Exploiting Interchangeabilities in

Constraint Satisfaction Problems

*

Alois Haselbock
Institut fur Informationssysterne
Technische Universitat Wien
Paniglgasse 16, A-1040 Vienna, Austria

Abstract

Constraint satisfaction - a method for represen-
ting and solving many Al problems in a very
elegant manner - is a well-studied research area
of recent years. Freuder observed that some
constraint satisfaction problems are fashioned
so that certain domain values of constraint va-
riables are interchangeable. The use of such
knowledge can increase search efficiency drasti-
cally by reducing the problem. In this paper we
carry on these considerations and give a formal
foundation of interchangeabilities by the notion
of domain partitions induced by equivalence
relations. We show how these domain parti-
tions can be used in a very accurate manner
by the majority of existing constraint propa-
gation algorithms and introduce a novel back-
track procedure exploiting such interchangeabi-
lities of domain values. Both theoretical analy-
sis and experiments indicate that our proposed
approach is an improvement of Freuder's use of
neighborhood interchangeability and has very
good behavior for certain problem types.

1 Introduction and Motivation

Constraint Satisfaction is a well-studied research area
of recent years. Using constraint satisfaction methods,
many problems - especially in Al - can be represented
in a very declarative way by identifying the variables of
interest for the problem, laying down the domains for
the variables and restricting the variable assignments by
constraints. More formally, a constraint network R con-
sists of a finite set ¥V = {wy,...,va} of variables and
a set C = {ey,...,c.} of constraints. Associated with
each variable v; is a finite, discrete domain £, . A cons-
traint ¢ on the variables ¥4 € V is in its extensional
form a subset of the Cartesian product of the domains
of the afflicted variables. The expression var(c) denotes
the tuple of variables the constraint is defined on, and
rel(c) C Xyevar(c)Dy is the relational information of the
constraint ¢." The assignment of a value d € D, to a

*This work was supported by Siemens Austria AG under
project grant CSS (GR 21/96106/4).
'Our notation is similar to the one used in [Dechter, 1992].

282 Constraint Satisfaction Problems

variable v is denoted by v<—d. A tuple t of assignments
of variables ¥ C V satisfies a constraint ¢, if and only
if t{var(c)] € rel(c).?

A constraint satisfaction problem (CSP) is the task of
finding one or all variable assignments for a constraint
network R such that all the constraints of R are satisfied.
There are various techniques (like network consistency
techniques or backtrack search procedures) for the hand-
ling and solving of constraint networks (good descripti-
ons can be found in [Mackworth, 1977; Mackworth, 1987;
Haralick and Elliott, 1980; Dechter and Pearl, 1988;
Dechter, 1992]). Though, it is well-known that the use
of special methods for certain problem types can reduce
search effort. In this paper we focus on problems where
the domain values are structured objects rather than ato-
mic data, and the constraints refer to attributes of the
objects and not to the objects as a whole. Examples of
application areas of these types of problems are design,
configuration, or diagnosis. Mittal and Frayman [Mit-
tal and Frayman, 1987] have proposed an approach of
partial choices, where at each search step a decision is
made only for a part (i.e., an attribute) of a constraint
variable. The methods partial commitment and partial
guess are essentially least commitment techniques where
some underconstrained decisions are delayed until more
information is derived. Another interesting work in this
field is [Mackworth et al., 1985], where an hierarchical
arc-consistency procedure (HAC) is introduced. This al-
gorithm proceeds on the assumption that the variable
domains are organized hierarchically in subsets, where
the leaf nodes of each domain hierarchy are the intrinsic
domain elements, whilst the "abstract" nodes represent
groups of domain values with common properties. If the
constraints treat groups of domain values equally, HAC
avoids repetitive checks by filtering on abstract domain
levels.

Thus, for many problem areas it is a matter of fact
that some domain objects of a constraint variable be-
have in the same manner and it is therefore a waste of
search time to handle them as totally different objects.
Freuder introduced in [Freuder, 1991] the notion of in-
terchangeability, where two domain values are interchan-

2t[A] stands for the projection in the sense of relational
algebra and extracts for our purposes exactly those values of
the tuple t which are relevant to the constraint.

geable in some local or global environment, if they can
be substituted for each other without any effects to the
environment. Let us summarize the two main definiti-
ons.

DEFINITION 11 (FULL INTERCHANGEABILITY [FREU-
DER, 1991]) Two values d; and d, of a domain D, of
a constraint network R are fully interchangeable, if and
only if (1) every solution to R which contains d\ as an
assignment for v remains a solution when d, is substi-
tuted for dy . and (2) every solution to R which contains
d, as an assignment for v remains a solution when dy is
substituted for d».

DEFINITION 12 (NEIGHBORHOOD |INTERCHANGEABI-
LITY [FREUDER, 1991]) Two values d; and d, for a va-
riable v in a constraint network are said to be neighbor-
hood interchangeable, if and only tf the following condi-
tion holds (C is the set of all constraints in the network):

Yee C:v € var(c)—
{t |_i € rel(e), i[v] = d1, ¢ = t[var(c) — v]}

{r |_t- € rel{c), t[v] = da, ¥’ = t[var(c) — v]}.

Neighborhood interchangeability ts a sufficient, but not
a necessary condition for full interchangeability.

It is shown in [Freuder, 1991] that all neighborhood
interchangeabilities can be computed in a pre-phase of
search in 0(n2.a?)®. Then, all interchangeable values
can be replaced by one representative, which is essenti-
ally a form of problem reduction, because a subsequent
search has to handle a network of eventually smaller size.
It is proven that the usage of local interchangeabilities
at preprocessing time is guaranteed to be cost effective
for some CSPs.

But it is often the fact that different domain values
are interchangeable only w.r.t. certain constraints, whilst
there are constraints which distinguish between the int-
rinsic values. In that cases, neighborhood interchange-
ability makes no use of that nuances of equivalence. We
extend Freuder's ideas in a strict manner: we try to find
groups of domain values which are essentially not distin-
guishable w.r.t. a single constraint. If a domain D, is
filtered by a constraint c, the values of D, must be enu-
merated and checked against other value constellations.
We propose the replacement of D, by classes of values
(a domain partition w.r.t. ¢), where the size of the new
domain and therefore the number of checks are minimal
subject to ¢, without loss of any information.

The paper is organized in the following way: Section 2
gives a formal definition of domain partitions and shows
a simple way of computing them by constructing dis-
crimination trees. In Section 3 we show how various
algorithms can be modified in term to use these domain
classifications, and in Section 4 we evaluate the proposed
techniques by experimental results. Section 5 concludes
the work.

®n is the number of variables and a is the maximum do-
main size. The network is assumed to be binary.

2 Domain Partitions

On each domain D, of a constraint network and each
constraint ¢ where v € uar(c), an equivalence relation
E'. can be defined, where two domain values of D, are
equivalent in regard of EY, if and only if they behave in
exactly the same manner w.r.t. the constraint c. The key
item is that this equivalence relation induces a partition
of a variable domain into groups of locally (i.e., subject
to a single constraint) interchangeable values.

DEFINITION 21 (THERELATION E¥) Let ¢ be a cons-
traint of a constraint network R and v € var(c). Two
values d\ and d, ofthe domain D, are in the relation &}
(we write dlE:dg), if and only if the following condition
holds:

{t [t €relle),t|v] = dy,t' = t{var(c) — v]}

{t' |1 G_rei(c),![v] = dy,t' = t{var(c) - v]}.

(Note the difference to neighborhood interchangeability:
the relation E} depends on the single constraint c.)

THEOREM 2.1 The relation £} is an equivalence rela-
tion.

PROOF SKETCH: Two domain values dy,dy € D),
are in the relation EY¥, if the set of all assignment tuples
where d\ is assigned to v and the constraint c is satisfied
is equivalent to the set where d, is assigned to v. The-
refore, E:.’ is in fact an equivalence relation, because it
is defined by the equality-relatoon on sets, which is - of

course - an equivalence relation. 0

COROLLARY 2.2 It is well-known in set theory that each
equivalence relation on a set S induces a partition of S,
which is a set of non-vacuous subsets of S where the
elements of the partition are mutual exclusive and the
decomposition is exhaustive. Thus, according to each
constraint ¢ of a constraint network every domain D,
{v € var(c)) can be partitioned into equivalence classes
induced by Ky . We write TEv, or 7 for short.

EXAMPLE: Let the variables vy v, and vz represent
three ports of a board where modules must be moun-
ted on. The available modules have two main charac-
teristics: their mode ("analog" or "digital", abbreviated
by a resp. d) and their version number (1 or 2). Thus,
the domains of the variables can be specified by

D,, = Dy, = D, = {ml,mZ m) mi}).

The following constraints restrict the possible constel-
lations: (c42) the modules mounted on v4 and v, must be
of different mode; (c13) the modules mounted on v, and
vz must have different version numbers. From the per-
spective of port vq, the domain D,,, can be partitioned
in the following way:

7t = {{mi, m2), {my, m}),

e, = {{ma, mg}, {m3, m3}}.

Note that in this simple CSP there is no pair of neigh-
borhood or fully interchangeable domain values in Dv;
in the sense of Definitions 1.1 and 1.2. W]

In that way, every element of a domain partition
is a set of domain values which are interchangea-
Similar to [Freuder, 1991],

v
IC

ble w.r.t. the constraint c.

Haselbock 283

these domain partitions can be computed by generating
discriminalion irees. A discrimination iree is a tuple
(N, E,¢,¥), where N is a set of nodes, E is a set of
edges (each edge is a pair {nl,n2), nl,n2 € N), ¢ s
a labeling function which assigns to each node of N a
(possible empty) set of domain values, and ¥ is a labe-
ling function which assigns to each edge from E a tuple
of domain values.

We postulate a procedure DT(c,v) for computing a
discrimination tree for the domain of a variable v w.r.t.
the constraint ¢ {v € var{c)). Basically, the following
is done by DT(e¢,v): for each value d of the domain D,
starting at the root a branch is generated, where the la-
beis v of the edges of this branch are the corresponding
consistent tuples t', where t € rei{c) such that t[v] = d
and ' = t[var(e) — v]. If existing suitable parts of the
branch are constructed already, they will be used. If
all consistent tuples of the variable v are on the branch,
the actual domain value is added to the node label ¢ of
the current node. A cancnical ordering of the dotmain
values is assumed. Therefore, the set of non-vacuous
node labels of a discrimination tree produced by a proce-
dure call DT(c,v) is a domain partition x% as described
previousiy

An upper bound of the complexity of procedure
DT(e,v) is O(a*) where a is the domain size of v and
k 18 the arity of c. This can be proven by the [ollo-
wing considerations: the outer loop (expand a branch
for each domain value) is performed a times, and the
maximal number of suitable tuples t' is the number of
different gk — 1)-tuples of domain elements, which is at
most a*~!. Thus, a worst-case upper bound of the pro-
cedure DT(c, v} is O(a.a*~') = O(a*). If for every cons-
traint every domain of the corresponding variables is de-
composed by building a discrimination tree, the upper
bound complexity is Ofe.k.at), where ¢ is the number
of constraints and all constraints are at most of arity &.
Therefore, an effort of this magnitude must be spent for
the computation of all domain partitions in a preproces-
sing phase of search.

3 Adaptation of Various Constraint
Propagation Algorithms

Now we are in the position to show how these domain
partitions can be used to increase efficiency of various
existing algorithms. We give a few modifications of the
key procedures and show the advantages of the use of
such interchangeability-techniques for certain problem
types. We focus on binary CSPs.

3.1 Constraint Filtering

Constraints are most commonly used in a destructive
manner. The critical and most time consuming task in
network consistency procedures is to check if all values of
a particular variable domain can potentially be member
of a solution. These checks are done repetitively for sin-
gular variables w.r.t. singular constraints. In the case of

* A detailed description of the procedure DT and a proof

that it actually computes the right thing is given in an ex-
tended report version of this paper.

284 Constraint Satisfaction Problems

binary constraints, usually the procedure revise(v.',vj) is
used, which removes all values of Dy for which no value
of the domain of Vj can be found such that the binary
constraint c;; between v; and V; is satisfied. Thus, the
worst-case complexity of revise is 0(a’) where a is the
maximum domain size.

In Figure 1, a modified procedure called revise® is
depicted. We use the expression E': (d is a domain value)
to denote the equivalence class of value d subject to the

equivalence relation £} : E: = {d'€ D, | dE'd'}.

1 procedure revise? (v; v;):

2 Aq:=1{}

3 do unidl D, becomes emply:

4 z := an element of D, ;

5 Aj =Dy,

6 do until A; becomes emply:
7 y = an element of A;;
8 if (z,y) € rel(ci;)

9 then A, = .-U('E'C‘:JHD.,_);
10 a; = {);

il elsc Aj := Aj —Te),;
12 D, =D, - Fé:,i

13 D, = AL

Figure 1: A revise procedure using domain partitions.

The main difference between the "classical" revise and
revise®® is that the former checks in the worst case all
tuples from Dy, x Dy, and the latter treats groups of in-
terchangeable values equally and therefore possibly saves
checks utilizing information included in the domain par-
titions. If we assume that the domain partitions (i.e., the
sets ¥ for all constraints ¢ and all variables v € var{c})
are of size al {1 € al € a), a worst case bound of algo-
rithm revise®” 1s O{61%). We see that if the structure
of a constraint network gets no use of domain partitions
(all domain partitions are of same size as their cor-
responding domains), a\ would be equal to a and the
worst case behavior is not worse than that of the stan-
dard revise algorithm. Of course, the smaller a\ is in
comparison to a, the better is the improvement.

It is easy to see that revise and revise®® produce
exactly the same outcome. In that way, algorithms
which use revise (such as arc- and path-consistency al-
gorithms) simply have to change each call to revise by
a call to revise®® and get effective use of reduced do-
main sizes. Also many backtrack procedures use revise
and therefore can benefit from revise?. The palette
ranges from classical chronological backtracking, where
at each search step the domain of the current variable is
made consistent to all past assignments, to various forms
of look-ahead schemes, where the future search space is
brought to certain degrees of (arc-)consistency. Particu-
larly at the latter approaches, revise is used excessively.

3.2 Backtrack Search

In the following, we want to evolve a slightly modified
tree search scheme where interchangeable search bran-
ches are recognized by the use of domain partition infor-

mation. The structure of the algorithm is basically the
same as classical backtrack tree search as described, for
instance, in [Fox and Nadel, 1989].

But first we have to give some notations we need for
the development of the search procedure. Each output
of a traditional backtrack procedure is an assignment
tuple representing a solution for the given CSP. Because
we want to handle groups of interchangeable values, we
have to modify the form of the output. Instead of single
assignment values, sets are used. In that way, assignment
tuples are shifted to assignment bundles.

DEFINITION 3.1 (ASSIGNMENT BUNDLE) Let V be the
set of n variables of a constraint network R. An n-tuple
A where the ith element of A {1 < i < n}ts a non-
vacuous subset ofthe domain Dy, is called an assignment
bundle.

DEFINITION 3.2 (SOLUTION BUNDLE) Let T be the set
of all solutions to a given constraint network R. An
assignment bundle & = {Aj,...,An} on the variables
V of R is said to be a solution bundle, if and only tf

Ay x..xAn C T

Therefore, solution bundles represent groups of path'
through the search tree, where each path stands for a
valid variable assignment of the constraint network. The
terms of local and global consistency (see, for instance,
[Dechter, 1992)) can be extended to assignment bundles.

DEFINITION 3.3
BUNDLES)

(CONSISTENCY OF ASSIGNMENT

o An assignment bundle AP on the vartables 1, C V
is satd to be locally consistent, if every assignment
tuple extractable from AP s locally® consistent.

o An assignment bundle A" on the varables V, C V
is said to be globally consistent, if there ezisis an
extension assignment bundle Al on the variables
(V — V,) such that AP UAJ 15 a solution bundle.

s An assignmenl bundle AP 1s said to be inconsistent,
if every assignment tuple extractable from AP is in-
conssstent (i.e., no tuple can de extended to ¢ solu-
tion).

Now we want to modify the classical backtrack search
shell such that for each pass a bundle of assignments is
computed. The following theorem gives us the funda-
mental basis for the utilization of domain partitions for
that purposes.

THECOREM 3.1 Lel AP be an assignment bundle on the
vartables V, C V which s cither globally consisient or
inconsistent. Lel v be a variable of V — V, and §, be
a subset of for equal to) the domain D, such thai the
Jollowing twe conditions hold:

f. AP + &, 1s locally consistent;
2. (C’ are all binary constreinis from v to variables of
V-V,
le,dz LS (5'_. ZVC € C'f :dlli':dz.

Then AP+ 6, is either globally consistent or inconsistent.

*L.e., all the constraints of the subnetwork defined by the
variables V, are satisfied.

Proor sKETCH: (I) If AP is inconsistent, then there is
no way to extend it to a solution and therefore AP + 4§, is
also inconsistent. (1) Suppose AP is globally consistent
and AP + &, is neither globally consistent nor inconsi-
stent. Then two assignment tuples t; and t; have to
exist, where {;,12 € Xs¢ar4s, § and one of them (say
{1} is globally consistent (an extension to a sclution is
guaranieed) and the other (22} is not globally consistent.
This can not be the case, because the assignment values
of v in t; and {2 are interchangeable both w.r.t. the past
(by the maintenance of local consistency) and w.r.t. all

constraints to future variables. o
1 procedure backiracking™ (k,D):
2 revise® (k,p) for 1 < p < k;
3 % or do some kind of look ahead fillering
4 dk — Dlk],
b do untsf dk becomes emply:
6 choose z from dk;
7 C! — all constrainis on v, o future vars;
8 D[k] — (Negcs T2t) Ndk;
9 dk — dk — DIk];
10 fk=n
11 then output{D);
12 else backtracking™ (k +1,D).

Figure 2: Using domain partitions at backtrack search.

Now the modification of the backtrack procedure
is easy Figure 2 sketches the new algorithm
backtracking®®. At each cycle in the search process the
set of variables can be partitioned into three groups: the
past variables, the current variable, and the future varia-
bles. Since all the remaining domain values of the cur-
rent variable are consistent to the assignments of the past
variables (this is guaranteed by the revise at line 2), they
are interchangeable w.r.t. that partial solution (bundle).
Now the domain of the current variable is going to be
partitioned along their constraints to future variables.
For each group of such interchangeable values a new
search branch is opened. Clearly, each output of a call
to that procedure is an assignment bundle. The follo-
wing theorem states soundness and completeness of the
proposed algorithm.

THEOREM 3.2 Let D be the set of all variable domains
of a constraint network R. Each output A of a procedure
callbacktracking®’(1, D) ts a solution bundle to R. The
set of all outputs cover all solutions.

PROOF SKETCH: The design of the algorithm is gui-
ded by Theorem 3.1. Thus, at each cycle of the search
process the derived assignment bundle is either globally
consistent or inconsistent. Inconsistency leads to a dead-
end, each output is globally consistent.

The algorithm passes through the whole search tree
(even ifinterchangeable subtrees are condensed) and the-
refore computes all solutions. 8]

The advantageous behavior of the search shell
backtracking® for certain problem types is obvious. In-
terchangeable search branches are bundled and visited
once. If a dead-end occurs, all the partial assignments

Haselbock 285

represented by the derived assignment bundle are proven
to be conflicting. A solution bundle represents a group
of valid assignments.

So we conclude, if the described domain partition
knowledge is available, it can be used in a wide range of
CSP algorithms (both at filtering and search) with mini-
mal change of procedures. Apart from a small amount of
additional overhead of computing domain partitions in
a preprocessing phase and managing groups of domain
values instead of singular elements, the new worst-case
complexities are not worse than that of the original algo-
rithms. If the problem structures are adequate for (i.e.,
if the cardinality of domain decompositions are really
smaller than the original domain sizes), effective cost re-
ductions can be achieved.

4 Performance Analysis by
Experiments

Now we want to investigate the indicated performance
improvements of our augmented search technique by ex-
perimental analysis. To identify those areas of CSPs in-
terchangeability makes most capital out of, we are going
to use the same test model as proposed in [Benson and
Freuder, 1992].

4.1 The Experimental Model

Different types of problems can be characterized by the
following four parameters: (1) n, the number of cons-
traint variables. (2) a, the maximum domain size. (3)
t, the constraint tightness. The tightness of a constraint
is the fraction of the number of forbidden tuples to the
number of all possible tuples, and ranges therefore bet-
ween 0 and 1. The higher t grows, the more value tuples
are ruled out by the constraint (constraints with high
values of t are said to be tight). (4) d, the constraint
density. This is an indicator of how many constraints
are defined in the network and therefore, how dense the
constraint network is. d is a value between 0 and 1 and
is specified as follows: Let n be the number of variables,
e the number of constraints; the maximum number of
constraints €mgzr 18 — "{1 , the minimum e, isn — 1
(a connected constraint graph is assumed); then d is the
v a ———fmua_ | that way, the higher d is, the more

Cmar—tmin

constraints are in the network.

Different algorithms are run on randomly generated
CSPs and the results are compared. The tests are re-
stricted to binary CSPs.

4.2 Test Cases and Results

Our CSP generator produces samples of random CSPs,
where the four parameters n, a, t and d ranges on adju-
sted intervals. In [Benson and Freuder, 1992] it was poin-
ted out that interchangeability techniques are most pro-
fitable if (1) the problem space grows (n and a grow), (2)
the constraint tightness is small, and (3) the constraint-
density is small. The combination of the last two points
specifies those regions of problems where the CSPs are
under-constrained. These are problems with many solu-
tions.

286 Constraint Satisfaction Problems

We tested our algorithms in that manner and came to
similar results. Furthermore, our analysis shows that
the use of domain partitions w.r.t. single constraints
beats neighborhood interchangeability in all the test ca-
ses. This should be demonstrated by the subsequent
results.

In the following, three forward-checking search pro-
cedures are compared. The first is classical forward-
checking (FC). The second is forward-checking where
all neighborhood interchangeable domain values are re-
placed by one representative value in the preface of
search (FC-NI). The third is an instance of the search
scheme backtracking®® (see Figure 2) where forward-
checking filtering is used. We call it FC-DP. A good
indicator of the complexity of the search process is the
number of consistency checks. Of course, the checks nee-
ded for the computation of neighborhood interchange-
ability resp. the domain partitions are added to the run-
time checks. The sample of each test are 50 randomly
generated CSPs.

number of checks

120004 — FC
e FC-NI

K004 ..

so004

30004
N 4 + - n
¢ 7 g) 10

a=5tejll-04],4c[0.]1-0.4]

Figure 3: The effects of the use of interchangeability
w.r.t. the number of variables.

The first test demonstrates that utilization of inter-
changeability grows if the problem increases. The varia-
ble size n steps from 6 to 10, the maximum domain size
a is fixed on 5, and the constraint tightness t and density
d are from the interval [0.1 ~ 0.4] (the profitable ranges
for the use of interchangeability!).

Figure 3 shows the results. It can be seen that the
positive effect of ¥FC-NIand FC-DF grows with the size
of n. Furthermore, our algorithm ¥FC-DF is clearly bet-
ter than FC-NI, and the distance increases with n.

The second and third test holds n = 10, d = 5, and
steps t (resp. d) from 0.1 to 0.9, d (resp. t) is randomly
chosen from interval [0.1 — 0.3]. As depicted in Figure 4
and Figure 5, FC-NIl and FC-DP are superior to classical
FC when t (resp. d) is small. It can also be seen that
FC-DP definitely beats FC-NI at these problem types.

These results are convincing. The more tuples are
permitted by a constraint (the smaller t is), the better

®Forward-checking is a backtrack procedure where at each
cycle in the search process all the future variables are filtered
against the last-assigned variable. This method is known to
behave in a very efficient manner [Haralick and Elliott, 1980].

0.1 0.3 25 a7 09
n=10a=5def0.1-03]

Figure 4: The effects of the use of interchangeability
w.r.t. constraint tightness.

mumber of checks

450004
30000+

150001

+ } 4 ; o d
0.1 03 0s 07 29

n=710a=51el01-03

Figure 5: The effects of the use of interchangeability
w.r.t. constraint density.

is the chance that different variable values behave in the
same manner w.r.t. the constraint and therefore came
into the same class of domain values. If the constraint
net is not dense (there are few constraints), there are at
each choice point for a variable assignment few future
constraints and the interchangeable groups of values are
going to split less (line 8 of the backtracking®’ algo-
rithm, depicted in Figure 2).

The lack of FC-NI is that it uses only the informa-
tion that domain values are interchangeable w.r.t. all
the connected constraints. In that sense, FC-DP is more
accurate because of greater degree of granularity. And
this can be achieved with the same overhead as the com-
putation of all neighborhood interchangeabilities.

5 Conclusion

We have developed a formal basis for extraction and re-
presentation of interchangeable domain values in cons-
traint satisfaction problems. The bulk of existing cons-
traint satisfaction algorithms can be adapted to ex-
ploit this information. Application fields arise in many
areas of model-based reasoning (such as configuration,
simulation or diagnosis), mainly in those cases where

component-oriented systems are modelled in terms of
constraint problems. Thereby, identifying the variables
for a CSP, possible values for the variables are most of-
ten representations of complex real-world objects rather
than unstructured constants. These objects (consider
components) are described by various features. Along
these features objects can be grouped into classes where
the elements of each class have some set of common pro-
perties. In that way, constraints are specifying relati-
ons on different aspects of the system and take classes
of components rather than singular values into conside-
ration. If that is noticed at reasoning, a much more
adequate inference technique is employed.

Acknowledgments

1 am very grateful to Markus Stumptner and Thomas
Havelka for valuable discussions and comments on an
earlier version of this paper.

References

[Benson and Freuder, 1992] Brent W. Benson and Eu-
gene C. Freuder. Interchangeability preprocessing can
improve forward checking search. In Proc. ECAI, pa-
ges 28-30, Vienna, August 1992.

[Dechter and Pearl, 1988]
Rina Dechter and Judea Pearl. Network-based heu-
ristics for constraint-satisfaction problems. Artificial
Intelligence, 34:1 38, 1988.

[Dechter, 1992] Rina Dechter. From local to global con-
sistency. Artificial Intelligence, 55:87-107, 1992.

[Fox and Nadel, 1989] Mark Fox and Bernard Nadel.
Constraint directed reasoning. Tutorial of the IJCA1-
89, 1989.

[Freuder, 1991] Eugene C. Freuder. Eliminating inter-
changeable values in constraint satisfaction problems.
In Proc. AAAI Con}., pages 227233, 1991.

[Haralick and Elliott, 1980] Robert M. Haralick and
Gordon L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelli-
gence, 14:263-313, 1980.

[Mackworth et al, 1985] Alan K. Mackworth, Jan A.
Mulder, and William S. Havens. Hierarchical arc
consistency: Exploiting structured domains in cons-
traint satisfaction problems. Computational Intelli-
gence, 1(3):118-126, 1985.

[Mackworth, 1977] Alan K. Mackworth. Consistency in
networks of relations. Artificial Intelligence, 8:99-118,
1977.

[Mackworth, 1987] A.K. Mackworth. Constraint satis-
faction. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, pages 205-211 John Wiley &
Sons, 1987.

[Mittal and Frayman, 1987] Sanjay Mittal and Felix
Fray man. Making partial choices in constraint rea-
soning problems. In Proceedings AAAJ Conference,
pages 631-636, July 1987.

Haselbock 287

