarantee optimal solutions here.

For £ = 1, HPA"* can solve all the 100 instances of [9],
but it requires memory for nearly 1 million nodes in the
maximum. In contrast, {BHPA, requires only a stor-
age of slightly more than 300k nodes in maximum, and
IBS* slightly more than 250k nodes. Both are clearly
more efficient than the others in terms of nodes gener-
ated. Interestingly, HPA* "wins" against both {BHPA,
and JBS? slightly more often, but the results arenot sta-
tistica”y significant according to the sign test. While the
worst case bound £ = 1 would allow solutions with twice
the cost of optimal ones, the solutions actually found by
these best-first algorithms are in the average just about
20 percent worse.

For ¢ = 0.75, JBHPA, and IBS, require storage of
slightly more than 600k nodes in maximum. In contrast,
HPA* requires to store nearly 2 million nodes for this
task. The advantage of our bidirectional algorithms over
HPA* in terms of the total number of nodes searched is
highly statistically significant (testing the means), but it
is not according to the sign test. From this we can con-
clude that they are better especially on the difficult prob-
lems. Generally, the advantage of IBHPA, and [BS} is
even clearer than for € = I, generating an order of mag-

Li Li ¥ T T T T T T

A ke om P (Meaheiion distonts) Kun
BA hp m P o
BEAD by P e

fawt manting of BIA7 and BAT - -

[ FHRE PN YRR - S

BOAL, hra P tay dhe
Arwt cvascing of B3A;, amd WA, du } D .
A" (mowsmofa) - - -

14

pormalized search effort

0.8 3
p
1}.]
.a. .o
g.Ro Q. 0 4
U4 L i L L 1 1 + 4 1t -
u Bl Q.2 03 04 0.5 0.6 or a8 0.9 1

Figure 4: Comparison on the 8-Puzzle (500 instances).

nitude fewer nodes than WIDA",

For £ = 0.5, IBHPA, and IBS] require less than 1.5
million nodes in maximum for the whole sample. While
this worsi case bound would allow solutions that are 50
percent worse than optimal ones, in the average these al-
gorithms find solutions that are about 10 percent worse.
HPA® cannot solve 8 instances with this amount of stor-
age. The number of nodes generated by IBHPA, (IBS})
is in the average smaller by a factor of 21 (2d) than that
generated by WIDA®. Therefore, it appeats that the
performance advantage of our bidirectional algorithms
steadily increases with decreasing values of ¢ (at least
in the range where memory suffices}. Moreover, their
advantage 18 much more pronounced on the much more
difficult 15-Puzzle than on the smaller 8-Puzzle.

4.2 Derivatives of A;

In contrast, the bidirectional algorithms BA] and BSA;
are normally less efficient than the correspending uni-
directional A; (see Fig. 4 for the results on a random
set of 500 8-Puzzles).!! Therefore, we designed BAj,
and BSAj3 ., and Fig. 4 also shows a comparison vs. A;
in terms of the total number of expanded nodes, using
6 = £. In total, BA;, and BSAj, expanded fewer nodes
than A} for ¢ > 0.2.

It is statistically significant that for ¢ < 0.2, A] ex-
pands more often fewer nodes on the same instance than
BSA;, with 8 = 5. However, using ¢ = 0.3 the inverse
is true. For £ > 0.5 the bidirectional search algorithm
did significantly better than the corresponding unidiree-
tional one.

Moreover, it is interesting to have a look at the data
of the first meeting in Fig.4. The worse bidirectional al-
gorithms in the average met earlier than the better ones
(but with worse solutions). After that, the latter could
terminate rather quickly (or even immediately), while
the former needed much time to satisfy the termination
condition.

" The performance of A] with ¢ = 0 is better than that of
A" since it uses ite Focal-heuristic as a tie-breaking rule.
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4.3 Cross-domain comparison

Since we conducted experiments in two different do-
mains, the question arises whether there are major dif-
ferences in the results. For ¢ = 0, /BS; (equivalent to
BS* there) did relatively much better in the route plan.
ning domain than for the 8-Puzzle. Most interestingly,
BS* was even 3 percent more efficient than A” in terms
of overall nodes expanded. However, with high statisti-
cal significance it was beaten by the latter in 63 percent
of the cases which were not “draws”. This observation
reinforces the conjecture in [10] that BS® is relatively
more efficient than A* on difficult problems.

Moreover, we found that BSA; was not that bad in
comparison tc A} in the route planning domain as it
was for the puzzle. Generally, for both domains used
for our experiments the better bidirectional search algo-
rithms were more efficient than their corresponding um-
directional counterpart when the goal of finding optimal
solutions is slightly relaxed.

4.4 Which is the best algorithm?

Since we investigated several bidirectional algorithms,
the question arises which one is the best. Generally, the
bidirectional algorithms using the improved termination
condition {3) are more efficient than the others.

In particular, let us compare IBS; va. IBHPA,. For
€ = 0, IBS, was clearly superior to [BHPA, on the 500
8-Puzzle instances. Although already for ¢ > 0.1 the
total number of expanded nodes was nearly the same,
the BS" derivative was significantly better for ¢ < 0.9
in terms of “winning”, but with increasing values of ¢
the vasi majority of cases were “draws”. On the 100 15-
Puzzle instances, the advantage of IBS, over IBHPA,
wag statistically significant over the whole range inves-
tigated, and according to both statistic tests. In the
route planning domain, /8BS, was superior to [BHPA,
for € < (1.3 both regarding the total number of expanded
nodes and in terms of “winning”. However, for larger
values of ¢ the majority of cases were “draws”. In most
of these cases both algorithms terminate immediately af-
ter first meeting, and up to this point they do the same.
Generally, the difference appears to be more pronounced
for more difficult problems.

A[though the BS derivatives do not sfricftly dominate
the corresponding derivatives of HP A (especially because
of the cardinality criterion for selecting the search di-
rection), they generally "lose" very seldom. Therefore,
IBS* and BSA* . with 6 =e/4 are candidates for being
the best bidirectional heuristic search algorithms. We
could not find that one of these is generally better than
the other

In general, it strongly depends on the properties of
the given problem which algorithm is "best". Of course,
linear-space algorithms must be used when there is in-
sufficient memory available. However, whenever there
is, our bidirectional algorithms should be considered. Of
course, running time is another important issue. Again,
it strongly depends on the domain, whether the overhead
of maintaining the lists deteriorates the performance or
not. In particular, it depends on the effort for comput-
ing heuristic values. Finally, of course, also the efficiency
of implementation plays an important role regarding the
running time.
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5 Conclusion

For more than two decades there has been consensus
that the main reason for the superiority of unidirectional
search is that the bidirectional heuristic search is afflicted
by the problem of search wavefronts missing each other.
However, our results show that the missile metaphor of
Pohl [15] is not really applicable. The primary problem
appears to be that after the first meeting especially an al-
gorithm aiming for optimal solutions has to spend much
effort for subsequently improving the solution quality,
and finally for proving that no other open node can give
a better solution. Therefore, only a slight relaxation of
solution quality already leads to strong improvements
in efficiency, and in particular to even more than in the
unidirectional case. Our novel termination criterion con-
tributes strongly to this result because of the importance
of this problem.

However, a serious limitation of classical best-first
search is its memory problem. In contrast, WIDA* and
RBFS have only linear space requirements. Rao et al.
[20] compared depth-first with best-first search gener-
ally. While the latter has the serious disadvantage of
its memory problem, there are conditions, where classi-
cal best-first search is still most efficient. In particular,
it is useful when both density of solutions and heuris-
tic branching factor are very low (and there is sufficient
memory available). Moreover, both IDA* and RBFS
have large search overhead when there are many distinct
values, and when the problem graph is not a tree [11].

Our bidirectional algorithms are designed to improve
the performance under these conditions. While there
are some differences, for both domains used for our ex-
periments the main result about these algorithms is the
same. We showed that and how bidirectional best-first
search can be more efficient than the corresponding uni-
directional counterpart without expensive wave-shaping
Therefore, even for only slightly relaxing the require-
ments on the solution quality, the best of our algorithms
are the most efficient e-admissible algorithms known
for those domains where sufficient memory is available.
Such domains are not the most difficult ones address-
able by search techniques like WIDA* and RBFS. But
in those areas dominated by classical best-first search we
found even better algorithms, based on a paradigm that
was thought for long to be bad.

Currently, we are investigating a bidirectional combi-
nation of best-first search with linear-space search, in
order to mitigate the issue of storage requirements. We
hope that this will renew the interest in bidirectional
search, which has additional potential for efficient im-
plementation on parallel hardware.
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A Pseudo Code of BSA4;,
procedure BSA; (s,1)

1. gi(s) — g2(t) — 0; fi(8) «— fa(t) = ha{a); Lunin — o0}
2. OpEN; — {s}; OPEN: — {t};
3. CroseEp; — CLOSED: + O;
4. until OrPEN,; =@ or OPENy; =0 or
Lmin € (1+¢) m"x[min:eOPENl {g1(z) + hi(z)),
min, . OpgN (92(z) + h2(z))] do
5. if |OPEN,| < JOPEN2| }* cardinality criterion */
6. then d — 1 else d — 2
endif
7. d' « 3 — d; /* set the opposite search direction */
B. Select m € Focalg with lowest hp, —value;
9. OPEN4 — OPENg\ {m};
10. CLosgDg ~— CLOSEDg U {m};
11 if m € CLoSED
then /* nip m in TREE« and prune TREEs */
12 Dm_{n|nef'¢: m)d’\pw(ﬂ-):ﬂl};
13. OPENg + OPENg \ {Im;
else
14. EXPAND(m);
endif
endunti]

15, i Lypwn =0
then no path exisis
else
16. the solution path with costs Lmin is
(a,....p3( MeetingNode), p) (MeetingNode),
MeetingNode, pa ( MeetingNode), .. ., t).
endif
endprocedure.

procedure EXPAND(m)
X TrimFlag — false;
2 foreach n € I'y(m) do
3. g = 94(m} + ca(m,n);
4 ifg + hd{n} < Lm"l
then /* no screening */

5. =~ g+ ka(n);
6. if n ¢ TREEs /* m is a new node */
then
T ga{n) — g faln) — fipa{n) — m;
8. QOPENg — OPENaU {n};
9 elsif g < ga(n) /* better path to n found *;
then
10. ga{n) — g; faln) — [fipa(n) — m;
11. if n € CLOSED4
then /* reopen n %/
12. CLoSEDy — CLOSED4 \ {n};
13. OpENg — OPEN4U [n},;
endif
endif
14. if n € TREEs ADd g1(n) + g2{r) < Lrmn
then /* update L */
15. Lmn — g1{n) + g2(n);
16. MeetingNode +— n;
17. TrimFlag — true;
endif
endif
endforeach

18. if TrimFiag
then /* trim the open lists */

19. Remove from OPEN; and OPEN: those nodes n
with(g + h)-values » Ly, (d =1, 2) and which
are not source nodes {(for OPEN, the source node

is 8; for OPEN> it is t)
endif
endprocedure,
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