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Abstract 

Many problems can be expressed in terms of a nume­
ric constraint satisfaction problem over finite or con­
tinuous domains (numeric CSP). The purpose of this 
paper is to show that the consistency techniques that 
have been developed for CSPs can be adapted to nu­
meric CSPs. Since the numeric domains are ordered 
the underlying idea is to handle domains only by 
their bounds. The semantics that have been elabora­
ted, plus the complexity analysis and good experi­
mental results, confirm that these techniques can be 
used in real applications. 

1 Introduction 

Artificial intelligence, operational research and, more recent­
ly, logic programming often use the concept of constraint in 
order to express and solve a problem. Bit by bit a theoreucal 
framework has evolved, that of Constraint Satisfaction Pro­
blems (CSP) [Waltz, 1972; Montanari, 1974; Mackworth, 
1977]. A CSP is defined by a set of variables each with an as­
sociated domain of possible values and a set of constraints on 
the variables. 

This paper deals with CSPs where the constraints are nu­
meric relations and where the domains are either finite integer 
domains or continuous domains (numeric CSPs). [Davis, 
1987] offers a good insight into this kind of problem. 
Methods exist to solve numeric constraint systems in certain 
special cases (Simplex algorithm, Grtibncr bases, Newton's 
method, etc.) but no general method exists. 

Consistency techniques have been successfully applied to 
general CSPs and could be very useful for numeric constraint 
systems, but we shall sec that even a very simple consistency 
technique such as arc consistency may turn out to be unrealis­
tic (although the characteristics of numeric CSPs can be used 
to greatly reduce the complexity of such techniques: (1) nu­
meric constraints are expressed intensionally and (2) the do­
mains are ordered and can also be expressed intensionally). 

Interval propagation is another technique, used for solving 
numeric CSPs. It consists in propagating the bounds of the 
domains and is often used in implementations either on finite 
integer domains such as CHIP [Dincbas et al., 1988] and OSL 
[ IBM, 1991] or continuous ones such as BNR-Prolog [Older 
and Vellino, 1990] and Interlog [Tosello, 1990; Dassault 
Electronique, 1991]. But interval propagation has never been 

formalized by a concept of consistency and no complexity 
analysis has ever been performed. 

This paper is a presentation of two new partial consisten­
cies, their specificity being that they only consider the bounds 
of the domains. The first one formalizes interval propagation, 
the second, which is stronger than the first, has given rise to 
a new algorithm (implemented in Interlog). An extension of 
these consistencies enables the running lime of algorithms to 
be tuned. 

The paper is organized as follows. Chapter 2 describes the 
problem. Section 2.1 considers the usefulness of consistency 
techniques in numeric CSPs. Section 2.2 introduces the abs­
tract concept of numeric value, thanks to which it is possible 
to provide definitions and algorithms that are valid for both 
finite and continuous domains. Section 2.3 defines the forma­
lism that has been adopted. 
Chapter 3 discusses solving numeric CSPs and first shows 
that are consistency may be unrealistic on large size domains. 
Section 3.1 defines arc B-consistency (where B stands for 
bounds) which formalizes the interval propagation technique. 
Section 3.2 introduces 3-B-consistency which is a stronger 
consistency on domain bounds than arc B-consistency. The 
algorithms that perform these two consistencies are given and 
their complexity is analyzed. Section 3.3 contains some expe­
rimental results. 

The whole paper has been written with continuous domains 
in mind (the examples always involve real variables) but it is 
obvious that everything is equally valid for finite integer do­
mains. The proof of the propositions and the complexity ana­
lysis can be found in [Lhomme, 1992]. 

2 Numeric CSPs 

2 .1 Why consistency techniques are useful 

Numeric CSPs can be used to express a large number of pro­
blems, in particular physical models involving inaccurate 
data or partially defined parameters. Here it is a question of 
what solving such problems implies. These problems are ge­
nerally under-constrained, i.e. a very large number of solu­
tions exists (infinitely large in the case of continuous do­
mains). Although it is impossible to enumerate all of them, it 
is often possible to express the set of solutions. 

Example: Let three real variables be linked by a constraint U = R * I. If 
we know that I varied between 1 and 2 and that R varies between 10 and 
11, it is not so much one solution that is worth knowing (e.g. R-10.53, 
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at the exact range of values of U (i.e. the interval [10, 
72)). 

In this example the domains are continuous and so it is im­
possible to enumerate all the solutions. The constraint 
U = R * I is non linear, the Simplex cannot apply. The Grob-
ner bases method can be used to solve polynomial equations 
but cannot take inequations into account. 

The difficulty comes from the fact that we are trying to 
reason on the range of values of variables. A natural method 
would therefore be to attribute a dynamic domain to each va­
riable and to propagate this domain through the constraints. 
This is exacdy what the CSP consistency techniques [Mac-
kworth, 1977] do. We shall use these techniques to try to de­
termine the exact range of values of a set of constrained va­
riables. 

Traditionally, domains and consistency techniques in CSPs 
are only used to simplify a problem before going on to enu­
merate the solutions. In numeric CSPs, however, one of the 
main ideas is to consider that the domain of a variable is an 
approximation of the exact range of values of the variable and 
may itself be of use. This interpretation is similar to 
Hyvonen's tolerance propagation [Hyvonen, 1989]. 

Independently of the very large, or even infinitely large 
number of solutions, another advantage of working on ranges 
of values rather than on single values is that it allows dynamic 
numeric CSPs to be handled, i.e. numeric CSPs to which 
constraints may be added. Incrementality is therefore crucial 
and requires delaying choice points (which list the solutions 
to an intermediate numeric CSP) as long as possible. Incre­
mentality is a key feature when integrating consistency tech­
niques in a programming language (see [Cleary, 1987; Dinc-
bas et al., 1988; Older and Vcllino, 1990; Sidcbottom and Ha­
vens, 1991; Lee and Van Emden, 1992; Benhamou and 
Older, 1992]). 

22 The concept of numeric values 

In order to be able to use the same language both for finite and 
for continuous domains, the abstract concept of numeric va­
lue has been adopted. It wil l be defined separately for finite 
domains and continuous ones. 

When a domain is finite, a numeric value is simply defined 
by: 
Definition la : numeric values in finite domains 
For a finite numeric domain D a numeric value is an element 
ofD. 

In the case of continuous domains, the domain associated 
with a variable represents an infinite set of real numbers. 
However, since a computer handles real numbers through 
floating-point numbers it is important to have a formalism 
that allows for this, without which no valid result could ever 
be obtained. In floating-point representation the set of values 
that a numeric variable can take is the set of floating-point 
numbers A real number between two consecutive 
floating-point numbers is usually approximated. In order to 
avoid approximations and guarantee correct results, a nume­
ric value in a continuous domain is defined as follows: 
Definition l b : numeric values in continuous domains 
A numeric value is an element of the set 
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Remember that operations are performed by interval arithmetic methods: 
so ( l - , l ) + (1,1+)= [a,b] and [a,b] is such that [a,b] contains 2. 
2 if and only if. 
3 The conjunction of basic constraints is not always a basic constraint. 
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3 How to solve an NCSP 

The goal here is neither to enumerate all the solutions nor to 
algebraically solve a system of constraints but to determine 
the exact ranges of values of the different variables. If it were 
possible to find an NCSP that was equivalent and globally 
consistent the goal would be reached. But the search for glo­
bal consistency is an NP-hard problem5. 

A natural approach, that has proved its worth on CSPs, is to 
begin by trying to reach partial consistency. Arc consistency6 

could seem a good beginning. Unfortunately, if there are any 
disjunctive constraints in the system arc consistency can rapi­
dly lead to combinatorial explosion. If we look at the example 
below we shall soon see that this approach is unsuitable. 

Arc consistency would lead to the union of 104 intervals for Dx and DY 

(104 = the number of monotonic parts of sine and cosine in [0,31426)) 
and to 108 intervals for Dz . Such a combinatorial explosion is totally 
unreasonable. 

The above example is an extreme case but there are only 
three constraints! Even without this kind of extreme case, as 
soon as the number of constraints becomes rather large there 
is a risk of combinatorial explosion due to the representation 
of the domains. 

In NCSPs the domains that are handled are finite but of a 
very particular kind: they are by definition very large7 and are 



ordered. A very economical way of representing a convex do­
main is to do so intensionally by just one interval (i.e. two 
bounds). Accordingly, if we only handle convex domains, the 
combinatorial explosion due to the representation of domains 
can be avoided. This brings us on to the definition of new par­
tial consistencies. Whereas partial consistencies arising from 
CSPs guarantee conditions over all the elements of a domain, 
the new consistencies wil l guarantee conditions only over the 
bounds of the domain and wil l thus preserve convexity. 

Moreover the constraints are also given intensionally. In­
terval arithmetic wi l l thus make it possible to give very effi­
cient filtering algorithms. 

Subsequently only convex domains wil l be handled and the 
domain associated with a variable wil l simply be an interval. 
In addition, thanks to our representation of open intervals (see 
section 2.2), only closed intervals have to be handled. 
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3.2 Stronger consistency: 3-B-consistency 

Neither arc B-consistecy nor arc consistency are always suf­
ficient: 

Example: P2 is arc B consistent (and even arc consistent) but it does not 
allow the range of values of the variables to be found i.e. Dx=[0.5, 1], 
DY=[1.1.5]. 
In the case of CSPs over finite domains, an efficient way of 

finding solutions is often to perform an interleaved enumera­
tion with arc consistency filtering. One of the ways of adap­
ting this method to NCSPs is domain splitting [Cleary, 1987]: 
if P is arc B-consistent, the domain of a variable is split in two 
and the two resulting NCSPs are explored separately. This 1. This is the case for BNR-Prolog, for example. 
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The four variables of P are in the tame equivalence class. A l l that needs 
to be done is to compute 3-B(w1,w2)-consistency on one of these va­
riables in order to obtain 3-B(w1',w2)-consiftency of P. 

33 Experimental results 

Arc B-consistency filtering (i.e. interval propagation) is a 
technique that has already been used and validated experi­
mentally on both finite domains (CHIP, OSL) and continuous 
domains (BNR-Prolog, Interlog). 3-B-consistency filtering, 
however, is new and deserves in-depth experimentation. 
Here, suffice it to say that in the case of P1 and P2 , Ref filte-
ring would allow the range of values of each variable to be 
found rapidly (thus giving P3), whereas the domain splitting 
technique (see section 3.2) would give a very huge number of 
contiguous solutions. In addition, even in more complicated 
cases such as that given in the example below, computation 
times have in practice turned out to be considerably lower 
than those predicted from the complexity analysis. 

This system of constraints decomposes into a system of 22 basic cons­
traints and 22 variables. On an I B M 3090 the number of numeric values 
in [0,1000] is roughly 1019, and a relative precision of 10-4 corresponds 
to w1 = w2 = 1012. Complexity analysis predicts a number of elementa­
ry operations between 500 and 1018. Experimental results are relatively 
close to the lower bound. 
The drawback of domain splitting in the above example is 

less serious than for P1 and P2 because the solution here is a 
single value. But it gives many quadruplets (Dx, Dy, D z , DT) 
that are close to the solution and is incapable of determining 
which one actually contains the solution. 

4 Conclusion 

CSP consistency techniques can be used in NCSPs to deter­
mine the range of values of variables. However their com­
plexity remains too high, even though it can be greatly redu­
ced by the structure specific to NCSPs. 

The advantage of the two new partial consistencies, arc 
B-consistency and 3-B-consistency, is that they are well 
adapted to NCSPs. Their distinguishing feature is that they 
only consider the bounds of the domains. As for non disjunc­
tive constraints, it has been shown that arc B-consistency is 
equivalent to arc consistency. An extension of these B-con-
sistencies introduces the concept of bound width and enables 
the complexity of algorithms (even on continuous domains) 
to be tuned. In [Lhomme, 1993] these partial consistencies 
are generalized by defining k-B-consistency. 

1 On continuous domains, k characterizes a relative imprecision on 
v (for v =/ 0), whereas on finite domains k characterizes an absolute impreci­
sion. 
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