Consistency Techniques for Numeric CSPs

Olivier Lhomme

Dassault Electronique
55, Quai Marcel Dassault,
92214 Saint-Cloud, France

also at: 13S, University de Nice
250, avenue Einstein,
06560 Valbonne, France

Email : homme@dassault-elec.fr

Abstract

Many problems can be expressed in terms of a nume-
ric constraint satisfaction problem over finite or con-
tinuous domains (numeric CSP). The purpose of this
paper is to show that the consistency techniques that
have been developed for CSPs can be adapted to nu-
meric CSPs. Since the numeric domains are ordered
the underlying idea is to handle domains only by
their bounds. The semantics that have been elabora-
ted, plus the complexity analysis and good experi-
mental results, confirm that these techniques can be
used in real applications.

1 Introduction

Artificial intelligence, operational research and, more recent-
ly, logic programming often use the concept of constraint in
order to express and solve a problem. Bit by bit a theoreucal
framework has evolved, that of Constraint Satisfaction Pro-
blems (CSP) [Waltz, 1972; Montanari, 1974; Mackworth,
1977]. A CSP is defined by a set of variables each with an as-
sociated domain of possible values and a set of constraints on
the variables.

This paper deals with CSPs where the constraints are nu-
meric relations and where the domains are either finite integer
domains or continuous domains (numeric CSPs). [Davis,
1987] offers a good insight into this kind of problem.
Methods exist to solve numeric constraint systems in certain
special cases (Simplex algorithm, Grtibncr bases, Newton's
method, etc.) but no general method exists.

Consistency techniques have been successfully applied to
general CSPs and could be very useful for numeric constraint
systems, but we shall sec that even a very simple consistency
technique such as arc consistency may turn out to be unrealis-
tic (although the characteristics of numeric CSPs can be used
to greatly reduce the complexity of such techniques: (1) nu-
meric constraints are expressed intensionally and (2) the do-
mains are ordered and can also be expressed intensionally).

Interval propagation is another technique, used for solving
numeric CSPs. It consists in propagating the bounds of the
domains and is often used in implementations either on finite
integer domains such as CHIP [Dincbas et al., 1988] and OSL
[IBM, 1991] or continuous ones such as BNR-Prolog [Older
and Vellino, 1990] and Interlog [Tosello, 1990; Dassault
Electronique, 1991]. But interval propagation has never been

232 Constraint Satisfaction Problems

formalized by a concept of consistency and no complexity
analysis has ever been performed.

This paper is a presentation of two new partial consisten-
cies, their specificity being that they only consider the bounds
of the domains. The first one formalizes interval propagation,
the second, which is stronger than the first, has given rise to
a new algorithm (implemented in Interlog). An extension of
these consistencies enables the running lime of algorithms to
be tuned.

The paper is organized as follows. Chapter 2 describes the

problem. Section 2.1 considers the usefulness of consistency
techniques in numeric CSPs. Section 2.2 introduces the abs-
tract concept of numeric value, thanks to which it is possible
to provide definitions and algorithms that are valid for both
finite and continuous domains. Section 2.3 defines the forma-
lism that has been adopted.
Chapter 3 discusses solving numeric CSPs and first shows
that are consistency may be unrealistic on large size domains.
Section 3.1 defines arc B-consistency (where B stands for
bounds) which formalizes the interval propagation technique.
Section 3.2 introduces 3-B-consistency which is a stronger
consistency on domain bounds than arc B-consistency. The
algorithms that perform these two consistencies are given and
their complexity is analyzed. Section 3.3 contains some expe-
rimental results.

The whole paper has been written with continuous domains
in mind (the examples always involve real variables) but it is
obvious that everything is equally valid for finite integer do-
mains. The proof of the propositions and the complexity ana-
lysis can be found in [Lhomme, 1992].

2 Numeric CSPs

2 1

Numeric CSPs can be used to express a large number of pro-
blems, in particular physical models involving inaccurate
data or partially defined parameters. Here it is a question of
what solving such problems implies. These problems are ge-
nerally under-constrained, i.e. a very large number of solu-
tions exists (infinitely large in the case of continuous do-
mains). Although it is impossible to enumerate all of them, it
is often possible to express the set of solutions.
Example: Let three real variables be linked by a constraint U = R * . If

we know that | varied between 1 and 2 and that R varies between 10 and
11, it is not so much one solution that is worth knowing (e.g. R-10.53,

Why consistency techniques are useful

I=1, U=10.53) at the exact range of values of U (i.e. the interval [10,

72)).

In this example the domains are continuous and so it is im-
possible to enumerate all the solutions. The constraint
U =R * lis non linear, the Simplex cannot apply. The Grob-
ner bases method can be used to solve polynomial equations
but cannot take inequations into account.

The difficulty comes from the fact that we are trying to
reason on the range of values of variables. A natural method
would therefore be to attribute a dynamic domain to each va-
riable and to propagate this domain through the constraints.
This is exacdy what the CSP consistency techniques [Mac-
kworth, 1977] do. We shall use these techniques to try to de-
termine the exact range of values of a set of constrained va-
riables.

Traditionally, domains and consistency techniques in CSPs
are only used to simplify a problem before going on to enu-
merate the solutions. In numeric CSPs, however, one of the
main ideas is to consider that the domain of a variable is an
approximation of the exact range of values of the variable and
may itself be of use. This interpretation is similar to
Hyvonen's tolerance propagation [Hyvonen, 1989].

Independently of the very large, or even infinitely large
number of solutions, another advantage of working on ranges
of values rather than on single values is that it allows dynamic
numeric CSPs to be handled, i.e. numeric CSPs to which
constraints may be added. Incrementality is therefore crucial
and requires delaying choice points (which list the solutions
to an intermediate numeric CSP) as long as possible. Incre-
mentality is a key feature when integrating consistency tech-
niques in a programming language (see [Cleary, 1987; Dinc-
basetal., 1988; Olderand Vcllino, 1990; Sidcbottom and Ha-
vens, 1991; Lee and Van Emden, 1992; Benhamou and
Older, 1992]).

22 The concept of numeric values

In order to be able to use the same language both for finite and
for continuous domains, the abstract concept of numeric va-
lue has been adopted. It will be defined separately for finite
domains and continuous ones.

When a domain is finite, a numeric value is simply defined
by:
Definition la: numeric values in finite domains
For a finite numeric domain D a numeric value is an element

ofD.

In the case of continuous domains, the domain associated
with a variable represents an infinite set of real numbers.
However, since a computer handles real numbers through
floating-point numbers it is important to have a formalism
that allows for this, without which no valid result could ever
be obtained. In floating-point representation the set of values
that a numeric variable can take is the set of floating-point
numbers {fg....f»)- A real number between two consecutive
floating-point numbers is usually approximated. In order to
avoid approximations and guarantee correct results, a nume-
ric value in a continuous domain is defined as follows:

Definition Ib: numeric values in continuous domains
A numeric value is an element of the set { {~sofp) ,fo . (fod D) -

f) ' (fhfZ) va L rfn ' (fmm) }

A numeric value is cither a floating-point number f or an
open interval whosc bounds are two consecutive floating
point numbers! (£, f+) ox one of the terms {-oofp) O {f,.40)
representing the infinities. The interval { f, f+) represents an
infinite set of real numbers but will be considered as a single
value. This definition enables us 10 consider the domain asso-
ciated with a variable as a finite set while preserving the con-
tinuity of the domain. Note that an open interval will also be
represenicd by a finite set (and will therefore be closed).

: The half-open interval [2.3) shall be considered as the finite
set {2,02.24),24, ... ,(3-3) | and shall be represenied in our no-
wtlion by a closed interval [a,b} with a=2 snd b=(3-3).

Interval arithmetic [Moore, 1966; Alefcld and Herzberger,
1983] provides computing methods 1hat respect this forma-
lism (and in particular allow the symbolic handling of infini-
ties). Whereas computations performed using a floating-point
representation are a mere estimate of the correct result, inter-
val- based computing methods provide an interval and gua-
raniee2 bounds for this correct result. The advantage of inter-
val arithmetic is not just a matter of checking computing er-
rors; it also offers ways 10 reason on the range of values of
variables.

2.3 Definitions

By NCSP we mean a Numeric Constraint Satisfaction Pro-
btem. The corresponding definitions are almost the same as
for CSPs [Mackworth, 1977] except that the constraints can-
not be given extensionally.

Definition 2: an NCSP
AnNCSP P = (V.DC) is defined by

- a set of numeric variables V = {X;,... X,)]

- a set of domains D = (D,,... D) where D, , a set of nume-
ric values, is the domain associated with the variable X;

- a set of constraints C ={C,;,... C,] where a constraint C;
is defined by any numeric relation linking a set of variabies,

Example: Figure 1 defines three NCSPs that will be used later (P, P;
and P, differ only by their domains).

P, = (V.D,,O), P, = (V,D,,C) and Py = (V,D,,C) where
V=X Y],

D, = { Dx=[0,100}, Dy=[0.1004],

Dy = {Dy=[0, 2], Dy=(0, 21).

Dy = { Dy=[0.5,1], Dy=[1,1.5]},

C={X+Y=2,YSX+1,Y2X]

N

1
//la"‘

Figure 1 : Definition of Py, P, and Py

! Notstion: if fis u floming-point number, f- and f+ arc respectively the two
flosting -point numbers immediately below and immediately above f.

% This guamniee comes from the basic propeny of interval arithmetic
[Moore, 1966]: let I be an interval, [a function and F the cxtension of f to the
intervale, sothat, ¥ x € I f(a) e F(I).

Lhomme 233

Definition 3: solution to an NCSP
A solution to an NCSP P = (V .D,C) is an instantiation of the
variables of V for which both inclusion in the associated do-
mains and all the constraints of C are satisfied.
Example: [X=1,Y=1) and (X=(1-,1), Y=(1,14)] are two solutions’ 10
P,.
Definition 4: global consistency of an NCSP
Let P = (V.D,.C) an NCSP. P is globally consistent iff ¥ X €
V.V ae Dy, X = abelongs 10 a solwtion to P.

Global consistency refiects the fact that for any variable X
of the problem, the domain Dy, is the projection of the set of
sclutions to P on X. Unlike Freuder's global consistency for
CSPs [Freuder, 1988), this definition allows constrainis that
are given intensionatly,

Exampie: Tt ts casy 1o verify that Py is globally consisient.

Definition 5: equivalence of two NCSPs
P and P’ are equivalent (P = P*) iff they have the same set of
solutions.

Example: Py wm Py m Py,

We will use the following terminology when talking about
consistency techniques (see [Jégou, 1991)). A partial consis-
tency A (c.g. A = arc or path consistency) is a property of a
CSP. Let P be a CSP. Closure by A of P, denoted &3 (P), is
informally the largest CSP included in P for which A consis-
tency holds. A A filtering algorithm computes 9 (P) and is
usually called a consistency technique.

Let us now look at a number of concepis that will be used
later on.

If Dy is the domain of a variable X, we say that Dy, is con-
vex Hff all the numeric values between min(Dy) and max{(Dy)
belong 1o Dy. If D, .., Dy are convex then E = Dy x.. x Dy
shall be called a box.

Definition 6: projection of a constraint
Let X;,.... X be k variabies, let E = Dy x.. x Dy The projec-
tion over X; of the constraint C(X,,..., X,) restricted 1o do-
mains D ,..., Dy that shall be denoted T{C(X;,... X)), E} is the
set: {fvie DfA (v vy) Vig g VY ED X XDy x Dy,
X... X Dy such that Civ,, ...vy) is satisfied}.
Evample: Given » constrainl Y = X2 Let Dy = [242], Dy = {1,10),
E=Dx X Dy,
50Ty ({Y =X, Ey=[-2,-1] w12l and [Ty ({Y = X?), E) = [L.4).
For reasons of efficicncy of implementations the concept of
basic constraint now needs to be inroduced.

Definition 7: basic constraint

A constraint C{Xy...., Xy) is said to be basic iff ¥V ie 1 k. it
is possible 1o show two functions F™" and F{™* such that,
for any box E = Dy x... x Dy, F/M™E) and F™(E) are the
min and max values of T1f C(X ;... X)), E).

Please note that the rest of this paper assumes hat the cons-
traints are basic.

Remark 1: a small set of basic constraints enables a large
number of basic constraints to be expressed (through the con-
junction® of constraints and addition of intermediate varia-

Remember that operations are performed by interval arithmetic methods:
so(l-,1)+ (1,1+)= [a,b] and [a,b] is such that [a,b] contains 2.

2 if and only if.
® The conjunction of basic constraints is not always a basic constraint.

234 Constraint Satisfaction Problems

bles}. In Interiog, over continuous domains, given X, Y and Z
distinct variables, the followingsel { X = Y, X £ Y, Z=X+Y,
Z=X*'Y,Y=X,Y=sinX,Y=cos X, Y =X, Y = abs(X),
Z=XY, Z=min(X.Y), Z=max(X,Y)} is a set of basic
constraints, thanks to interval arithmetic. The constraint Z =
X*X+Y is basic but il is not in the set; il may be expressed by
Z=V1+Y) & (V1 = X?).

Remark 2: when a constraint is not basic it is ofien possible
1o transform* it into a conjunction of basic constraints (e.g.e*
= sin (X+Y) becomes (¢* = V1) & (V1 = sin V2) &
(V2=X+Y)).

A constraint is said disjunctive if it “destroys” the convexi-
ty of its domains. This concept depends on the domain of va-
riables: the same constraint can be disjunctive for certain do-
mains but non disjunctive for others,

Definition 8: disjunctive constraints
A constraint C(Xy...., Xy is disjunctive for the box
E= D’ X,.. XDkW
Jie]l kT1{C(X,..... X}, E) is non convex,
Ezamples: The consirmint X7 = Y is non disjunciive for Dy=[-2, 2] and
Dy = 10, 4], is disjunctive for Dy=|-2,2] and Dy = {1, 4], i3 non dis-
junctive for Dy=[1, 2] and Dy = [1,4].

3 How to solve an NCSP

The goal here is neither to enumerate all the solutions nor to
algebraically solve a system of constraints but to determine
the exact ranges of values of the different variables. If it were
possible to find an NCSP that was equivalent and globally
consistent the goal would be reached. But the search for glo-
bal consistency is an NP-hard problem®.

A natural approach, that has proved its worth on CSPs, is to
begin by trying to reach partial consistency. Arc consistency6
could seem a good beginning. Unfortunately, if there are any
disjunctive constraints in the system arc consistency can rapi-
dly lead to combinatorial explosion. If we look at the example
below we shall soon see that this approach is unsuitable.

Example: Dy, = [0,31416], Dy =10,31416), D, = (==, +20),2in X = 0.2,

cos Y =01 2Z=X"Y.

Arc consistency would lead to the union of 10* intervals for D, and Dy

(10* = the number of monotonic parts of sine and cosine in [0,31426))

and to 108 intervals for D,. Such a combinatorial explosion is totally

unreasonable.

The above example is an extreme case but there are only
three constraints! Even without this kind of extreme case, as
soon as the number of constraints becomes rather large there
is a risk of combinatorial explosion due to the representation
of the domains.

In NCSPs the domains that are handled are finite but of a
very particular kind: they are by definition very large’ and are

4-Under such transformations, global consistency is invariant but partial con-
sistencics are generally not invarianL

3 It is an uncomputable problem over the real numbers (because of the tans-
cendental functions) but in finite precision it beoomes &n NP-hard problem.
S Lea P be an NCSP, X a varisble of P. Dy is arc consistent iff

¥ CX, X, . . Xy) a constrain over X, ¥ v e Dy,

vy, v € Dy x XD IClv, vy, ... vy} is satisfied,

An NCSP is arc consistent iff all the domaine are arc consistent.
7-The number of 64-bit floating-puint numbers between 0.0 and 1000.0 is of
the order of 4.6 *10® on an IBM 3090.

ordered. A very economical way of representing a convex do-
main is to do so intensionally by just one interval (i.e. two
bounds). Accordingly, if we only handle convex domains, the
combinatorial explosion due to the representation of domains
can be avoided. This brings us on to the definition of new par-
tial consistencies. Whereas partial consistencies arising from
CSPs guarantee conditions over all the elements of a domain,
the new consistencies will guarantee conditions only over the
bounds of the domain and will thus preserve convexity.

Moreover the constraints are also given intensionally. In-
terval arithmetic will thus make it possible to give very effi-
cient filtering algorithms.

Subsequently only convex domains will be handled and the
domain associated with a variable will simply be an interval.
In addition, thanks to our representation of open intervals (see
section 2.2), only closed intervals have to be handled.

3.1 Arc B-consistency and interval propagation

Arc B-consistency {B for bounds) is a partial consistency de-
fined as follows:

Definition 9: arc B-consistency
Let P be un NCSP, X a variable of P, Dy = fab]. Dy is arc
B-consistent iff ¥ C(X. X;, ... X,) a consiraint over X
vy, o € Dy XDy Cla, vy, ..., v is satisfied,
Avy, v € Dpx XDy [Cib, vy, ..., vy) is satisfied.
An NCSP is arc B-consistent iff all the domains are arc
B-consisient.

Informally arc Bconsistency is a form of arc consistency
that is restricted 10 the bounds of the domain,
Example: ILis eaty to verify that P, {see Figure 1) s arc Bconsistent.
The difference between arc B-consistency and arc consis-
tency comes from the way the disjunctive constraints are han-
dled. Arc B-consistency encompasses in one single interval
the domain of a variable; some values of a domain may be lo-
cally inconsistent.
Example 1: Let P be defined by
Dy =[14], Dy = |-2,+2,
X =Y
P is arc B-consistent but not arc consistent {the value 0 of Dy does not
correspond to any value of Dy such that the constraint can be satisfied).
Closure by arc B-consisiency is defined as follows:

Definition 10: closure by arc B-consistency

Given an NCSP P where P = (V.D.C). Closure by arc B-con-
sistency of P, denoted ® (P}, is an NCSP P’ where P* = (V,
D’ C)and P’ such thai:

Pr=pP

P’ is arc B-consistent,

vD/ eD',D/ <D,

there is no P"=(V, D", C) such that

P" is arc B-consistent, P =P, P2 P’V D/ e D’ D/
oD,

Example: We have Py w @, g (P,).

It can be proved that &, 5(P) always exists and is unique.
¢, g(P) may be the empty NCSP (i.c. the domains arc equal
to), in which case P has no solution.

By denoting closure by arc consistency of P as @4 (P), the
relations belween arc B-consistency and arc consistency can
be expressed by the following theorem.

Theorem 1

Given an NCSP P where P = (V.D.C)and D = {Dy, D,}.
Let P’ = Qpp(Pyand P = ®pc(P), thenVie 1 . 0D is
the smallest interval encompassing D",

Corollary 1
Let P be an NCSP that contains no disjunctive constraints
over the domains being considered. So P is arc B-consistent
iff P is arc consistent.
Exampie: The NCSP P, is arc B-consisient, sll the constraints of P, are
non disjunctive, therefore P, is arc consistent. However, the NCSP of
example | above (with the constraint X = Y?) is not arc consistent.
Figure 2 shows an algorithm (called IP_1 for interval pro-
pagation} to compute closure by arc B-consistency. This al-
gorithm looks very much like that of Waltz {1972] and also
like AC-3 [Mackworth, 1977]. The difference lies in the way
disjunctive constraints are processed, which is by bounding
the result within a single interval (i.e. a constraint witl not de-
letc an impossible value between possible values).

procedure IP_1({inout P)

Precondition:Pg is an NCSP.

Postcondition: either P is the closure by arc B-consistency of Py
or exit with failure.

Begin

1 Agenda = {<C, X> ! Cis a constraini of P, X is & variable of C}

2 while Agenda 2@

3 select and delae <C, X> from Agenda

4 REVISE(<C, X> Resul }

5 if Result = fail then exit with failure

6 if Result =changed then

7 Agende:= Agenda u [<C' X"> | C2C. X in C and X'2X }

£ emd while

end [P 1

procedure REVISE(<CX>, Result)

Begin

9 iet F™ gnd F™* be the functions of definition 7 for C and X
10m = ™0 gver Dy..DiM:=F"overD, ..D,

11#m and M do not exist then Resull := ail

12elsif Dy # [m,M] then % [m,M] is always included in Dy,
13 Dy :=[mMI

14 Result ;= changed

15else Resuh := nothing

end REVISE

Figure 2: 1P _1

Description of IP_L. Lincs 3 and 4 remove a pair <C, X>
from the agenda and call the REVISE procedure which tries
to restrict Dy If Dy has been modified (line 6}, the pairs <C”,
X'> thal are likely to narrow a domain are added w the agen-
da (Jinc 7).

The REVISE procedure uscs the particutarities of basic cons-
traints: it is possible to compuie the min and max of the pro-
jection of the constraint over the variable X (lines 9 and 10).

Terminating the IF_1 algorithm. Over continuous do-
mains, IP_1 can lead to problems of ermination.

Example: Le P be defined by:

(8) Y = X+1,
byY=2*X,
Dy = 10,10}, Dy = (o, 400).
{0.10] leads, necording to (a), to Dy = [1,11)
i1,11] leads, nccording to (b}, 10 Dy = {0.5, 5.5)
10.5, 5.5] lcads, nccording 1o (a), 1o Dy = [1.5,6.5)
!

Aid

y = {1.5, 6.5] leads, sccording to (b), 1o Dy = [0.75, 3.25]

D
A phenomenon of iteration and asymplotic convergence 1owards the
solution {X=1, Y=2) occurs. In Lwenty iterations the degree of precision

Lhomme 235

obiained is less than 107 and gives the result

Dy = [0.9959999 , 1.OD0OD1], Dy =|1.999999 , 2.00C001).

Termination of this algorithm over continuous domains
could naively give rise 10 two types of discourse.

« The first one says that since the number of floating point
numbers is finite, teroination can easily be shown (a
domain can only be restricted), But this attitude is of
very little practical interest and the algorithm can take a
long time terminating,

» The second one is direcily linked to the implementation.
It involves interrupting propagation before normal ter-
mination (e.g. by giving a time limit or, when a domain
is restricted 10 less than £ - absolute or relative - by not
reactivating the constraints concerned). The problem
this time is that, when the algorithm terminates, it is not
possible to describe the status of the domains (the NCSP
is neither arc B-consistent nor anything like i),

What could be done is a third way that avoids the draw-
backs of the first two. This requires defining arc B(w)-consis-
tency, which generalizes arc B-consistency, and then modi-
fying IP_1 so as 1o compuie fillering by are B(w)-consisten-
¢y. The w {as width) characlenzes authorized imprecision al
the bounds.

Notation: if v is a numeric value and k a positive integer, v*
{resp. vk} is the k™ greater (resp. smaller) value than v if it
exists. If it does not exist, v** {resp. v¥) will be the maximum
{resp. minimum) numeric value. Note that if k equals 0, v*" =
Vo=V,

k

Definition 11: arc B(w)-consistency
Lei P be an NCSP, X a variable of P. Dy = fabh], w a positive
integer. Dy is arc Biw)-consistent iff
vV COiX, X, ... Xy aconstraini over X

3ve faa®™ 3y, ovee Dy XD Clvovy, o, v is
saiisfied,

Fve Y. bL 3y, o e DX XDy [Civ, vy, o) is
satisfied.
An NCSP is arc B(w)-consistent iff all its domains are arc
B{w)-consistent.

Arc B(0Y-consistency is cquivalent to arc B-consistency,
Proposition |
Let P be an arc B(w)-consisient NCSP, let w' 2w, hence P is
arc B{w' }-consistent.

It is possible to define a closure by arc B(w)-consistency.
Unlike closure by arc B-consistency, this ene is nol unique
and dcpends on the order in which the constraints are cvalua-
ted. The IP_2 algorithm shown in Figurc 3 computes one of
these closures, denoted @ gy, (P)-

Description of IP_2. The IP_2 procedure differs from IP_]
in the parameter w and the function SUFFICIENT CHAN-
GE. The function SUFFICIENT CHANGE is true if at least
one of the bounds of Dy is more than w distant from the cor-
responding bound of [m,M]. When it can be seen that a cons-
traint will move the two bounds of a domain by less than or
equal to w, then (line 15) it is not applied (in fact it is salisficd
in terms of arc B(w)-consistency). If this constrainl were to be
applied systematically® (if the assignment of line 13 were to

' This is the case for BNR-Prolog, for example.

236 Constraint Satisfaction Problems

be performed before the test of line 12), it would be impossi-
ble to define a strict semantics. Obviously, f w=0,1P_2 is
equivalent to IP_1.

Complexity. Lel A be the maximum domain size, let a2 =
AKw + 1) (a characterizes the number of packets of (w+1) va-
lues in a domain} and let m be the total number of constraints
of P. The complexity analysis (scec [Lhomme, 1992]) shows
that the worst case running time of IP_2 is bounded below by
(m) and above by O(am). The lower beund of the worst case
running time of IP_2 is independent of A, This is all the more
useful as the domains being handled are large.

The complexity of IP_1 follows immediately from this (by
taking w=0, and thercfore A=a). It is bounded by {2(m) and
O(Am). For non disjunctive consiraints, arc B-consistency is
equivalent to arc consistency and IP_1 can be compared with
arc consistency algorithms. Mackworth and Freuder 11985]
have given the lower and upper bounds of the worst case run-
ning time of AC-3: (4%m) and O(4°m). AC-4 [Mohr and
Henderson, 1986] does not apply here because the domain
size 15 too large (AC-4 associates a data swructure with cach
valuc of the domain). Deville and Van Hentenryck [1991]
and Perlin [1992] sugpest taking the constraint semantics into
account. For certain classcs of constraints, the worsl case run-
ning time of their algorithms is also O(Am).

procedure 1P_2(inout P, in w)

Precondinion: Py s an NCSP.

Pastcondition: either P o a closure by arc Biw)-consistency of Pp
or exif with faiture

Begin

1 Apenda ;= {<CX>iCis a constraint of P, X is a variable of C}

2 While Agenda 2

3 select and deletie <C, X> from Agenda

4 REVISE(<C, X> w_ Result)

5 if Result = fail then exit with failure

6 if Resull =changed then

7 Agenda:= Agenda s {<C° X5 1 C'#C, X in C" and X'2X)

% end while

end [P_2

procedure REVISE(<C.X>, w, Result)

Begln

9 ley F™ and [*™* be the funclions of definition 7 for C and X
W0m =" aver), .. D, M = F™ over {3, ... 1),

11ifm and M do not exist then Rexuh = fail

t2elsif SUFFICIENT_CHANGE(Im, M|, Dy, w) then

13 Dy = |m, M|

14 Result := changed

15else Result := nothing

end REVISE

Figure 3; IP_2

3.2 Stronger consistency: 3-B-consistency

Neither arc B-consistecy nor arc consistency are always suf-
ficient:

Example: P, is arc B consistent (and even arc consistent) but it does not

allow the range of values of the variables to be found i.e. Dx=[0.5, 1],

Dy=[1.1.5].

In the case of CSPs over finite domains, an efficient way of
finding solutions is often to perform an interleaved enumera-
tion with arc consistency filtering. One of the ways of adap-
ting this method to NCSPs is domain splitting [Cleary, 1987]:
if Pis arc B-consistent, the domain of a variable is split in two
and the two resulting NCSPs are explored separately. This

process introduces choice points and can rapidly lead to com-
binatorial explosion.

A different approach would be the definition of a stronger
consistency than arc B-consisiency (and that shall be called
3.B-consistency) and the description of a filiering algorithm
that computes closure by 3-B-consistency. In order to avoid
combinatorial explosion, 3-B-consistency guaraniees condi-
tions only on the bounds of the domains. Intuitively, 3-B-con-
sistency can be seen as a form of strong 3-consistency [Freu-
der, 1988} restricted 10 the bounds of the domains.

Notation: The union of an NCSP P = (V.D.C) and a cons-
traint K {which only constrains variables that are already
present in P) is defined by: P* = P {K} =(V.D.C U {K})

Definition 12: 3-B-consistency

Let P be an NCSP, let X be a variable of P, and Dy = [a.b].

Dy, is 3-B-consistent iff P’ and P"" are both non empty
where P* = ®,p(P U {X =a})and P" = ®,5(P U {X = b}).

Anr NCSP is 3-B-consistent iff all its domains are 3-B-consis-

tent.

Notation: O, o~(P) represents the closure of P by 3-B-con-
sistency.

Example: P, and P arc not 3-B-consistent but Py is 3-B-consisient. In

sddition Py = @y polP) = Gy g {Py).

Before giving a 3-B-consistency filiering algorithm the
concept of 3-B-consistency is generalized by 3-B(wl w2)--
consistency so as 1o give the bounds a width (authorized im-
precision).

Definition 13: 3-B(w1,w2).consistency
Let P be an NCSP, X a variable of P, Dy = [ab], and wl =
w2 2.
Dy is 3-B{wl w2 }-consistent iff P' and P’ are both non empty
where P = ®upqf PU(X € [a a*y)
and P" = @ 4p0)(}’ wiXe [b™ bl
An NCSP is 3-é(wl w2)-consistent iff all its domains are
3-B(wl w2)-consistent.

3-B-consisiency is equivalent 10 3-B{0,0)-consistency. The
foHowing proposition corresponds 10 preposition 1 for
3-B-consistcncy.

Propaosition 2
Let P be a 3-B(wi w2)-consistent NCSP, wl' 2wl , w2’ =
w2, hence P is 3-B(wi’ w2’)-consisient.

A 3-B-consistency filtering algorithm is shown in Figure 4.
Ithas been implemented in Imerlog. The principle underlying
this algorithm is based on proof by refutation, hence its name,
Ref filtering. Let us assume P 10 be an arc B-consisient
NCSP, X a variable of P, and Dy, = |a,b]. We arc going Lo try
to restrict Dy by increasing its lower bound. Let it be a point
¢ € (a,b). Now add the constraint X € [a,c). If interval pro-
pagation detects a contradiction we can affirm that the range
of values of X is included in [c,b]. If, on the other hand, no
contradiction is detected, we cannot be sure of anything, but
we can repeat the process with a point ¢’ that is closer 10 a
than ¢ (for instance we could take ¢’ midway between [a.c]).

Description. The index i specifies a pair (X, bound) where
X is a variable and bound is either LOW or UP. The index i
therefore varies between 1 and 2n. The procedure IP_3 is an
incremental version of [P_2: the first parameter is an NCSP P
which is arc B{w2}-consistent, and the sccond parameter is a

constraint to add 1o P. The function assign(i,size) retuns a
constraint that corresponds 1o the instantiation of X at its
bound enlarged w size ckements. The {unction delete_ele-
ments(i, size) retums the complementary constraint of assi-
gn(i,size). For instance, if Dy = [a.b], and if bound equals
LOW, assign returns the constraint “X e [a, af"“l" and de-
lete_elements returns the constraint “X e [o*(@e+l) pym.

Complexity. Remember that m is the number of cons-
waints, n is the number of variables, and A is the domain size.
Note a; =A/(wl+1}and a; = A /(w2+1). The complexity ana-
lysis (see [Lhomme, 1992]} shows that the worst case running
time of Ref filtering is bounded below by Q(n logy al) and
above by O(mn’a;a;). Over finite integer domains, if we take
wi = w2 =0 (ie. a; = a; = A), these values become
Q(n log, A) and O(mn?A?),

procedure Ref_filtering(Inout P, in wl, In w2)

Precondition: Py is an NCSP which is arc B{w2)-consistent.

Postcondition: either P ix a closwre by 3-Biwl w2)-consistency of Py
oOf eXit with failure

begin
1 size := A/ A is an upper bound for 1he size of domains */
2 repcat
size = size div 2
repeat

fiacd_point := true

i=1

whilei<=2%n

PP
Result := IP_3P", assignii.size), w2)

10 if Resul = failure then
11 Resuh_2:=IP_3{ P, delew_clements{i size), w2)
12 if Result 2 = failure then exit with failure
13 fixed _poinmt:= false
14 else
15 L=+l
16 end {while}
17 until fixed _point
18 unti) size <= wl
end Rel_fiering

Figure 4: Ref_filtering

L -l RO - BT R

1t should be observed that this algorithm can be improved:
corollary 2 defines for an NCSP P = (V.D,C) a pantition of ¥
corresponding 10 equivalence classes. A closure by
3-B(wi ,w2)-consistency of P could thus be computed by con-
sidering just one representative of each class.

Theorem 2

Let P be an arc B(w2)-consistent NCSP, let X and Y be two
variables of P linked by a binary, one-to-one monotonic rela-
tion over Dy and Dy, If Dy is 3-B(wl w2)-consistent then Dy
s 3-B{wl' w2)-consistent with wl' = constant * wil.

The constant linking w} and wi' is a bound of the derivati-
ve of the relation over the domains Dy and Dy.

Corollary 2
Let P be an arc B-consistent NCSP, let X and Y be two varia-
bles of P such that there exists a sequence Xg X, ... Xy {with
Xo=X.Xy=Y) and X; and X;, ; linked by a binary, one-lo-one
monotonic relation over D;and D, ;. If X is 3-B(wl w2)-con-
sistent then Y is 3-B(wl' .w2)-consistent with
wl' = constant * wl.
e: Let P be defined by
X =4%Z +3,2 = 3log(Y-1), T= YA2,
Dy = Dy = Dy = Dy = [2,10001.

Lhomme 237

The four variables of P are in the tame equivalence class. All that needs
to be done is to compute 3-B(w1,w2)-consistency on one of these va-
riables in order to obtain 3-B(w1',w2)-consiftency of P.

33 Experimental results

Arc B-consistency filtering (i.e. interval propagation) is a
technique that has already been used and validated experi-
mentally on both finite domains (CHIP, OSL) and continuous
domains (BNR-Prolog, Interlog). 3-B-consistency filtering,
however, is new and deserves in-depth experimentation.
Here, suffice it to say that in the case of P1and P, , Ref filte-
ring would allow the range of values of each variable to be
found rapidly (thus giving P3), whereas the domain splitting
technique (see section 3.2) would give a very huge number of
contiguous solutions. In addition, even in more complicated
cases such as that given in the example below, computation
times have in practice turned out to be considerably lower
than those predicted from the complexity analysis.
Exampie: Le1 P be the NCSP:
Dy=[0,1000], Dy=10,1000], Dz=[0,3.1416], Dy=[0,3.1416],
X*Y+T-2%2=4
X*inZ + Yrcor T=0
X-Y+cos*Z=un'T
X*Y*Z=2*T
with the sclution X = Y =2, Z=12, T = & P iz arc B-consistent and
therefore interval propagation csnnot narmow any of the domains.
Ref filtering, with wi and w2 cotresponding to » relative precision’ of
10% gives the following result after roughly 10* elanentary operations:
Dy = [1.9999, 2.0001],
Dy = [1.9999 ,2.00011,
Dy =[1.5636, 1.5701],
Dy =[3.1273 ,3.1416).

This system of constraints decomposes into a system of 22 basic cons-
traints and 22 variables. On an IBM 3090 the number of numeric values
in [0,1000] is roughly 10°, and a relative precision of 10 corresponds
tow?=w2 =10"2 Complexity analysis predicts a number of elementa-
ry operations between 500 and 108, Experimental results are relatively
close to the lower bound.

The drawback of domain splitting in the above example is
less serious than for P; and P, because the solution here is a
single value. But it gives many quadruplets (Dx, Dy, D, D7)
that are close to the solution and is incapable of determining
which one actually contains the solution.

4 Conclusion

CSP consistency techniques can be used in NCSPs to deter-
mine the range of values of variables. However their com-
plexity remains too high, even though it can be greatly redu-
ced by the structure specific to NCSPs.

The advantage of the two new partial consistencies, arc
B-consistency and 3-B-consistency, is that they are well
adapted to NCSPs. Their distinguishing feature is that they
only consider the bounds of the domains. As for non disjunc-
tive constraints, it has been shown that arc B-consistency is
equivalent to arc consistency. An extension of these B-con-
sistencies introduces the concept of bound width and enables
the complexity of algorithms (even on continuous domains)
to be tuned. In [Lhomme, 1993] these partial consistencies
are generalized by defining k-B-consistency.

' On continuous domains, k {in v") characterizes a relative imprecision on
v (for v=/0), whereas on finite domains k characterizes an absolute impreci-
sion.

238 Constraint Satisfaction Problems

Acknowledgments

Patrick Talllibert introduced me to the problems derscribed
here and gave invaluable help in preparing this paper. My
thanks also go to Michel Rueher, miv Phl supervisor, for his
useful suggestions and constructive criticism. | would also
like to thank Bernard Botella, Philippe Jegou, Jimmy Lee,
Philippe Marguerie and Franck Porcher for their useful com-
ments on previous drafts of this paper. Finally, my thanks go
to Rosalind Greenstein for the English version of this paper.

References

[Alefeld and Herzberger, 1983] G. Alefeld, J. Herzberger, Introduction to In-
terval Computations, Academic Press, 1983.

[Benhamou and Older, 1992] F. Benhamou, W.J. Older, "Applying Interval
Arithmetic to Integer and Boolean Constraints", Technical Report, Bell
Northern Research, 1992

[Cleary, 1987] J.C. Cleary, "Logical Arithmetic", Future Computing Sys-
tems, Vol. 2, Number 2, p. 125-149, 1987.

(Davis, 1987] E. Davis, "Constraint Propagation With Interval Labels", Arti-
ficial Intelligence 32. pp 281-331,1987.

[Dassault Electronique, 1991] "INTERLOG 1.0: User Guide" (in French),
Dassault Electroniquc, 55 Quai M. Dassault, 92214 Saint Cloud, France,
1991.

[Deville and Van Hentenryck, 1991] Y. Deville, P. Van Hcntenryck, "An ef-
ficient Arc Consistency Algorithm for a Class of CSP Problems", in Pro-
ceedings of the 12th IJCAf, Sydney, 1991.

[Dincbas et al, 1988] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Ag-
goun, T. Graf, F. Berthier, "The Constraint Logic Programming Langa-
ge CHIP", in Proceedings of the International Conference on Fifth Ge-
neration Computer Systems, Tokyo, Japan, 1988.

[Freuder, 1978] E. C. Freudcr, "Synthesizing Constraint Expressions”,
CACM, 21-11, p. 958-966, 1978.

[IBM, 1991]"IBM Optimization Subroutine Library Release 2 : User Gui-
de", 1991.

[Hyvonen, 1989] E. Hyvonen, "Constraint Reasoning Based on Interval
Arithmetic", Proceedings of the 11th LJCAI, Detroit, 1989.

[J6gou, 1991] P. Jegou, "Contribution to the Study of Constraint Satisfaction
Problems" (in French), PhD Thesis, University Montpellier 11, 1991.

[Lee and Van Emden, 1992] J.H.M. Lee, M.H. Van Emden, "Adapting
CLP(R) to Floating-Point Arithmetic", Proceedings of the Fifth Genera-
tion Computer Systems Conference, 1992.

[Lhomme, 1992] O. Lhomme, "Numeric CSPs and Consistency Techniques"
(in French), working document August 1992.

[Lhomme, 1993] O. Lhomme, "K-consistency like methods for Numeric
CSPs", Technical Report NE 595 954, Dassault Electroniquc, 1993.
[Mack worth, 1977] A. K. Mack worth, "Consistency in Network of Rela-

tions", Artificial Intelligence 8, p. 99-118, 1977.

[Mackworth and Freuder, 1985] A. K. Mackworth, E. C. Freuder, "The Com-
plexity of some Polynomial Network Consistency Algorithms for Cons-
traint Satisfaction Problems", Artificial Intelligence 25, p. 65-74, 1985.

[Mohr and Henderson, 1986] R. Mohr, T.C. Henderson, "Arc and Path Con-
sistency Revisited", Artificial Intelligence 28, p. 225-233, 1986.

[Montanari, 1974] U. Montanari, "Networks of Constraints: Fundamental
Properties and Applications to Picture Processing", Information Scien-
ces, 7, p. 95-132, 1974.

[Moore, 1966] R.E. Moore, Interval Analysis, Prentice Hall, New Jersey,
1966.

[Older and Vellino, 1990] W. Older, A. Vellino, "Extending Prolog With
Constraint Arithmetic on Real Intervals", IEEE Canadian conf. on Elec-
trical and Computer Engineering, 1990.

[Perlin, 1992] M. Perlin, "Arc Consistency for Factorable Relations", Artifi-
cial Intelligence 53, p. 329-342, 1992.

[Sidebottom and Havens, 1991] G. Sidebottom, W.S. Havens, "Hierarchical
Arc Consistency Applied to Numeric Constraint Processing in Logic
Programming", Technical Report CSS-IS TR 91-06, Centre for Systems
Science, Simon Fraser University, Bumaby, B.C, Canada, 1991.

[Tosello, 1990] O. Tosello, "Constraints over Intervals in Prolog" (in
French), Postgraduate Dissertation, Pierre and Marie Curie University,
1990.

[Waltz, 1972] D.L Waltz, "Generating semantic descriptions from drawings
of scenes with shadows". Tech. Rept. AI-TR-271, MIT, Cambridge,
MA, 1972.

