
Exp lo i t i ng Interchangeabi l i t ies in
Const ra in t Sat isfact ion Problems*

A lo i s Hase lbock
Inst i tut fur Informationssysterne

Technische Universitat Wien
Paniglgasse 16, A-1040 Vienna, Austr ia

Abst ract

Cons t ra in t sat isfact ion - a method for represen­
t i ng and so lv ing many AI problems in a very
elegant manner - is a wel l -studied research area
of recent years. Freuder observed tha t some
constra int sat isfact ion problems are fashioned
so t ha t cer ta in domain values of constraint va­
riables are interchangeable. The use of such
knowledge can increase search efficiency drast i ­
cally by reducing the prob lem. In this paper we
carry on these considerations and give a formal
foundat ion of interchangeabi l i t ies by the not ion
of doma in par t i t ions induced by equivalence
relat ions. We show how these domain par t i ­
t ions can be used in a very accurate manner
by the m a j o r i t y of ex is t ing constraint propa­
gat ion a lgor i thms and int roduce a novel back­
t rack procedure exp lo i t ing such interchangeabi­
l i t ies of domain values. Bo th theoret ical analy­
sis and exper iments indicate tha t our proposed
approach is an improvement of Freuder's use of
neighborhood interchangeabi l i ty and has very
good behavior for certain prob lem types.

1 In t roduc t ion and Mot i va t i on

Constra in t Sat isfact ion is a wel l -studied research area
of recent years. Using constra int satisfaction methods,
many problems - especially in AI - can be represented
in a very declarat ive way by ident i fy ing the variables of
interest for the prob lem, lay ing down the domains for
the variables and rest r ic t ing the variable assignments by
constraints. More formal ly , a constra int network R con­
sists of a f in i te set of variables and
a set of constraints. Associated w i th
each variable v; is a f in i te , discrete domain . A cons­
t ra in t c on the variables is in its extensional
f o r m a subset of the Cartesian product of the domains
of the aff l icted variables. T h e expression var (c) denotes
the tup le of variables the constra int is defined on, and

is the relat ional in format ion of the
constraint c.1 T h e assignment of a value to a

*This work was supported by Siemens Austria AG under
project grant CSS (GR 21/96106/4).

1Our notation is similar to the one used in [Dechter, 1992].

variable v is denoted by v<—d. A tup le t of assignments
of variables _ satisfies a constra int c, if and only
if

A constraint sat isfact ion problem (CSP) is the task of
finding one or al l variable assignments for a constraint
network R such tha t al l the constraints of R are satisfied.
There are various techniques (l ike network consistency
techniques or backtrack search procedures) for the hand­
l ing and solving of constra int networks (good descr ipt i ­
ons can be found in [Mackwor th , 1977; M a c k w o r t h , 1987;
Haral ick and E l l i o t t , 1980; Dechter and Pear l , 1988;
Dechter, 1992]). Though , it is wel l -known tha t the use
of special methods for certain prob lem types can reduce
search effort. In this paper we focus on problems where
the domain values are s t ruc tured objects rather than ato­
mic data, and the constraints refer to a t t r ibu tes of the
objects and not to the objects as a whole. Examples of
appl icat ion areas of these types of problems are design,
conf igurat ion, or diagnosis. M i t t a l and Fray man [Mi t -
ta l and Frayman, 1987] have proposed an approach of
pa r t i a l choices, where at each search step a decision is
made only for a par t (i .e., an a t t r i bu te) of a constraint
variable. The methods par t ia l commi tment and par t ia l
guess are essentially least commi tmen t techniques where
some underconstrained decisions are delayed un t i l more
in format ion is der ived. Another in terest ing work in this
field is [Mackwor th et al . , 1985], where an hierarchical
arc-consistency procedure (H A C) is in t roduced. Th is al­
go r i t hm proceeds on the assumpt ion tha t the variable
domains are organized hierarchical ly in subsets, where
the leaf nodes of each domain hierarchy are the intr insic
domain elements, whi ls t the "abst rac t " nodes represent
groups of domain values w i t h common propert ies. I f the
constraints t reat groups of domain values equally, H A C
avoids repet i t ive checks by f i l tering on abstract domain
levels.

Thus , for many prob lem areas it is a mat te r of fact
tha t some domain objects of a const ra in t variable be­
have in the same manner and it is therefore a waste of
search t ime to handle t hem as to ta l l y dif ferent objects.
Freuder int roduced in [Freuder, 1991] the not ion of i n -
terchangeabil ity, where two domain values are interchan-

2 t [A] s tands for the p r o j e c t i o n in the sense o f re la t iona l
a lgebra and ex t rac ts for ou r purposes exac t l y those values of
the t u p l e t wh i ch are re levant to the c o n s t r a i n t .

282 Constraint Satisfaction Problems

geable in some local or g lobal env i ronment , i f they can
be subs t i tu ted for each other w i t h o u t any effects to the
env i ronment . Let us summarize the two main def in i t i ­
ons.

D E F I N I T I O N 1.1 (F U L L I N T E R C H A N G E A B I L I T Y [F R E U -
DER, 1991]) Two values d1 and d2 of a domain Dv of
a constraint network R are fu l ly interchangeable, if and
only if (1) every solut ion to R which contains d\ as an
assignment f o r v remains a solut ion when d2 is substi­
tuted f o r d1 , and (2) every solut ion to R which contains
d2 as an assignment f o r v remains a solut ion when d1 is
substi tuted f o r d 2 .

D E F I N I T I O N 1.2 (N E I G H B O R H O O D INTERCHANGEABI ­
L I T Y [FREUDER, 1991]) Two values d1 and d2 f o r a va­
riable v in a constraint network are said to be neighbor­
hood interchangeable, i f and only t f the fo l lowing condi­
t ion holds (C is the set of a l l constraints in the network) :

Neighborhood interchangeabil i ty ts a suff icient, but not
a necessary condi t ion f o r f u l l interchangeabil i ty.

I t is shown in [Freuder, 1991] tha t all neighborhood
interchangeabi l i t ies can be computed in a pre-phase of
search in 0 (n 2 . a 2) 3 . Then , al l interchangeable values
can be replaced by one representat ive, which is essenti­
al ly a f o r m of p rob lem reduct ion , because a subsequent
search has to handle a network of eventual ly smaller size.
It is proven tha t the usage of local interchangeabil i t ies
at preprocessing t ime is guaranteed to be cost effective
for some CSPs.

B u t i t is of ten the fact t ha t dif ferent domain values
are interchangeable only w . r . t . certain constraints, whi lst
there are constra ints which dist inguish between the int­
rinsic values. In t ha t cases, neighborhood interchange-
ab i l i t y makes no use of t ha t nuances of equivalence. We
extend Freuder's ideas in a s t r ic t manner: we t ry to f ind
groups of domain values which are essentially not d is t in­
guishable w.r . t . a single constraint. If a domain Dv is
f i l tered by a constra int c, the values of Dv must be enu­
merated and checked against other value constellations.
We propose the replacement of Dv by classes of values
(a domain pa r t i t i on w. r . t . c) , where the size of the new
domain and therefore the number of checks are m in ima l
subject to c, w i t h o u t loss of any in fo rmat ion .

The paper is organized in the fo l lowing way: Section 2
gives a fo rma l def in i t ion of domain par t i t ions and shows
a simple way of compu t i ng them by construct ing dis­
c r im ina t ion trees. In Section 3 we show how various
a lgor i thms can be modi f ied in t e rm to use these domain
classif ications, and in Section 4 we evaluate the proposed
techniques by exper imenta l results. Section 5 concludes
the work .

3n is the number of variables and a is the maximum do­
main size. The network is assumed to be binary.

2 Domain Par t i t ions
On each domain Dv of a constra int network and each
constraint c where an equivalence relat ion
Ev

c can be defined, where two domain values of Dv are
equivalent in regard of i f and only i f they behave in
exactly the same manner w.r . t . the constraint c. The key
i tem is tha t this equivalence relat ion induces a par t i t ion
of a variable domain in to groups of locally (i.e., subject
to a single constra int) interchangeable values.

D E F I N I T I O N 2.1 (T H E R E L A T I O N) Let c be a cons­
t ra in t of a constraint network R and v va r (c) . Two
values d\ and d2 of the domain Dv are in the relat ion .
(we write) , i f and only i f the fo l lowing condit ion
holds:

(Note the difference to neighborhood interchangeabil i ty:
the relat ion depends on the single constraint c.)

T H E O R E M 2.1 The relat ion is an equivalence rela­
t ion.

P R O O F S K E T C H : T w o domain values
are in the relat ion , if the set of al l assignment tuples
where d\ is assigned to v and the constra int c is satisfied
is equivalent to the set where d2 is assigned to v. The­
refore, is in fact an equivalence re la t ion, because it
is defined by the equality-relatoon on sets, wh ich is - of
course - an equivalence re la t ion.

COROLLARY 2.2 It is wel l -known in set theory that each
equivalence relat ion on a set S induces a pa r t i t i on of S,
which is a set of non-vacuous subsets of S where the
elements of the par t i t i on are mu tua l exclusive and the
decomposition is exhaustive. Thus, according to each
constraint c of a constraint network every domain Dv

can be par t i t ioned into equivalence classes
induced by . We wr i te f o r short.

E X A M P L E : Let the variables v1 v2 and v3 represent
three ports of a board where modules must be moun­
ted on. The available modules have two main charac­
terist ics: their mode ("ana log" or " d i g i t a l " , abbreviated
by a resp. d) and their version number (1 or 2). Thus ,
the domains of the variables can be specified by

The fo l lowing constraints restr ict the possible constel­
lat ions: (c1 2) the modules mounted on v1 and v2 must be
of different mode; (c 1 3) the modules mounted on v1 and
v3 must have dif ferent version numbers. F rom the per­
spective of por t v1 , the domain can be par t i t ioned
in the fo l lowing way:

Note tha t in th is simple CSP there is no pair of neigh­
borhood or fu l ly interchangeable domain values in
in the sense of Def in i t ions 1.1 and 1.2.

In tha t way, every element of a domain par t i t ion
is a set of domain values which are interchangea­

ble w.r . t . the constra int c. Simi lar to [Freuder, 1991],

Haselbock 283

3 Adap ta t i on of Various Constraint
Propagat ion A lgor i thms

Now we are in the posi t ion to show how these domain
par t i t ions can be used to increase efficiency of various
exis t ing a lgor i thms. We give a few modif icat ions of the
key procedures and show the advantages of the use of
such interchangeabi l i ty- techniques for certain problem
types. We focus on b inary CSPs.

3 .1 C o n s t r a i n t F i l t e r i n g

Const ra in ts are most commonly used in a destructive
manner. The cr i t ica l and most t ime consuming task in
network consistency procedures is to check if all values of
a par t icu lar variable domain can potent ia l ly be member
of a so lu t ion. These checks are done repet i t ive ly for sin­
gular variables w. r . t . singular constraints. In the case of

4 A detailed description of the procedure DT and a proof
that it actually computes the right thing is given in an ex­
tended report version of this paper.

b inary constraints, usually the procedure revise is
used, which removes al l values of DV , for which no value
of the domain of Vj can be found such t h a t the b inary
constraint c i j ; between v i and V j is sat isf ied. T h u s , the
worst-case complex i ty of rev ise is 0 (a 2) where a is the
m a x i m u m domain size.

In Figure 1, a modi f ied procedure called is
depicted. We use the expression (d is a domain value)
to denote the equivalence class of value d subject to the
equivalence relat ion

Figure 1: A revise procedure using domain par t i t ions.

The main difference between the "classical" revise and
rev ise d p is that the former checks in the worst case all
tuples f rom and the la t ter t reats groups of in ­
terchangeable values equally and therefore possibly saves
checks ut i l i z ing in format ion inc luded in the domain par­
t i t ions. I f we assume tha t the domain par t i t ions (i.e., the
sets for al l constraints c and al l variables
are of size a worst case bound of algo­
r i t h m We see tha t i f the s t ructure
of a constra int network gets no use of domain par t i t ions
(all domain par t i t ions are of same size as their cor­
responding domains) , a\ would be equal to a and the
worst case behavior is not worse than tha t of the stan­
dard revise a lgor i thm. Of course, the smaller a\ is in
comparison to a, the better is the improvement .

It is easy to see tha t rev ise and rev i se d p produce
exactly the same outcome. In t ha t way, a lgor i thms
which use rev ise (such as arc- and path-consistency al­
gor i thms) s imply have to change each call to revise by
a call to rev ise d p and get effective use of reduced do­
main sizes. Also many backtrack procedures use revise
and therefore can benefit f r om rev i se d p . The palette
ranges f rom classical chronological backt rack ing, where
at each search step the domain of the cur rent variable is
made consistent to all past assignments, to various forms
of look-ahead schemes, where the fu tu re search space is
brought to certain degrees of (arc-)consistency. Par t icu­
lar ly at the lat ter approaches, rev ise is used excessively.

3.2 B a c k t r a c k S e a r c h

In the fo l lowing, we want to evolve a s l ight ly modif ied
tree search scheme where interchangeable search bran­
ches are recognized by the use of domain pa r t i t i on infor-

284 Constraint Satisfaction Problems

mat i on . T h e s t ruc tu re of the a lgo r i thm is basically the
same as classical backt rack tree search as described, for
instance, in [Fox and Nadel , 1989].

B u t f i rs t we have to give some notat ions we need for
the development of the search procedure. Each ou tpu t
of a t rad i t i ona l backtrack procedure is an assignment
tup le represent ing a so lu t ion for the given CSP. Because
we wan t to handle groups of interchangeable values, we
have to mod i f y the f o r m of the ou tpu t . Instead of single
assignment values, sets are used. In tha t way, assignment
tuples are shi f ted to assignment bundles.

D E F I N I T I O N 3.1 (A S S I G N M E N T B U N D L E) Let V be the

set of n variables of a constraint network R. An n-tuple
where the i t h element of ts a non-

vacuous subset of the domain DV, is called an assignment
bundle.

D E F I N I T I O N 3.2 (S O L U T I O N B U N D L E) Let T be the set

of a l l solut ions to a given constraint network R. An
assignment bundle on the variables

of R is said to be a solut ion bundle, if and only tf

Therefore, so lu t ion bundles represent groups of pa th '
th rough the search tree, where each path stands for a
val id var iable assignment of the constra int network. The
terms of local and global consistency (see, for instance,
[Dechter, 1992)) can be extended to assignment bundles.

D E F I N I T I O N 3.3 (C O N S I S T E N C Y O F A S S I G N M E N T

B U N D L E S)

Now we want to mod i fy the classical backtrack search
shell such t ha t for each pass a bundle of assignments is
computed . T h e fo l lowing theorem gives us the funda­
menta l basis for the u t i l i za t ion of domain par t i t ions for
t ha t purposes.

Now the modi f icat ion of the backtrack procedure
is easy Figure 2 sketches the new a lgor i thm
back t rack ing d p . At each cycle in the search process the
set of variables can be par t i t ioned in to three groups: the
past variables, the current var iable, and the fu ture varia­
bles. Since all the remain ing domain values of the cur­
rent variable are consistent to the assignments of the past
variables (this is guaranteed by the rev ise at l ine 2) , they
are interchangeable w. r . t . t ha t pa r t i a l so lut ion (bundle) .
Now the domain of the current variable is going to be
par t i t ioned along their constra ints to fu tu re variables.
For each group of such interchangeable values a new
search branch is opened. Clear ly , each ou tpu t of a call
to tha t procedure is an assignment bundle. T h e fol lo­
wing theorem states soundness and completeness of the
proposed a lgor i thm.

T H E O R E M 3.2 Let D be the set of a l l variable domains
of a constraint network R. Each output of a procedure
call b a c k t r a c k i n g d p (1 , D) ts a so lut ion bundle to R. The
set of a l l outputs cover a l l solut ions.

P R O O F S K E T C H : The design o f the a lgo r i t hm is gui­
ded by Theorem 3.1 . Thus , at each cycle of the search
process the derived assignment bundle is ei ther globally
consistent or inconsistent. Inconsistency leads to a dead-
end, each ou tpu t is g lobal ly consistent.

The a lgo r i thm passes th rough the whole search tree
(even if interchangeable subtrees are condensed) and the­
refore computes a l l solut ions.

The advantageous behavior of the search shell
back t rack ing d p for certain prob lem types is obvious. In ­
terchangeable search branches are bundled and visited
once. If a dead-end occurs, al l the par t ia l assignments

Haselbock 285

represented by the derived assignment bundle are proven
to be conflicting. A solution bundle represents a group
of valid assignments.

So we conclude, if the described domain partition
knowledge is available, it can be used in a wide range of
CSP algorithms (both at filtering and search) with mini­
mal change of procedures. Apart from a small amount of
additional overhead of computing domain partitions in
a preprocessing phase and managing groups of domain
values instead of singular elements, the new worst-case
complexities are not worse than that of the original algo­
rithms. If the problem structures are adequate for (i.e.,
if the cardinality of domain decompositions are really
smaller than the original domain sizes), effective cost re­
ductions can be achieved.

4 Performance Analysis by
Exper iments

Now we want to investigate the indicated performance
improvements of our augmented search technique by ex­
perimental analysis. To identify those areas of CSPs in-
terchangeability makes most capital out of, we are going
to use the same test model as proposed in [Benson and
Freuder, 1992].

4.1 T h e E x p e r i m e n t a l M o d e l

Different types of problems can be characterized by the
following four parameters: (1) n, the number of cons­
traint variables. (2) a, the maximum domain size. (3)
t, the constraint tightness. The tightness of a constraint
is the fraction of the number of forbidden tuples to the
number of all possible tuples, and ranges therefore bet­
ween 0 and 1. The higher t grows, the more value tuples
are ruled out by the constraint (constraints with high
values of t are said to be tight). (4) d, the constraint
density. This is an indicator of how many constraints
are defined in the network and therefore, how dense the
constraint network is. d is a value between 0 and 1 and
is specified as follows: Let n be the number of variables,
e the number of constraints; the maximum number of
constraints , the minimum e m i n is n — 1
(a connected constraint graph is assumed); then d is the
v a l u e . In that way, the higher d is, the more
constraints are in the network.

Different algorithms are run on randomly generated
CSPs and the results are compared. The tests are re­
stricted to binary CSPs.

4.2 Test Cases and Resul ts

Our CSP generator produces samples of random CSPs,
where the four parameters n, a, t and d ranges on adju­
sted intervals. In [Benson and Freuder, 1992] it was poin­
ted out that interchangeability techniques are most pro­
fitable if (1) the problem space grows (n and a grow), (2)
the constraint tightness is small, and (3) the constraint-
density is small. The combination of the last two points
specifies those regions of problems where the CSPs are
under-constrained. These are problems with many solu­
tions.

Figure 3: The effects of the use of interchangeability
w.r.t. the number of variables.

The first test demonstrates that utilization of inter­
changeability grows if the problem increases. The varia­
ble size n steps from 6 to 10, the maximum domain size
a is fixed on 5, and the constraint tightness t and density
d are from the interval (the profitable ranges
for the use of interchangeability!).

Figure 3 shows the results. It can be seen that the
positive effect of and grows with the size
of n. Furthermore, our algorithm is clearly bet­
ter than FC-NI, and the distance increases with n.

The second and third test holds n = 10, d = 5, and
steps t (resp. d) from 0.1 to 0.9, d (resp. t) is randomly
chosen from interval [0.1 — 0.3]. As depicted in Figure 4
and Figure 5, FC-NI and FC-DP are superior to classical
FC when t (resp. d) is small. It can also be seen that
FC-DP definitely beats FC-NI at these problem types.

These results are convincing. The more tuples are
permitted by a constraint (the smaller t is), the better

6Forward-checking is a backtrack procedure where at each
cycle in the search process all the future variables are filtered
against the last-assigned variable. This method is known to
behave in a very efficient manner [Haralick and Elliott, 1980].

286 Constraint Satisfaction Problems

We tested our algorithms in that manner and came to
similar results. Furthermore, our analysis shows that
the use of domain partitions w.r.t. single constraints
beats neighborhood interchangeability in all the test ca­
ses. This should be demonstrated by the subsequent
results.

In the following, three forward-checking search pro-
cedures are compared. The first is classical forward-
checking (FC). The second is forward-checking where
all neighborhood interchangeable domain values are re­
placed by one representative value in the preface of
search (FC-NI). The third is an instance of the search
scheme backtrackingdp (see Figure 2) where forward-
checking filtering is used. We call it FC-DP. A good
indicator of the complexity of the search process is the
number of consistency checks. Of course, the checks nee­
ded for the computation of neighborhood interchange-
ability resp. the domain partitions are added to the run­
time checks. The sample of each test are 50 randomly
generated CSPs.

Figure 4: The effects of the use of interchangeabi l i ty
w. r . t . const ra in t t ightness.

Figure 5: The effects of the use of interchangeability
w.r.t. constraint density.

is the chance tha t dif ferent variable values behave in the
same manner w. r . t . the constraint and therefore came
in to the same class of domain values. I f the constraint
net is not dense (there are few constraints) , there are at
each choice po in t for a variable assignment few future
constraints and the interchangeable groups of values are
going to spl i t less (l ine 8 of the backt rack ing d p algo­
r i t h m , depicted in Figure 2).

The lack of F C - N l is tha t i t uses only the informa­
t ion t ha t domain values are interchangeable w.r . t . all
the connected constra ints. In tha t sense, F C - D P is more
accurate because of greater degree of granular i ty . And
th is can be achieved w i t h the same overhead as the com­
pu ta t ion of al l neighborhood interchangeabi l i t ies.

5 C o n c l u s i o n

We have developed a formal basis for ext ract ion and re­
presentat ion of interchangeable domain values in cons­
t ra in t sat isfact ion problems. The bulk of exist ing cons­
t ra in t sat isfact ion a lgor i thms can be adapted to ex­
p lo i t th is i n fo rma t ion . App l i ca t ion fields arise in many
areas of model-based reasoning (such as configuration,
s imula t ion or diagnosis), main ly in those cases where

component-or iented systems are model led in terms of
constraint problems. Thereby, ident i fy ing the variables
for a CSP, possible values for the variables are most of­
ten representations of complex real-world objects rather
than unst ructured constants. These objects (consider
components) are described by various features. A long
these features objects can be grouped in to classes where
the elements of each class have some set of common pro-
perties. In tha t way, constraints are specifying relat i ­
ons on different aspects of the system and take classes
of components rather than singular values in to conside­
ra t ion . If tha t is not iced at reasoning, a much more
adequate inference technique is employed.

A c k n o w l e d g m e n t s

1 am very grateful to Markus S tumptner and Thomas
Havelka for valuable discussions and comments on an
earlier version of th is paper.

References

[Benson and Freuder, 1992] Brent W. Benson and Eu­
gene C. Freuder. In terchangeabi l i ty preprocessing can
improve forward checking search. In Proc. E C A I , pa­
ges 28-30, V ienna, Augus t 1992.

[Dechter and Pearl , 1988]
Rina Dechter and Judea Pear l . Network-based heu­
ristics for constraint-sat isfact ion problems. A r t i f i c i a l
Intel l igence, 34:1 38, 1988.

[Dechter, 1992] R ina Dechter. F rom local to global con­
sistency. A r t i f i c i a l Intel l igence, 55:87-107, 1992.

[Fox and Nadel , 1989] Mark Fox and Bernard Nadel.
Const ra in t directed reasoning. Tu to r i a l o f the I J C A 1 -
89, 1989.

[Freuder, 1991] Eugene C. Freuder. E l im ina t i ng inter­
changeable values in constra int sat isfact ion problems.
In Proc. A A A l Con}., pages 2 2 7 2 3 3 , 1991.

[Haral ick and E l l i o t t , 1980] Robert M. Haral ick and
Gordon L. E l l i o t t . Increasing tree search efficiency
for constraint sat isfact ion problems. A r t i f i c i a l In te l l i ­
gence, 14:263-313, 1980.

[Mackwor th et a l , 1985] A lan K. M a c k w o r t h , Jan A.
Mulder , and W i l l i a m S. Havens. Hierarchical arc
consistency: Exp lo i t i ng s t ruc tured domains in cons­
t ra in t satisfact ion problems. Computa t iona l In te l l i ­
gence, 1(3):118-126, 1985.

[Mackwor th , 1977] A lan K. M a c k w o r t h . Consistency in
networks of relat ions. A r t i f i c i a l Intel l igence, 8:99-118,
1977.

[Mackwor th , 1987] A . K . M a c k w o r t h . Const ra in t satis­
fact ion. In Stuar t C. Shapiro, ed i tor , Encyclopedia of
A r t i f i c i a l Intel l igence, pages 205-211 John Wi ley &
Sons, 1987.

[M i t t a l and Fray man , 1987] Sanjay M i t t a l and Felix
Fray man. Mak ing par t ia l choices in constraint rea­
soning problems. In Proceedings A A A J Conference,
pages 631-636, Ju ly 1987.

Haselbock 287

