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Abst ract 

The 8-puzzle is the largest puzzle of its type 
that can be completely solved. It is simple, 
and yet obeys a combinatorially large problem 
space of 9!/2 states. The N x N extension of 
the 8-puzzle is NP-hard. 
In the first part of this paper, we present com­
plete statistical data based on an exhaustive 
evaluation of all possible tile configurations. 
Our results include data on the expected so-
lution lengths, the 'easiest' and 'worst' config­
urations, and the density and distribution of 
solution nodes in the search tree. 
In our second set of experiments, we used the 
8-puzzle as a workbench model to evaluate the 
benefit of node ordering schemes in Iterative-
Deepening A* ( IDA*) . One highlight of our 
results is that almost all IDA* implementations 
perform worse than would be possible with a 
simple random ordering of the operators. 

1 In t roduc t i on 
The 8-puzzle is a prominent workbench model for mea­
suring the performance of heuristic search algorithms 
[Gaschnig, 1979; Nilsson, 1980; Pearl, 1985; Russell, 
1992], learning methods [Laird et a/., 1987] and the use 
of macro operators [Korf, 1985a]. It is simple, but has a 
combinatorially large problem space of 9!/2 states. The 
8-puzzle is the largest possible N-puzzle that can be com­
pletely solved. There exist larger variants, e.g. the 15-
puzzle [Johnson and Storey, 1879], which can also be 
solved [Korf, 1985b], but not to completion. The gen­
eral N x N extension of the 8-puzzle is NP-hard [Ratner 
and Warmuth, 1986]. 

Comp le te So lu t i on . We enumerated all 9!/2 tile con­
figurations and computed all optimal (shortest) solution 
paths for all problem instances with a fast iterative-
deepening search algorithm. Aside from Schofield's 
[1967] analysis of a weaker 8-puzzle variant, our work 
is the first that gives complete statistical data on this 
application. Our results (for a quick overview see the 
table in the Conclusions) includes statistical data on 

• the lengths of optimal solutions, 

• the solution density in the search tree, 

• the "hardest" and "easiest" configurations, 

• the average heuristic branching factor, 

• the distribution of goal nodes in the search frontier. 

Benef i t o f Node O r d e r i n g in I D A * . Our experi­
ments were also motivated by the need for a better un­
derstanding of the effectiveness of node ordering schemes 
in the IDA* search algorithm [Korf, 1985b]. Like any 
other iterative-deepening search, IDA* benefits by a 
good node expansion order, which reduces the time spent 
in the last (goal) iteration. Common ordering tech­
niques include basic hill-climbing methods, the longest-
path (principal variation) heuristic, the history heuristic 
and transposition tables. While some of these methods 
seem to work in practice (e.g. for the traveling salesman 
problem) it remained unclear how effective they are and 
which combination of the methods performs best. Our 
results give evidence that 

• chances to find a solution early in the last iteration 
are extremely poor for common IDA* implementa­
tions; simple random node selection is better, 

• steepest ascent hill-climbing does not help, 

• a "history" table that holds a success score for each 
operator is better than random ordering, 

• exploring the longest path first yields good perfor­
mance while requiring only O(depth) storage space, 

• the benefits of transposition tables are mainly due 
to caching previously expanded nodes rather than 
to an improved operator ordering. 

2 The 8-Puzzle 

The objective of the 8-puzzle is to rearrange a given ini­
tial configuration of eight squared tiles on a 3 x 3 board 
into a specified goal configuration by successively sliding 
tiles into the orthogonally adjacent empty square (the 
blank square). While it would seem easy to find any so­
lution to this problem, we are only interested in obtain­
ing optimal solutions with the fewest moves. We take, 
by convention, the following configuration to be the goal 
state: 
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Figure 1 : D i s t r i b u t i o n o f o p t i m a l so lut ion lengths / * 

There exist 9! possible tile permutations on a 3 x 3 
board, and every second permutation is solvable [John­
son and Storey, 1879]. Hence, there is a total of 9!/2 = 
181 440 solvable problem instances. 

A weaker variant of the 8-puzzle has been investigated 
by Schofield [1967] with a mixed analytical/empirical 
approach. His 8-puzzle variant includes only mappings 
from one 'standard position' into another, where a 'stan­
dard position' is one with the blank located in the mid­
dle square. The search space of this weaker puzzle has 
only 8!/2 = 20 160 states. Our definition of the 8-puzzle, 
in contrast, conforms to the larger 15- and 25-puzzles, 
which have the blank in the upper left square and which 
do not restrict the search space to 'standard positions'. 

3 Complete Solut ion 

We generated all 9!/2 solvable tile configurations and 
computed all optimal solutions for all problem instances. 
We used Ko r f s IDA* algorithm (for a description see 
Section 4) wi th the Manhattan distance as a heuristic 
estimate function. The whole experiment took less than 
one hour CPU-time on a SUN-SparcStation. 

So lu t i on Leng ths . The average length of all optimal 
solution paths is f* = 21.97, that is, almost 22 moves 
are needed to solve a given random configuration. Fig­
ure 1 shows the distribution of the optimal solution path 
lengths for all tile configurations. The two cases with the 

Figure 2: Number of solut ions per p rob lem 

shortest (non- t r i v ia l ) so lut ion pa th f* = 1 have either 
of t i le 1 or 3 in the upper left corner: 

The two configurations with the longest optimal solution 
path f* = 31 are: 

Interestingly, these configurations do not build the 
largest trees. Their (complete) search trees have both 
15890 leaves, whereas the 'hardest' configurations spawn 
trees with three times as many nodes. Similar to other 
NP-complete problems [Cheeseman et al., 1991], the 8-
puzzle has a small number of very hard problem in­
stances which require significantly more leaf node ex­
pansions than average. 

Solut ions per P r o b l e m . For the 181440 solvable 
configurations, we found a total of 500880 optimal so­
lutions. This gives an average solution density of 2.76 
per problem, with the minimum and maximum number 
lying at 1 and 64 solutions, respectively (see Figure 2). 
About 3/4 of the problem instances have only one, two 
or three solutions. The two configurations with the most 
(64) solutions are: 

The tiles are almost reversely ordered in these configu­
rations, resulting in long solution paths with many move 
transpositions. The search tree is relatively large (with 
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Figure 3: Sample tree searched w i t h cost-bound 7. Fi l led 
circles are leaves. 

W i t h an admissible (non-overest imat ing) heuristic 
func t ion h, I D A * is guaranteed to f ind an op t ima l (short­
est) so lu t ion pa th [Kor f , 1985b]. Moreover, I D A * obeys 
the same asympto t ic branching factor as A * , i f the num­
ber of newly expanded nodes grows exponent ia l ly w i t h 
the search depth [Kor f , 1985b; Mahan t i et a/., 1992]. 
Th i s g row th rate, the heur ist ic branching fac to r bh , is 
defined as the node ra t i o of two consecutive i terat ions. 

I t depends on the number of appl icable operators per 
node (the edge branching fac to r be) and the d iscr imina­
t ion power of the heurist ic est imate func t ion h. Using 
the Manhat tan distance ( the sum of the m i n i m u m dis­
placement of each t i le f r o m i ts goal pos i t ion) as a heuris-
t ic est imate func t ion , we computed bh = 3.81 for the 
8-puzzle. The corresponding value for the 15-puzzle, 
bh= 6.68, is much higher because there are more in ­
ter ior squares w i t h more move opt ions [Reinefeld and 
Mars land, 1991]. 

The t ime to solve a prob lem is domina ted by the t ime 
spent in the f inal (goal) i te ra t ion , which in t u rn depends 
on the expansion order of the leaves. A node is said to be 
expanded, when al l i ts successors have been generated, or 
when it is a goal node. A leaf is an expanded node tha t 
has no expanded successors. F igure 3 i l lustrates a sample 
tree w i t h three leaves. They a l l l ie on a search f r on t i e r 
of an I D A * search w i t h cost bound 7. We are p r ima r i l y 
interested in opt imal search f ront iers tha t conta in one or 
more goal nodes, as shown in the example. 

N o r m a l i z a t i o n . We want to f ind out how node order­
ing techniques improve the chances to f ind a so lut ion 
early in the search f ront ier . For th is purpose, we run 
I D A * on al l 8-puzzle conf igurat ions and gathered sta­
t is t ical data on the locat ion of goal nodes in the search 
f ront . In order to al low a direct compar ison of the exper­
imenta l data , we normal ized the search f ront iers (which 
vary in size between 1 and 41 794 leaves) to a common 
scale of 101 discrete da ta points . Here, 0 and 100 corre­
spond to the locat ion of the le f tmost and the r igh tmost 
leaf node, respectively. W h e n the leaves are numbered 
f rom left (= 1) to r ight (= n ) , the i - th leaf lies on posi­
t ion in the normal ized search f ront ier . 

For trees w i t h more than 100 leaves, no rma l i za t ion is 
no prob lem. Care must be taken when there are only few 
leaves, because this causes the values to cluster at certain 
data points. As an example, the first leaf in F igure 3 lies 
at locat ion the second at and the 
th i rd at of the normal ized search f ront ier . 

F i x e d Successo r O r d e r i n g . For pract ica l reasons, 
common I D A * imp lementa t ions generate the node suc­
cessors in an arb i t ra ry , bu t f ixed sequence (e.g. up , left , 
r ight , down) . W i t h such a scheme, one wou ld expect the 
goal nodes to be evenly d is t r ibu ted over the whole search 
f ront ier . Surpr is ingly, th is is not the case. Figure 4 de­
picts the d is t r i bu t ion of al l goal nodes in the last (deep­
est) search f ront ier ( 'a l l -solut ion-case') . T h e cont inuous 
p lot shows the d i s t r i bu t i on of goal nodes w i t h a f ixed suc­
cessor order ing. In the m idd le pa r t , each goal locat ion 
occurs = 5000 t imes. T h i s is as it should be, because the 
occurrences of al l 101 goal locat ions must add up to the 
to ta l so lut ion number 500880. The zigzag appearance 
w i t h extreme points at specific locat ions is 
caused by the norma l i za t ion of smal l search f ront iers 
w i t h < 100 leaves, as discussed above. 

More interest ing are the 'shoulders ' at bo th sides of 
the graph. They indicate a lower so lu t ion density in the 
left and r igh t parts of the search f ront ier . Th i s inter­
esting phenomenon reveals a serious deficiency of our -
and presumably most other - I D A * imp lemen ta t i on : To 
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11333 to ta l leaves), bu t i t is not the largest (which has 
41794 leaves). There are 50 problems w i t h more than 
20000 leaves on the o p t i m a l search front ier. 

4 Benefi t of Node Order ing in I D A * 
I t e r a t i v e - D e e p e n i n g A * . I D A * [Kor f , 1985b] i s an 
efficient search me thod for appl icat ions w i t h h igh heuris­
t ic branching factors and low solut ion densities [Rao et 
a/., 1991]. T y p i c a l appl icat ions of I D A * include single 
agent games l ike the TV-puzzle, some variants of the t rav­
el ing salesman p rob lem, f loorplan op t im iza t i on and the 
cu t t i ng stock p rob lem. 

I D A * per forms a series of depth-f i rst searches w i t h 
successively increased cost-bounds. The to ta l cost f ( n ) 
of a node n is made up of the cost already spent in 
reaching tha t node g ( n ) , plus the est imated cost of the 
pa th to a goal state h ( n ) . At the beginning, the cost 
bound is set to the heurist ic est imate of the in i t i a l state, 
h ( roo t ) . T h e n , for each i te ra t ion , the bound is increased 
to the m i n i m u m pa th value tha t exceeded the previous 
bound : 



Figure 4: Location of All Solutions in the Search Front Figure 5: Location of First Solution in the Search Front 

be time efficient, common implementations use a table 
driven operator selection scheme, which applies the oper­
ators always in the same order. Our program (and also 
Korf's [1985b]) first tries to move the blank up, then 
to the left, to the right and finally down. If done in a 
row, this results in a circular move path which finally 
runs into a dead end situation. Hence, chances to find a 
solution in the first path of the search tree are low. 

R a n d o m N o d e Select ion is Be t t e r . Figure 4 
clearly indicates, that a fixed operator sequence is worse 
than average. The chances to hit a solution right at 
the beginning of the search tree can be greatly improved 
by randomly perturbing the operator sequence in each 
node. The resulting solution density graph (not shown 
here) is almost flat in the left part, as it should be. 

E x p a n d i n g the Longest P a t h F i r s t . While simple 
random node ordering outperforms any kind of fixed op­
erator sequence, we can do much better by applying do­
main dependent heuristics. One possibility is to inves­
tigate the deepest path of the previous iteration first. 
In multi-agent games, this path is called principal vari-
ation. It is the preferred move sequence, if both parties 
adhere to the minimax principle. In single-agent ( IDA*) 
search, the longest path is the one that came closest to 
the goal. Since all nodes in the search frontier have the 
same /-value, the leaves on the longest paths have the 
highest G- and consequently lowest h-values. 

The dotted graph in Figure 4 shows a much increased 

goal density in the left hand part of the search fron­
tier. The chances to find a goal in the first leaf node are 
more than three times higher than with a random node 
selection scheme. Consequently, the right part of the 
graph lies at a lower level, because all cases again add 
up to 500880. Note that the longest-path heuristic af­
fects only the first few leaf expansions, because only one 
path is stored. However, additional experiments with 
a refined version that stores all longest paths were not 
successful, because the branching factor is too low in the 
8-puzzle. Sophisticated variants only pay off in domains 
with a large branching factor, like the traveling salesman 
problem [Reinefeld and Marsland, 1991]. 

In practice, it often suffices to determine one optimal 
solution. When the search is stopped after a first so­
lution, the benefit of the longest-path heuristic is even 
more pronounced, as can be seen in Figure 5. Other 
favorite aspects of this heuristic are its low space com­
plexity of O(f*) and its negligible CPU time overhead. 

Steepest Ascent H i l l - C l i m b i n g does no t He lp . 
Hill-climbing methods have been found useful in many 
AI applications. They sort the node successors in in­
creasing order of their heuristic estimates. Successors 
with low h-values are expanded first, with the expecta­
tion that they are closer to a goal. Our empirical results, 
however, did not reveal any significant advantage of hil l-
climbing. This observation confirms an earlier assump­
tion of Powley and Korf [ l99 l ] and our own experiments 
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w i t h the larger 15-puzzle. In the 15-puzzle, we spotted 
a sl ight advantage of h i l l c l imb ing in the left part of the 
tree, bu t th is does not pay for the increased overhead of 
move pre-sort ing. A quick invest igat ion [Reinefeld and 
Mars land, 1991] reveals t ha t h i l l - c l imb ing favors t i le con­
f igurations w i t h the b lank located in either an edge or 
border square, because these conf igurat ions enjoy (sta­
t is t ica l ly ) lower h-values. Such conf igurat ions, however, 
have a lower ' m o b i l i t y ' and are thus less desirable. 

H i s t o r y H e u r i s t i c . Dynamica l l y acquired knowledge 
usually ou tper forms stat ic sor t ing schemes (such as h i l l -
c l imb ing) . One dynamic me thod , tha t proved useful in 
adversary games, is Schaeffer's [1989] history heuristic. 
It main ta ins a score table, the history table, for every 
move seen in the search graph. In a given pos i t ion, al l 
appl icable moves are examined in order of their previous 
success. 

The h is tory heurist ic does not depend on domain spe­
cific knowledge ( l ike heurist ic est imate funct ions). I t 
s imply learns f r om the success in previously expanded 
subtrees. For the 8-puzzle, one needs a three dimensional 
array t ha t holds a measure of the goodness of a move for 
each possible t i le , each source posi t ion and each move 
d i rect ion. Th i s gives 9 (t i les) x 9 (posit ions) x 4 (move 
direct ions) =: 324 scores. As a measure of the goodness 
of a move, we counted the number of occurrences the 
specific move led to the deepest subtree. 

Compared to the longest-path heurist ic, the history 
heurist ic provides order ing in fo rmat ion for al l nodes in 
the tree, and not on ly for the nodes on the f i rst pa th . 
Even so, our empi r ica l results (see the dashed lines in 
Figures 4 and 5) ind icate, tha t the history heuristic is 
dominated by the longest-path heurist ic. Th i s m igh t be 
a t t r i bu ted to the low branching factor of the 8-puzzle, 
and the inexact methods to measure the goodness of a 
move. We expect the h is tory heurist ic to be more suit­
able in domains w i t h a larger branching factor and a fine 
grained evaluat ion func t ion . 

T r a n s p o s i t i o n T a b l e . Transposi t ion tables are used 
in two-player games [Zobr ist , 1970] to avoid unnecessary 
re-expansions of dupl icate nodes (due to move transpo­
sit ions and due to node re-expansions in successive iter­
at ions). W h e n there is enough memory space available, 
t ransposi t ion tables are also used to store node in forma­
t i on for gu id ing the search process in to the most promis­
ing d i rec t ion. 

We imp lemented a t ransposi t ion table tha t holds a 
representat ion of every t i le conf igurat ion seen in the 
search, the cost-bound to which the conf igurat ion has 
been searched and a best move ( the move leading to the 
deepest subtree). As expected, the t ransposi t ion table 
great ly reduces the number of node expansions, see F ig­
ure 6. We achieved an average 35% node count reduct ion 
per p rob lem. However, most of the savings are due to 
e l im ina ted t ransposi t ions. Node order ing plays only a 
m ino r role, and so the so lu t ion density graph looks very 
s imi lar to t ha t of the longest-path heurist ic in Figures 4 
and 5 (hence we d id not p lo t i t ) . Th is is again caused by 
the di f f icul t ies to d is t ingu ish between 'good ' and ' bad ' 
moves. We took the dep th of the emanat ing subtree as 

Figure 6: Node expansions to f i rst so lu t ion 

a u t i l i t y measure. But many subtrees end at the same 
level and hence a finer grained scoring func t ion is needed. 
Another prob lem is the low branch ing factor of th is spe­
cific appl icat ion, which leaves on ly few node successors 
to be sorted. 

5 Conclusions 

Table 1 gives a summary of our empi r i ca l results. The 
8-puzzle data has been derived by exhaust ively solv ing 
al l possible board conf igurat ions. For the 15-puzzle, no 
exact data can be given, because the search space is 
too large to be completely enumerated. We used Kor-
f 's [1985b] selection of 100 randomly generated prob lem 
instances as a test set1 . 

In our second set of exper iments, we used the 8-puzzle 
as a workbench to evaluate the benefit of node order ing 
techniques in i terat ive-deepening search. Surpr is ingly, 
we found tha t common I D A * imp lementa t ions w i t h a 
f ixed operator sequence (e.g. up , lef t , r i gh t , down) per­
fo rm worse than average. A s imple r a n d o m operator 
selection scheme is bet ter ! 

The longest-path heurist ic was found most effective. 
Consist ing of a l inear moves array, i t is easy to imp lement 
and its space overhead of O(depth) is negl ig ible. More 
sophist icated order ing techniques d id not y ie ld better 
performance, because the 8-puzzle has a low branching 
factor and it lacks a clear cr i ter ion for measur ing the 
goodness of a move. 

1We identified three cases with differing node counts, 
which are probably due to typographical errors in the origi­
nal paper [Korf, 1985b]: 

No 
22 
88 
89 

Korf 
750,746,755 

6,009,130,748 
166,571,097 

Our Version 
750,745,755 

6,320,047,980 
166,571,021 

Difference 
-1,000 

+310,917,232 
-76 
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Table 1: Summary: The 8-puzzle results are exact; the 15-puzzle data is based on Korf's random problem set 
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