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Abstract 
This paper presents an improved backjumping algonthm 
for the constraint satisfaction problem, namely conflict-
directed backjumping (CBJ). CBJ is then modified 
such that it can detect infeasible values and removes 
them from the domains of variables once and for all. A 
similar modification is then made to Gaschnig's 
backjumping routine BJ and to Haralick and Elliott's 
forward checking routine FC. Empirical analysis shows 
that these modifications tend to result in an improve­
ment in average performance. The existence of a pecu­
liar phenomenon is then shown: the removal of infeasi­
ble values may result in a degradation in the perfor­
mance of intelligent backjumping algorithms, and con­
versely the addition of infeasible values may lead to an 
improvement in performance. 

1. Introduction 
In the binary constraint satisfaction problem (bcsp) we are 
given a set of variables and a set of constraints, where 
each vanable has a discrete and finite domain and each 
constraint acts between a pair of variables. The problem is 
to find an assignment of values to variables, from their 
respective domains, such that the constraints are satisfied 
[Dechter 1992, Kumar 1992, Mack worth 1992, Meseguer 
1989]. This problem may be represented as a graph G, 
where V(G) is the set of variables and A(G) is the set of 
constraints. There are a number of tree search algonthms 
that address this problem, most notably chronological 
backtracking (BT) [Bitner and Reingold 1975, Golomb 
and Baumert 1965], backmarking (BM) [Gaschnig 1977 
and 1979], backjumping (BJ) [Gaschnig 1979], and for­
ward checking (FC) [Haralick and Elliott 1980]. Al l these 
algorithms perform a "depth first" search, and the most 
primitive of these is BT. When BT instantiates a vanable 
with a value (the current vanable Vt) it checks backwards 
against variables that have already been assigned values 
(the past vanables). If no value can be found for the 
current variable that is consistent with all of the past van­
ables, BT steps back to the previous vanable and 
attempt a new instantiation for that vanable (and so on). It 
may be the case that the value assigned to was not in 
conflict with Vi, but some other variable higher up in the 
search tree, Vh, precluded some value from the domain of 

V,. If the search process could jump back directly to Vh 

and find a new value for Vh, the search process might 
then be able to move forward beyond Vi. 

Gaschnig's backjumping routine (BJ) attempts to do 
this. Given the cunent vanable V,, BJ records the 
"deepest" variable with which Vi checked against. If all 
values in the domain of Vi failed consistency checks with 
past vanables, BJ then jumps back to the deepest variable 
that Vi checked against, namely Vh , and if Vh is re-
lnstantiated with a new value we may then find a value 
for Vi. Alternatively, if BJ successfully instantiates the 
cunent vanable Vi, then the deepest past vanable that Vi 

checked against will be Therefore, if later on in the 
search process BJ jumps back from (where 
i), and there are no more values remaining to be tried for 
Vh , BJ wil l then "step" back to Therefore, we get 
this mix of "jumping" and "stepping" back. This 
behaviour can be rectified such that we can continue to 
jump over constraint violations, and we do this by record­
ing for each vanable Vi the set of vanables that were in 
conflict with some instantiation of Vi.. We call this 
modified routine conflict-directed backjumping (CBJ). A 
further modification is then made such that CBJ can detect 
infeasible values and remove them once and for all. This 
modified version is called CBJ-DkC (conflict-directed 
backjumping with directed k-consistency). One would 
expect that in the worst case CBJ-DkC would perform no 
worse than CBJ. We show that this is not so. The removal 
of an infeasible value may result in a reduction in "thrash­
ing" [Mackworth 1977], but this may result in a reduced 
opportunity for jumping, and the reduction in jumping 
may outweigh the saving in reduced thrashing. 

The algonthms are described in a pseudocode 
modeled on Pascal and Common Lisp. A fuller description 
of this language is given in Nadel [1989] and in Prosser 
[1991]. The following variables are assumed to have been 
globally declared, n is the number of variables in the 
constraint satisfaction problem, v is an array of values, 
such that is the value assigned to the van-
able Vh domain is an array of sequences, such that 
domain[i] is the domain of the variable V,. 
Note that domain[0] = nil. current-domain is an anay of 
sequences, where cunent-domainfi] is the 
sequence of values in domain[i] that have not yet been 
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shown to be inconsistent with respect to the ongoing 
search process. current-domain[i] is initialised to be equal 
to domain[i]. When v[i] is to be instantiated a value is 
selected from current-domain[i], and if that value is found 
to be inconsistent with respect to the current search state, 
then that value is removed from current-domainfi]. When 
backtracking takes place from v[i] to v[h] (where h < i) 
cument-domainlj] is reset to domain[j] for all j, where h < 
j < i. Note that current-domain[0] = nil. C is an n x n 
array, where C[i j] is the name of a binary predicate (such 
as <, =, >, ≠, etc) that holds between v[i] and v[j]. If 
C[i j] = nil then there is no constraint acting between v[i] 
and v[j]. Therefore we have an extensional representation 
of constraints (rather than intensional, as a set of compati­
ble pairs). The function check(i,,j) delivers a result of true 
if C[i,j] = ni l , otherwise it delivers the result of applying 
the relation C[i,j] between the instantiations of v[i] and 
v[j] (and is counted as a consistency check). 

Generally v[i] wil l be considered to be the current 
variable, v[h] wil l be a past variable, and v[j] a future 
variable (h < 1 < j). It is assumed that all arguments are 
passed by reference and that the first occurrence of a vari­
able corresponds to an implicit declaration. The algo­
rithms are described in terms of a pair of mutually recur­
sive functions (similar to the style of Dechter and Pearl 
[1988], and Dechter [1990]). That is, we have a forward 
move, such as bj-label, and a backward move, such as bj-
unlabel. In section 4, the number of "nodes visited" by the 
search process X is taken to be the number of calls to the 
forward move x-label. The algorithms address the binary 
constraint satisfaction search problem [Nudel 1983]. That 
is, they find the first solution. 

2. Conflict-Directed Backjumping (CBJ) 
Where BJ steps back from v[h] after jumping back from 
v[i ] , the conflict-directed backjurnper (CBJ) continues to 
jump across conflicts which involve both v[h] and v[i]. 
CBJ achieves this by recording the set of past variables 
that failed consistency checks with the current variable 
(and we refer to this as a "conflict set" as in [Dechter 
1990]). If no consistent instantiation can be found for v[i], 
CBJ then jumps back to the deepest vanable, v[h], that 
conflicted with v[i]. If on jumping back to v[h] CBJ dis­
covers that there are no more values to be tried in 
current-domain[h] CBJ then jumps back to v[g], where 
v[g] is the deepest vanable that was in conflict with either 
v[i] or v[h]. 

CBJ maintains a conflict set conf-set[i] for each 
variable, where the array conf-set is declared globally. Ini­
tially each element of conf-set[i] is set to be 10). When a 
consistency check fails between v[i] and v[h], h is added 
to the set conf-set[i]. Therefore, conf-set[i] is the subset of 
the past variables in conflict with v[i]. If there are no 
remaining values to be tned in current-domain[i], CBJ 
jumps back to the deepest vanable v[h], where h € conf-
set[i] (that is h <-- max-list(conf-set[i]), where the function 
max-list delivers the largest integer in a set of integers). 

When jumping back from v[i] to v[h] the information in 
conf-set[i] is earned upwards to v[h). The array element 
conf-set[h] becomes conf-set[h] U conf-set[i] - h, the set 
of variables in conflict with v[h] or v[i]. Therefore, when 
further backtracking takes place from v[h], CBJ jumps 
back to v[g], where v[g] is the deepest variable in conflict 
with either v[h] or v[i]. 

In line 17 above, the call pushnew(h,conf-set[i]) adds h to 
the set conf-set[i] if h is not already a member of conf-
set[i]. It is assumed that the loop variable h is available to 
the statement in line 17, and that h is the value that 
caused the call to check(i,h) to deliver false. 

CBJ is then realised as cbj-label(l). If we move line 17 in 
cbj-label to line 12.1 the array element conf-set[i] is 
updated unconditionally, and CBJ behaves as BJ. 

The reasoning behind CBJ might be better under­
stood when viewed from the perspective of de Kleer's 
ATMS [1986]. We can consider the past vanables as a set 
of assumptions that are IN (currently believed), and the 
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array element conf-set[i] as a conjunction of assumptions, 
and therefore an environment. Let S be the set of indices 
of the past variables ie. S = (1,2,3, ...,i-1 ), and 
disallowed[i] = domain[i] - cunent-domain[i], the set of 
values in domainfi] that have been discovered to be incon­
sistent with the current search state. We then have the 
assumed node 
where disallowed[i] is the datum, and conf-set[i] is the 
justification for datum, and consequently the single 
environment within the label. If we then 
believe that the current search state cannot be extended by 
any instantiation of v[i] from the set disallowedfi]. Con­
versely, if conf-setfi] is not subsumed by S we can no 
longer believe disallowed[i] and we must reset current-
domain[i] to be domain[i]. When current-domainfi] is 
empty (ie. disallowed[i] = domain[i]) we need to force 
OUT some assumption in conf-set[i], and we choose the 
most recent assumption, namely max-list(conf-set[i]). 
This is done implicitly when CBJ backtracks from v[i] to 
v[h]. 

CBJ is conservative when it jumps back from v[i] to 
vfh]. As noted above we can believe disallowed[i] when­
ever conf-set[i] is subsumed by S. However, when CBJ 
jumps from v[ i ] , over vfj], to vfh] we automatically reset 
current-domain[j]. It may be the case that max-list(conf-
setfj]) < h and we can continue to believe disallowed[j], 
and thus prune the search space more efficiently. How­
ever, in order to do this we would have to examine all 
future conflict sets whenever backjumping takes place. 
CBJ would then look even more like an ATMS. In fact, 
such an algorithm is described by Rosiers and Bruynooghe 
[1987] and by Prosser [1989]. 

CBJ has many features in common with Dechter's 
graph-based backjumping algorithm GBJ [Dechter 1990]. 
When GBJ reaches a dead end on v[i] it jumps back to 
the deepest variable amongst those connected to v[i] in 
the constraint graph, namely vfh], and if there are no 
values remaining to be tried for v[h] GBJ jumps back to 
v[g] where v[g] is the deepest variable connected to either 
vfi] or vfh]. Therefore we might say that when jumping 
back BJ is directed by consistency checks that have been 
performed, CBJ is directed by conflicts, and GBJ is 
directed by the topology of the constraint graph. 

3. Directed Consistency 
CBJ can be modified such that it removes values from the 
domains of variables once and for all, when it can be 
deduced that these values are infeasible. We may add the 
following conditional to procedure cbj-unlabel. 

The above modification gives us CBJ-DkC, where DkC 
stands for "directed k-consistency" [Dechter and Pearl 
1988] (and is similar to nth order learning fDechter 
1990]). The effect of this modification can be described 
as follows. Let us assume that CBJ has successfully 

instantiated v[ i - l ] and that CBJ moves forwards to v[i]. At 
that point conf-set[i] = {0} , and current-domainfi] = 
domainfi]. Further assume that the call to cbj-label(i) fails 
to find any instantiation of vfi] that is consistent with the 
past variables. If |conf-set[i]| = 2 then vfi] is in conflict 
with the instantiation of vfh] and the pseudo variable v[0]. 
We can then deduce that vfh] is "are-inconsistent" with 
respect to domainfi]. That is, an arc consistency algorithm 
[Mackworth 1977, Deville and van Hentenryck 1991] 
would have removed the value vfh] from domain[h]. 

Assume that it is not the first time that we have 
visited vf i ] , that we successfully instantiate vf i ] , and that 
all values in domainfi] are consistent with respect to the 
past variables. Therefore conf-setfi] = {0}. Assume that 
we then attempt to instantiate some future variable v[j] 
and all values in domainfj] conflict with either vfh] or 
vfi]. We then have conf-setfj] = {0,i,h}, ie. for all values 
xj in domainfj], is inconsistent with vfh] or 
vfi]. CBJ wil l then jump back to vfi] and instantiate vfi] 
with the next value in current-domainfi]. Assume that this 
process continues until we have exhausted current-
domainfi]. We then have conf-setfi] = {O,h}, ie. for all 
values Xj in domainfj], is inconsistent with vfh] 
or , for all values xi, in domain[i]. Therefore we 
can remove the value vfh] from domainfh]. 

We can adopt the same approach with respect to FC 
and to BJ. In FC we instantiate vfi] with the value k and 
check forwards against the future variables. Assume that 
vfi] checks against vfj] and this results in a "domain wipe 
out" [Nadel 1989] for vfj]. If no other variable checks 
against vfj] we can then remove k from domainfi] once 
and for all. This corresponds to "directed arc consistency" 
(and corresponds to 1st order learning fDechter 1990]), 
and we can realise this by maintaining a count of the 
number of variables forward checking against vfj] (as in 
[Prosser 1991]). We wil l call this algorithm FC-D2C. 

Similarly in backjumping, if no instantiation for v[i] 
can be found, and all consistency checks from vfi] failed 
against the single instantiation we might then 
remove k from domainfh]. We can do this by maintaining 
a flag for each variable, call it instantiated[i], which is ini­
tialised to false, and is set to true when bj-label finds an 
instantiation for vfi] which is consistent with the past vari­
ables. If we jump from vfi] to vfh], when length(conf-
set[h]) = 2 and instantiatedfi] = false, we can remove the 
value vfh] from domainfh] (and when we jump from vfi] 
to vfh] we reset instantiated[j] to false for all 
This gives us the algorithm BJ-D2C. If we perform the 
following edits to cbj-label and cbj-unlabel we get BJ-
D2C: 

(a) In cbj-label move line 17 to line 12.1 

(b) In cbj-label replace line 21 with the following seg­
ment 
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21.3 END 

(c) In cbj-unlabel add the following lines 

More generally, since FC and BJ only reason over failures 
that occur between pairs of variables we can only detect 
directed arc inconsistencies (1st order learning). On the 
other hand, since CBJ reasons over failures within a set of 
variables, it can detect directed k-inconsistencies (nth 
order learning). 

4. Experimental Evaluation 
The following algorithms were compared against each 
other: BT (naive/chronological backtracking), BJ 
(Gaschnig's backjumping routine), GBJ (Dechter's graph-
based backjumping routine), CBJ (described here), BM 
(Gaschnig's backmarking routine), FC (Haralick and 
Elliott's forward checking routine), BJ-D2C, CBJ-DkC, 
and FC-D2C (again, described here). 

The algorithms were applied to 450 instances of the 
zebra problem, described in [Dechter 1990 and Smith 
1992]. That is, 450 different instantiation orders of the 
zebra were created, and each algorithm was applied to 
those problems in turn. Table 1 shows the average number 
of consistency checks performed by an algorithm, the 
standard deviation, the minimum number of consistency 
checks performed, and the maximum number performed 
over the 450 problems. Table 2 shows the same informa­
tion but with respect to nodes visited. 

Table 1. Consistency Checks 

Table 2. Nodes Visited 

If we take consistency checks performed as a measure of 
search effort we may rank the algorithms as follows: FC-
D2C, CBJ-DkC, FC, CBJ, BJ-D2C, BM, BJ, GBJ, BT. 
With respect to nodes visited the algorithms are ranked: 
FC-D2C, FC, CBJ-DkC, CBJ, BJ-D2C, BJ, GBJ, (BM and 
BT). 

The algorithms were then applied again to 100 
instances of the zebra problem, and the cpu time was 
measured. Table 3 below shows the average cpu time used 
(on a SPARCstation IPC, with 24 mega-bytes of memory, 
using Sun Common Lisp 4.0) by the algorithms for solv­
ing an instance of the problem, and the average number of 
consistency checks performed in a second. 

Table 3. CPU Time 

Although BT performed on average 8 times as many con­
sistency checks as BM (Table 1) BT took only 20% 
longer to run than BM (Table 3). This is due to the poor 
"checking rate" of BM (and this is explained more fully in 
[Prosser 1991 and 1993]) CBJ has a higher checking rate 
than BJ. Therefore, not only does CBJ perform less 
checks than BJ, it performs these checks with less over­
heads (these tests used the more efficient version of BJ 
described in [Prosser 1991], rather than the derived ver­
sion here). This is because CBJ updates conf-set[i] condi­
tionally, and BJ updates max-check[i] unconditionally. 
Generally, there is an insignificant overhead associated 
with the modifications performed to BJ (to give us BJ-
D2C), CBJ (giving CBJ-DkC, and FC (to FC-D2C). 
These modifications resulted in a reduction in consistency 
checks performed, nodes visited, and a reduction in run 
time. Therefore, with respect to run time the algorithms 
may be ranked: FC-D2C, CBJ-DkC, FC, CBJ, BJ-D2C, 
BJ, BM. With the exception of BM, this ranking agrees 
with those above, and in fact there is little to choose 
between CBJ-DkC and FC-D2C. 

5. The Bridge (and the Long Jump) 
It was expected that CBJ-DkC would always perform at 
least as well as CBJ. However, on analysing the experi­
mental results it was discovered that out of the 450 prob­
lem instances there were 2 cases where CBJ performed 
better than CBJ-DkC. This was a surprise. One of these 
problems was then examined in detail. This was the prob­
lem with the instantiation order: <Water, Tea, Coffee, 
Japanese, Kools, Blue, Ukranian, Chesterfield, Old-Gold, 
Zebra, Horse, Fox, Orange-juice, Yellow, Snails, Red, 
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Green, Englishman, Lucky, Dog, Spaniard, Parliament, 
Ivory, Norwegian, Milk>. During the search process CBJ-
DkC discovers, amongst other infeasibilities, that there is 
no solution to the problem when Spaniard is assigned the 
value 1 Therefore, the value 1 is removed 
from domain[21]. In some latter stage in the search pro­
cess v[21] again becomes the current variable and CBJ-
DkC considers the instantiation At the same 
point in the search space CBJ considers the instantiation 

The two search trees now differ significantly, 
and in CBJ's search tree it is possible to jump back to a 
conflicting variable higher up in the search tree than 
CBJ-DkC. 

More generally, CBJ-DkC may remove an infeasible 
value k from the domain of a variable v[i]. At some later 
stage in the search process CBJ may move forwards from 
v[ i - l ] to v[ i ] , and be unable to re-instantiate v[i] with the 
value k. CBJ-DkC may then jump back to v[h]. At the 
same point in the search tree CBJ is allowed to make the 
instantiation and move forwards to v|j ] . CBJ 
may then jump back from v[j] to v[g], where g < h. 
Therefore, the value k has acted as a bridge that allows 
the search process to move from one area of the search 
space to another, where it can then make a "long jump" 
back to a conflicting variable. 

To confirm this analysis, the value 1 was removed 
from domain[21], the problem was reset, and CBJ and 
CBJ-DkC were re-run. It was expected that CBJ would be 
unable to "cross the bridge" and unable to make "a long 
jump". With the bridge in place CBJ performed 10,746 
checks, and visited 1,974 nodes (and CBJ-DkC performed 
13,097 checks, and visited 2,390 nodes). With the bridge 
removed CBJ performed 13,798 checks, and visited 2,532 
nodes (CBJ-DkC performed 13,029 checks and visited 
2,385 nodes). This implies that the removal of an infeasi­
ble value from the domain of a variable may result in a 
degradation in the performance of an algorithm that jumps 
back to the cause of a conflict (such as BJ, CBJ, or any of 
the hybrid derived from these algorithms [Prosser 1991 
and 1993]). 

6 . C o n c l u s i o n 

A new algorithm has been presented, CBJ. It has been 
shown that BJ can be derived from CBJ, and that BJ 
might be considered to be a degenerate form of CBJ. CBJ 
was then modified (the addition of a single conditional 
expression) such that infeasible values can be detected and 
removed once and for all. A similar technique was applied 
to backjumping and forward checking. Empirical evidence 
suggests that these modifications result in an improvement 
in the performance of these algorithms on average 

The removal of infeasible values has revealed a dis­
turbing phenomenon, namely that this can lead to a degra­
dation in the performance of a "conflict directed" 
backjumping algorithm. It has (almost) become an article 
of faith that if we remove infeasible values [Mackworth 
1977, Deville and van Hentenryck 1991, Freuder 1982] or 

redundant values [Benson and Freuder 1992, Freuder 
1991] from the domains of variables, the subsequent 
search algonthm will be presented with an easier task. We 
have been lead to believe this because "the subsequent 
search algonthm" is generally assumed to be a chronologi­
cal backtracker (BT, BM, FC), or the effect of removing a 
bndge has been masked by a reduction in thrashing. We 
should now assume that increased consistency, or the 
removal of redundancies, can only guarantee a reduction 
in search effort if that search is unintelligent (such as a 
chronological backtracker). Conversely, we should expect 
that we can improve the performance of an intelligent 
backjumping algorithm by adding an infeasible value to 
the domain of a variable. 
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