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Abstract

Many works have been carried out to improve
search efficiency in CSPs, but few of them
treated the semantics of the constraints. In
this paper, we expose some properties of two
classes of constraints, functional and bijective
constraints: we first present conditions under
which arc and path consistencies are sufficient
to guarantee the existence of a bactrack free
solution; we then exhibit classes of polynomial
problems, and finally we propose a new method
of decomposition for problems containing func-
tional or bijective constraints. An interesting
point in this method is that the resolution com-
plexity is known prior to the search.

1 Introduction

Improving search efficiency of Constraint Satisfaction
Problems (CSPs) is one of the main goals of researchers
in this domain. Their works can be classified into
different approaches, like improving backtrack proce-
dure [Haralick and Elliot, 1980; Dechter and Pearl,
1988], or filtering methods (arc and path consisten-
cies in particular) [Montanari, 1974; Mack worth, 1977;
Mohr and Henderson, 1986]. Another approach is to
characterize polynomial classes; they rely on structure of
problems [Freuder, 1978] (leading to the presentation of
new methods of decomposition [Dechter and Pearl, 1987;
Dechter and Pearl, 1989; Jegou, 1990]) or on the size of
their domains [Dechter, 1990]. Few works have been
done on the semantics of the relations; recently, Deville
and Van Hentenryck studied monotonic and functional
constraints [1991], Perlin [1992] factorable relations, and
van Beek [1992] identified a class of problems for which
the tasks of finding a solution or the corresponding min-
imal network can both be solved efficiently.

Yet, in real applications, constraints don't take on
any form. In particular a kind of constraints is often
used: functional ones (VLSI tests [Stallman and Suss-
man, 1977], peptide synthesis [Janssen et a/., 1990]).

In this paper, we will study functional and bijective
constraints (the relations defined by these constraints
are respectively a function and a bijection). We will fo-
cus on the properties of arc and path consistencies when
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applied to these constraints, presenting a class of poly-
nomial problems and a method of decomposition.

Section 2 presents definitions and preliminaries, sec-
tion 3 and 4 expose results on functional and bijective
constraints.

2 Preliminaries
We lirst present. some definitions and the conventions we
take in this paper:

A binary CSP P is defined by (X, D, C, R), where:
‘|A'l-|‘ "|XH;
e 715 the sl of the o domains [y, ..., P, ..., Dy,

where [J, is the set of the possible values for X,

d;, d;. dg are values of 1);, [3;, Dy, respectively, and
o is the stze of the largest domain;

s X is the sel of the n variables X, ..

e (i the set of the m constraints, where a coustraint
55 between the variables X, and X; is defined by
its relation R,

¢ / is the set of the relations R,;, where H;; 1s a
subset of the cartesian product [); x D; specifying
which values of the variables are compatible with
each other.

A consistent wmstanfiation of a subsel Y of the vari-
ables X, .. .., Xy, 1s a tuple of values (d,, ..., d,) such
that any constraint included in ¥ is satisfied. A sofution
Is a consistent instantiation of X.

A graph § = (X, ("} called constraint graph can be
associated L6 a binary USP P |, where the vertices of &
represcut Lhe variables of P, and the arcs (or edges), the
constraints.

For any constraint C'y;, we assign to R;;(d;,d;) the
boolean value truc if and only if {d;,d;) belongs to the
relation H,.'J'.

If X, and X; are not linked, (j; is called a universal
ronstraml, we then have R;;(d,,d;) for any (di, d;) of
Dy x D (Hij = Dy x Dy}, Universal constraints do not
appear tn (..

In the following, we will suppose that a CSP 18 con-
nected (its constraint graph i1s connected); if not, it can
be decomposed into independant problems.

A value dy € Dy is called a suppori in Dy of a
value d; for the constraint Cip iff Rir(di, di); it is called
a support in Dy of a tuple (d;,d;) il Rie(di,de) and
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Figure 1: path consistency - representation of relations

Reid;,di). Representations of relations can be cither
tables or graphs (see Figure ).

We now recall the standard definitions of are and path
consistencies {Mackworth, 1977):

Definition 2.1 A domam ), of {3 is are consistent ff
Yd, € Dy, VX, such thet (C; € O 3d, € D; such that
Riidy d;).

Definition 2.2 4 CS5P P i arc conswstent gff

YD, € D, D; is arr consistent and 1, £ @

Definition 2.3 4 pair of varsables { X, X;} s path
consistent tff

Vidi.dj) € Ry, VNe € X. 3dp € I such thal
oo (dy, die) and Rﬂ(d’,,d”_

Definition 2.4 A CSP P s path ronsistent (ff
VXL A, € X [N NS s path consistent,

In other words, a CSP is arc consistent iff any value of
any domain has at least one support for any constraint
(and no domain is empty), and it is path consistent iff
any tuple of any relation has at least one support in any
domain.

More generally, a CSP is k-consisttut if and only if
any consistent, instantiation of k — 1 variables may be
extended into any other variable to produce a consistent
instantiation of Ar variables. It is globally consistent if and
only if it is k-consistent for any k from 1 to 77. For binary
problems, arc and path consistencies are respectively 2
and 3 consistencies.

A CSP V is not necessarily arc or path consistent;
it can in this case be transformed into an equivalent
problem P° (i.e. it has the same solutions) by sup-
pressing inconsistent values from the domains (arc con-
sistency) or inconsistent tuples from the relations (path
consistency); P° is then called arc (path) consistent clo-
sure of this CSP V [Montanari, 1974; Mackworth, 1977;
Mohr and Henderson, 1986]. Notice that achieving path
consistency may modify the constraint graph structure:
some constraints may be induced instead of universal
constraints (see Figure 1).

Given a CSP, the question can be to find all solutions,
or one solution, or to know if there exists a solution; this

problem is known to be NP-complete. However, some
polynomial classes have been exhibited, based upon the
size of the domains [Dechter, 1990], or upon structural
properties of the CSPs (width lower than the consis-
tency degree of the CSP iFreuder, 1978]). Studying these
classes provides bounds to the search complexity, and de-
composition methods: cycle-cutset method [Dechter and
Pearl, 1987], tree clustering [Dechter and Pearl, 1989],
cyclic clustering [jegou, 1990].

Our purpose in this paper is to characterize polyno-
mial classes, based upon the semantics of two kinds of
constraints: functional and bijective constraints; we also
present a decomposition method improving search effi-
ciency in problems containing functional or bijective con-
straints.

3 TFunctional constraints

Definition 3.1

CGaven lwo veriables X, and X;. we denote X; — X; aff
for all d, € D; there exists at most one d;j € D, such
that fi;;{d,.d,).

If it causis, the value 15 then noled d; = fi;{d,).

A constramt (55 1s functional off Xy — X; or X; — X

The meaning of functional constraints i1s the same as
this of functional dependencies used in the field of rela-
tional databases [Ullman, 1982).

For instance, the constraint Z = ¥ is functional, with
Yo X

]
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Figure 2: an exemple of a functional constraint

We can notice that for any functional constraint (7;,
;| < d.

When all the constrainis are functional, achieving arc
consistency is easy: AC4, the algorithm proposed by
Mohr and Henderson [1986), is lincar in the size of the
problem; as the size of any relation is here bounded by
d. the complexity is then O(md).

In the following, we study a binary CSP P composed
with the subset ) of all functional constraints, and the
subset of the other ones (non functional), C,. If it only
contains functional constraints (. = B), P ts then called
functional.

Let ¢ = {X,(7) be the constraint graph of P. ('
contains both directed arcs representing functional con-
straints, where an arc is directed from X; to X; f
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X; — X;, and edges {undirected arcs) for non functional
constraints.

We can notice that arc and path consistency keeps
the functionality property to any constraint (achieving
it only suppresses values from domains and tuples from
relations): when achieving arc consistency and path con-
sistency on a CSP P = (X, D, CyUC,, R), we obtain the
CSP P° = (X, D, Cj Uy, H‘) where 'y C ;. How-
ever, even if P is functlona.l (Co = @), P°isn’t necmsarily
functional, because non functional constraints may be in-
duced while achieving path consistency. Though, we can
exhibit a class of induced constraints that are functional:
Lransitivity constraints; property 3.1 characterizes them
more formally:

Property 3.1 Let P = (X, D, C,R) bt a CSP, P° =
(X, D, 0% R%) s arc and path ronsistent closure, and
G =(X,C) and G° = (X, (") their constraint graphs.
For all X;, X, in X,
functional constramts such that X; — Xi,,..., Ny, —
Negrr oo X, — A, then the consfrand L af 7 is
funcltional {X; — X;).

Proof:
Each constraint of the sequence 1s functional; conse-
quently, it allows at most one dy, ,, for cach d;,.
The sequence of constraints (,, ... (% thus permits
at. most one d, for each d;.
The induced constraint €7, is therefore functional:
XNi— AL 0O

This property is an immediate consequence of Arm-
strong’s transitivity axiom for functional dependencies

[Uitman, 1982].

We now recall some definitions wssued from graph the-
ory and define notions used in the following of Lhe sec-
tion.

Definitions 3.2 {Berge, 1970]

A wvariable X; s a descendant frem N, e dr-
reeted graph (X, Cp) off there crnsts (f a path
XNio X oo X, A) such dhat Xy — Xy
Xy

A variable X, 15 @ rool of a divected graph (X, (7)) off
any other variable of X s a descendant from X, .

Definition 3.3

A subset R of variables of X is a rool sel of @ directed
graph (X, C'y) off any vartable of X — R 45 a descendand
from an clement of R.

Definition 3.4 Let G = (X, (y).

An order on X 15 called r-compatible funth ¢ or ;) off
any verieble X; (czcept the firsi one}) has at least one
ancestor Xy in this order such thet Ny — X,

e

Notice that the existence of such an order is equivalent
to this of a root; any r-compatibie order first element. is
a toot.

Observe also a properly of G° (P° constraint graph):
any order which 15 r-compatible with & 1s r-compatible
with G, moreover, any order which first clement 1s a
rool (if it exists) is r-compatible with G* (scc Figure 3).
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if there exists in O @ sequence of

X ={X1, X2, X3, X4, X5, X6}
Cp={X; — X2, X1 = Xy,
Xy = Xe, Xg — X3, Xs ~ Xs}
Co = {C25,Ca4, Cag }
The order {Xi,XJ,Xz,Xq,Xa,Xg}
is not r-compatible
The order {X].X),XJ,X{,X"),XQ\}
is r-compatible with Cf

N =X, X, X3, Xy, X, X}

Cp =X, = X3, Xy — X,
X=X, X = X
A’] i A's,Xz i -\‘J,A'b — Xﬁ}

Co = {Caa,Cps,Cas, Cas }

The orders { X1, Xa, Xz, X4, X5, X1}
and {X1, X2, X3, A4, X, X6}
are both r-compatible with C;

Figure 3: r-compatible orders of a CSP and of its arc
and path consistent, closure’

The results we present. now rely on the following prop-
erty:

Property 3.2 Ll P = (XN, DC R) be arc and
palh comswstend, I,y br a consistent mmstantialion of
A W Xi-1}. end Xi a new variable to instanitale.
If there emsts X (1 < j < k — 1) such that X; — Xy,
then Iy _y may br cxirnded inio a conswstend instantiation
of {X1. . Xeoy A )

Proof: Let Jio) = (dy,...,di-1) he a consistent in-
stantiation of {Xy, ..., Xeo )}, X4 a new variable to
be instantiated, and X; an mmstantiated variable (1 <
J < k—1)such that X, — X;.

As P s arc consistent, there cxists dp € £, such that
Rji-(d"ﬂtk) (di‘ = f}k(dj))
Foralli < &
Ix_ 1 is consistent, so Ry (d;, d;);
P is path consistent, (d;, d;) thus has a support in
Dy there exists df € Dy such that R (d;, d}) and
Rjeld, . dy);
X; — Nyi, so there exists one only dy € Iy such
L}mt K J,d;) (de = fe(d;));
Consequently, d}, = di, so Hydd,, dg)

FFor all ¢ < k we therelore have K (d;, dy), which in-
phes that 1y = (d;,...,de_,dg) is consistent. ‘The
instantiation may thus be extended to Xi. O

An interesting point In this properly is that the condi-
don only concerns the functional constraints, the num-
ser, the kind and the structure of the other ones don’t
nalter.

"This is just an exemple of how achieving arc and path
consistency may modify the constraint graph: the constraint
Css might as well have been induced.



The existence of an r-compatible order makes it more
easy to solve the problem, as corollary 3.3 shows:

Corollary 3.3 Let P = (X, D, R) be arc and path
consistent. If there exists on X an r-competible order,
then a solution erisis and 1t can be found in hincar time.

Proof: The instantiation order just has to be r-
compatible.
As the instantiation order is r-compatible, any variable
to be instantiated X; owns at feast one predecessor X
(thus X, is already instantiated with the value d;) such
that X; — X;. Due to property 3.2, d; = fi; (di} may
therefore instantiate X; consistently. o

But such an order doesn’t always exist; the probler
can though be simplified due to the following corollary:

Corollary 3.4 Let P = (N, D, C RY be arc and path
consistent, and I,_, be e consisten! wmstantialion of
5 ST

If any non msteniiefed vartable X; (K <1 < n) s such
that there exwsts X; vertfying N; — Xy and 1 € j < &
(there erists an mstantiated variable \; such that X; —
Xi} then Loy van be cxtendred to a solution without
backirack.

Proof: Obviously deduced from property 3.2, (]
Notice that the properties of the set {X, .. .0 Xeo )

are these of a root set of (G {see Pigure 1),

i Xe

i T ) L T T P T PR W

| X AN 0= (N = XX N

A ‘_,./| Xi= N Xy — X X — Vo)

| ! /\)k:; | (’:. = {(..r| L (.-‘:.l . (‘g_r,, ( .;1.\ . (‘.1_-, }

| ’ )‘l There is noe rcompatible order

X, ™. /7 X, Theset B = {4, Xa)isa mimmumi

‘ v rool set ol ¢ i

o ...__._—i

Fignre 4 minimum root sei.

We can therefore deduce theorem 1:

Theorem 1 Lt T = (X, D O R) be are and path con-
sesbent, and R C N a roof sel of ¢ = {X, ()

If there crists a conswstent mstanitgtion of R then o can
be extended o a solution without backivack.

Proof; it's a direel. consequency of corollary 3.4, O

An arc and paih cansistent problem s thus reduced
into ihe resolution of one of its root sets; after this root
set 15 consistently tnstantiated, this instantiation can be
extended to a backtrack free solution. We can there
fore deduce the number of solutions of the problem, as
property 1.5 shows:

Property 3.5 Let P = (X, DD.C R} be arc and paih
consisfent, and ® C X a root sel of G = (N, ().

The number of solultons of P equals the number of
consistent instantialions of R: each consistent wmnstan-
fration of R ecan be extended to exactly one solulion of

P

Proof: Let I = (di,,...,dx. ) be a consistent instantia-
tion of R = Xy, ..., Xy, .
Due o Theorem |, f can be extended to at least one
solution of P.
R s a root set of G; for all X; € X — R there exists
thus in R a variable X'y, such that Xi, — X;. There
18 therefore an only d; in D; such that Ry ;(dx,,d;).
For all X; € X —R, there exists consequently at most
one consistent instantiation of R U X; containing I,
and obviously al. most one solution {containing f).

! can thus he extended to exactly one solution of P.
)

As a solution can’t obviously be an extension of two
different, instantiations of R, there is a bijection between
Lhe set of all consistent instantiations of K and the set
$ of the solutions of P

A resolution method appears, that can be decomposed
in four phases:

Phase 1 Determination of a minimum toot. set? R of
G=(N.Cp),

Fhase 2: Achievement of the are and path consistent
closure of P,

Phase ¥ Instantiation of R.
Phase - lostaptiation of X - R,

The phase | complexity i1s O(n + m) {determination
of the strongly connected components ['l‘arja.n, 1972]);
phase 2 is O(n*d) [Molir and Henderson, 1986); phase
3 needs Oid™) Lo instantiate R, where 7 is the size of
R At ast, the instantiation of X - R is backirack free;
phasi- 4 can thus be achieved in O(r — r).

The complexity s so reduced from O{d™) for usual
case. to Otd® + d).

The size v of the root set is known from phase 1; the
resolution complexity of a problem may consequently be
bounded prior to the search.

As the problem can be reduced mto its root sel reso-
lntion, a polyvotnial class appears, characterized by the
following property:

Property 3.6 L P = (XN D O R). If if owns a roet

set R owhied size s less or equal to 3, then ol can be solved

m Ot dhy

Proof: The complexity is due to the computation of P,
arc and path consistent closure of P.
If 31 fails, P adonts no solution. Otherwise, as P7 s
arce and path consistend, up to 3 variables may be con-
sistently instantiated. As there are at most 3 variables
m R, they just have to be instantiated first, after they
are instantiated, corollary 3.4 guarantees we will find
a solution without hackirack. a

Notice that a complete functional CSP P =
(X, DO R)Y (Y. €f) is a complete graph) owns at least
one roat: it can thierefore be solved polynomialy. So, un-
like non functional ('$Ps, a complete graph of functional
constraints makes the problem more easy.

R € X is composed with onc clement from each source
of the quotient graph obtained by reduction of the sirongly
connected componenis of ¢ [David, 1992]

David 227



We will now study a subclass of functional constraints:
bijective constraints.

4 Bijective constraints

They are defined as follow:

Definition 4.1
A constraint Ci; 15 bijective ¢ X, — X, end X, — X,

If all 1ts constraints are bijective, a CSP P is then
called bijective. Otherwise, the sct (7 of the constraints
13 divided into € and €7, respectively composed with
the bijective constraints and the non bijective ones,

We now present definitions of an r-compatible order
and a root set for hbijective constrainis:

Definition 4.2 Let & = (X, (h)

An order on X 15 r-compatible off any vartable X, excepf
the first one ouns at least one encestor X; in thes order
such that (5 € (),

R s a rool sct of G off for all X; of XN there crists
X, € R such that there exists o path frem X, fo X,
.

Deville and Van Hentenryck [1991] presented sore
properties of are consisteney for bijective constraints”® (in
particular ACH, achieving are consisteney in O(md)); onr
purpose is to extend these results to properties of path
consislency,

First. notice that hijeclive constraints are particular
functional constraints. As such, they own all of their
properties (in particular, the size of each relation is
bounded by the size of the dotain). But bijectivity is a
stronger property than functionality, and we can expect
this new class to own stronger praoperties, as property
4.7 shows:

Property 4.7 Let P = (X, D, Cy U ', It) be o CSP,
and P = (X, D°.C" R°Y its arc and path consisient
closure.

IHG = (X.,(7) 15 connected, then P7 is complele and
bijective, and all domamns D; have the same size

Proof;
We first prove that P¢ is complete and bijective:
For any pair of variables {.X;, X} of P:
If C;; 15 a non bijective constraint of €/, or an uni-
versal constraini:
Cy is connected; there exists consequently a
path u from X; to X; in &), g = (X; =
Xio. XNiyooo o Xin,  Xi, = Xj), such that ¥p €
[0..k—1], € i,,, is bijective,
As every (' ;_,, is bijective, there exists al most
one d; allowed by this path for each d; (and in-
versely, at most one d; for each d;).
The constraint C{j cotnputed by path consistency
is therefore bijective.
1f Cy; is a bijective constraint, Cf; will also be bijec-
tive (achieving arc and path consistency only sup-
presses values from domains and tuples from rela-
tions).
P¢ is thus complete and bijective.

they called them functional constraints
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X = {XI,Xz,Xs,Xl.Xb.Xs}

Cp = {Cra, Cryq, Cay, Che }

Co = {Caa, Gy, € — 25, Cys}

X=X X X, X, X, Xe)
L= {Cr2,. Cha, Coa, Uy, Cag, Cre }

o= {0, Cun , Cin, Cas }

Figure 5: are and path consistent closure of a CSP con-
taining bijective constraints

Let us now prove that all domains of PT have the same
stze!
For any X, X, in X

P s complete and hijective, so (77 is bijective: any

3
d; of I} owns at most one suppo:l. in D7 (and in-
versely, any d; of I);'- owns al. most one support in
Doy
Moreover, as P s the arc and path consistent clo-
sure of P, () 18 are comsistent: any «; of 1)) there-
fore owns exactly one support in D7 (and inversely):
there s a one-to-one mapping between [27 and 1]
their sizes are consequently equal.

All domatng of P* thus have the same size. O

In particular, the are and path consistent closure of
a bijective 'SP remains bijective, unlike functional con-
straints where only the functionality of each constraint
was kept. Morcover, as achieving arc and path consis-
teney on a CSP of which graph {X, ) s connected
induces a complete graph of bijeclive constraints, any
order on X is r-compatible.

We can now present the following property:

Property 4.8 Any byective CSP that 1s arc and peth
comsistent 15 globally consistent.

Proof: by induction on the degree of consistency.

Let P = (X, D), C, R) be bijective, arc and path con-

sistent.,

Supposc P is {k — 1}-consistent ; is it k-consistent?
Let Jo_y = (d),...,dg-1) be a consistent instantia-
tion of {Xy,..., X1}
The graph (X, (’} is complete and bijective (prop-
erty 4.7), so any j verifies X; — X;).
Due o property 3.2, Ix_, can thus be consistently
extended to X;.

Consequently, P is k-consistent. O



But the arc and path consistent closure of any P =
(X, D, CUC,, R)isn’t necessarily cornplete and bijective
(if Cp isn't connected). The problem may though be
decomposed, like functional constraints, with a root sel

of P:

Theorem 2 Let P = (X, D, ) be are and path con-
sistent, and R C X a rool set of G = {X,(3). I there
exsls a consisient mstgnfiatron of R, then 3l can be er-
fended into a backtrack free solution.

Proof: like Theorem 1, wilth bijective constramts in-
stead of functional ones. a]

T build a mintmum root set, we pow Just have Lo
choose one {any) element in every connected cotmponent
of {X. ().

Moreover, as well as funciional constraints, the num-
her of solutions depends on the rool set of G

Property 4.9 Let P = (N, DO ) be are and path
consistent, and B C XN g rood set of G = (XN, (). The
number of solutions of P oequals the number of consistend
inslantiations of K.

Furthermore, of T as also byechiee, there crmt cractly
o sodutions, (where d7 as the seze of cach domam of P L

Proof:
The first part of the property is similar to property 3.5.
If P is bijective, properties 4 8 and 4 7 respectively tell
us that P is globally consistent (so any variable is a
root set), and that all domains have the same size d’
The number of consistent instantiations of R is thus
the size of any domain

5 Conclusion

We Presented in this paper some properties of arc and
path consistencies for two classes of constraints, func-
tional and bijective constraints, and characterized poly-
nomial problems. We also proposed a decomposition
method for these classes, based upon the semantics of
the constraints. Yet, many works remain to be done
about this subject: in particular, extending this work to
non binary constraints, as well as studying other classes

of constraints, like monofonic constraints lor instance.
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