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Abst ract 

Cons t ra in t sat isfact ion - a method for represen­
t i ng and so lv ing many AI problems in a very 
elegant manner - is a wel l -studied research area 
of recent years. Freuder observed tha t some 
constra int sat isfact ion problems are fashioned 
so t ha t cer ta in domain values of constraint va­
riables are interchangeable. The use of such 
knowledge can increase search efficiency drast i ­
cally by reducing the prob lem. In this paper we 
carry on these considerations and give a formal 
foundat ion of interchangeabi l i t ies by the not ion 
of doma in par t i t ions induced by equivalence 
relat ions. We show how these domain par t i ­
t ions can be used in a very accurate manner 
by the m a j o r i t y of ex is t ing constraint propa­
gat ion a lgor i thms and int roduce a novel back­
t rack procedure exp lo i t ing such interchangeabi­
l i t ies of domain values. Bo th theoret ical analy­
sis and exper iments indicate tha t our proposed 
approach is an improvement of Freuder's use of 
neighborhood interchangeabi l i ty and has very 
good behavior for certain prob lem types. 

1 In t roduc t ion and Mot i va t i on 

Constra in t Sat isfact ion is a wel l -studied research area 
of recent years. Using constra int satisfaction methods, 
many problems - especially in AI - can be represented 
in a very declarat ive way by ident i fy ing the variables of 
interest for the prob lem, lay ing down the domains for 
the variables and rest r ic t ing the variable assignments by 
constraints. More formal ly , a constra int network R con­
sists of a f in i te set of variables and 
a set of constraints. Associated w i th 
each variable v; is a f in i te , discrete domain . A cons­
t ra in t c on the variables is in its extensional 
f o r m a subset of the Cartesian product of the domains 
of the aff l icted variables. T h e expression var (c) denotes 
the tup le of variables the constra int is defined on, and 

is the relat ional in format ion of the 
constraint c.1 T h e assignment of a value to a 
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1Our notation is similar to the one used in [Dechter, 1992]. 

variable v is denoted by v<—d. A tup le t of assignments 
of variables _ satisfies a constra int c, if and only 
if 

A constraint sat isfact ion problem (CSP) is the task of 
finding one or al l variable assignments for a constraint 
network R such tha t al l the constraints of R are satisfied. 
There are various techniques (l ike network consistency 
techniques or backtrack search procedures) for the hand­
l ing and solving of constra int networks (good descr ipt i ­
ons can be found in [Mackwor th , 1977; M a c k w o r t h , 1987; 
Haral ick and E l l i o t t , 1980; Dechter and Pear l , 1988; 
Dechter, 1992]). Though , it is wel l -known tha t the use 
of special methods for certain prob lem types can reduce 
search effort. In this paper we focus on problems where 
the domain values are s t ruc tured objects rather than ato­
mic data, and the constraints refer to a t t r ibu tes of the 
objects and not to the objects as a whole. Examples of 
appl icat ion areas of these types of problems are design, 
conf igurat ion, or diagnosis. M i t t a l and Fray man [Mi t -
ta l and Frayman, 1987] have proposed an approach of 
pa r t i a l choices, where at each search step a decision is 
made only for a par t ( i .e., an a t t r i bu te ) of a constraint 
variable. The methods par t ia l commi tment and par t ia l 
guess are essentially least commi tmen t techniques where 
some underconstrained decisions are delayed un t i l more 
in format ion is der ived. Another in terest ing work in this 
field is [Mackwor th et al . , 1985], where an hierarchical 
arc-consistency procedure ( H A C ) is in t roduced. Th is al­
go r i t hm proceeds on the assumpt ion tha t the variable 
domains are organized hierarchical ly in subsets, where 
the leaf nodes of each domain hierarchy are the intr insic 
domain elements, whi ls t the "abst rac t " nodes represent 
groups of domain values w i t h common propert ies. I f the 
constraints t reat groups of domain values equally, H A C 
avoids repet i t ive checks by f i l tering on abstract domain 
levels. 

Thus , for many prob lem areas it is a mat te r of fact 
tha t some domain objects of a const ra in t variable be­
have in the same manner and it is therefore a waste of 
search t ime to handle t hem as to ta l l y dif ferent objects. 
Freuder int roduced in [Freuder, 1991] the not ion of i n -
terchangeabil ity, where two domain values are interchan-

2 t [ A ] s tands for the p r o j e c t i o n in the sense o f re la t iona l 
a lgebra and ex t rac ts for ou r purposes exac t l y those values of 
the t u p l e t wh i ch are re levant to the c o n s t r a i n t . 
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geable in some local or g lobal env i ronment , i f they can 
be subs t i tu ted for each other w i t h o u t any effects to the 
env i ronment . Let us summarize the two main def in i t i ­
ons. 

D E F I N I T I O N 1.1 ( F U L L I N T E R C H A N G E A B I L I T Y [ F R E U -
DER, 1991]) Two values d1 and d2 of a domain Dv of 
a constraint network R are fu l ly interchangeable, if and 
only if (1 ) every solut ion to R which contains d\ as an 
assignment f o r v remains a solut ion when d2 is substi­
tuted f o r d1 , and (2) every solut ion to R which contains 
d2 as an assignment f o r v remains a solut ion when d1 is 
substi tuted f o r d 2 . 

D E F I N I T I O N 1.2 ( N E I G H B O R H O O D INTERCHANGEABI ­
L I T Y [FREUDER, 1991]) Two values d1 and d2 f o r a va­
riable v in a constraint network are said to be neighbor­
hood interchangeable, i f and only t f the fo l lowing condi­
t ion holds (C is the set of a l l constraints in the network) : 

Neighborhood interchangeabil i ty ts a suff icient, but not 
a necessary condi t ion f o r f u l l interchangeabil i ty. 

I t is shown in [Freuder, 1991] tha t all neighborhood 
interchangeabi l i t ies can be computed in a pre-phase of 
search in 0 ( n 2 . a 2 ) 3 . Then , al l interchangeable values 
can be replaced by one representat ive, which is essenti­
al ly a f o r m of p rob lem reduct ion , because a subsequent 
search has to handle a network of eventual ly smaller size. 
It is proven tha t the usage of local interchangeabil i t ies 
at preprocessing t ime is guaranteed to be cost effective 
for some CSPs. 

B u t i t is of ten the fact t ha t dif ferent domain values 
are interchangeable only w . r . t . certain constraints, whi lst 
there are constra ints which dist inguish between the int­
rinsic values. In t ha t cases, neighborhood interchange-
ab i l i t y makes no use of t ha t nuances of equivalence. We 
extend Freuder's ideas in a s t r ic t manner: we t ry to f ind 
groups of domain values which are essentially not d is t in­
guishable w.r . t . a single constraint. If a domain Dv is 
f i l tered by a constra int c, the values of Dv must be enu­
merated and checked against other value constellations. 
We propose the replacement of Dv by classes of values 
(a domain pa r t i t i on w. r . t . c) , where the size of the new 
domain and therefore the number of checks are m in ima l 
subject to c, w i t h o u t loss of any in fo rmat ion . 

The paper is organized in the fo l lowing way: Section 2 
gives a fo rma l def in i t ion of domain par t i t ions and shows 
a simple way of compu t i ng them by construct ing dis­
c r im ina t ion trees. In Section 3 we show how various 
a lgor i thms can be modi f ied in t e rm to use these domain 
classif ications, and in Section 4 we evaluate the proposed 
techniques by exper imenta l results. Section 5 concludes 
the work . 

3n is the number of variables and a is the maximum do­
main size. The network is assumed to be binary. 

2 Domain Par t i t ions 
On each domain Dv of a constra int network and each 
constraint c where an equivalence relat ion 
Ev

c can be defined, where two domain values of Dv are 
equivalent in regard of i f and only i f they behave in 
exactly the same manner w.r . t . the constraint c. The key 
i tem is tha t this equivalence relat ion induces a par t i t ion 
of a variable domain in to groups of locally (i.e., subject 
to a single constra int ) interchangeable values. 

D E F I N I T I O N 2.1 ( T H E R E L A T I O N ) Let c be a cons­
t ra in t of a constraint network R and v va r (c ) . Two 
values d\ and d2 of the domain Dv are in the relat ion . 
(we write ) , i f and only i f the fo l lowing condit ion 
holds: 

(Note the difference to neighborhood interchangeabil i ty: 
the relat ion depends on the single constraint c.) 

T H E O R E M 2.1 The relat ion is an equivalence rela­
t ion. 

P R O O F S K E T C H : T w o domain values 
are in the relat ion , if the set of al l assignment tuples 
where d\ is assigned to v and the constra int c is satisfied 
is equivalent to the set where d2 is assigned to v. The­
refore, is in fact an equivalence re la t ion, because it 
is defined by the equality-relatoon on sets, wh ich is - of 
course - an equivalence re la t ion. 

COROLLARY 2.2 It is wel l -known in set theory that each 
equivalence relat ion on a set S induces a pa r t i t i on of S, 
which is a set of non-vacuous subsets of S where the 
elements of the par t i t i on are mu tua l exclusive and the 
decomposition is exhaustive. Thus, according to each 
constraint c of a constraint network every domain Dv 

can be par t i t ioned into equivalence classes 
induced by . We wr i te f o r short. 

E X A M P L E : Let the variables v1 v2 and v3 represent 
three ports of a board where modules must be moun­
ted on. The available modules have two main charac­
terist ics: their mode ( "ana log" or " d i g i t a l " , abbreviated 
by a resp. d) and their version number (1 or 2). Thus , 
the domains of the variables can be specified by 

The fo l lowing constraints restr ict the possible constel­
lat ions: (c1 2 ) the modules mounted on v1 and v2 must be 
of different mode; (c 1 3 ) the modules mounted on v1 and 
v3 must have dif ferent version numbers. F rom the per­
spective of por t v1 , the domain can be par t i t ioned 
in the fo l lowing way: 

Note tha t in th is simple CSP there is no pair of neigh­
borhood or fu l ly interchangeable domain values in 
in the sense of Def in i t ions 1.1 and 1.2. 

In tha t way, every element of a domain par t i t ion 
is a set of domain values which are interchangea­

ble w.r . t . the constra int c. Simi lar to [Freuder, 1991], 
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3 Adap ta t i on of Various Constraint 
Propagat ion A lgor i thms 

Now we are in the posi t ion to show how these domain 
par t i t ions can be used to increase efficiency of various 
exis t ing a lgor i thms. We give a few modif icat ions of the 
key procedures and show the advantages of the use of 
such interchangeabi l i ty- techniques for certain problem 
types. We focus on b inary CSPs. 

3 .1 C o n s t r a i n t F i l t e r i n g 

Const ra in ts are most commonly used in a destructive 
manner. The cr i t ica l and most t ime consuming task in 
network consistency procedures is to check if all values of 
a par t icu lar variable domain can potent ia l ly be member 
of a so lu t ion. These checks are done repet i t ive ly for sin­
gular variables w. r . t . singular constraints. In the case of 

4 A detailed description of the procedure DT and a proof 
that it actually computes the right thing is given in an ex­
tended report version of this paper. 

b inary constraints, usually the procedure revise is 
used, which removes al l values of DV , for which no value 
of the domain of Vj can be found such t h a t the b inary 
constraint c i j ; between v i and V j is sat isf ied. T h u s , the 
worst-case complex i ty of rev ise is 0 ( a 2 ) where a is the 
m a x i m u m domain size. 

In Figure 1, a modi f ied procedure called is 
depicted. We use the expression (d is a domain value) 
to denote the equivalence class of value d subject to the 
equivalence relat ion 

Figure 1: A revise procedure using domain par t i t ions. 

The main difference between the "classical" revise and 
rev ise d p is that the former checks in the worst case all 
tuples f rom and the la t ter t reats groups of in ­
terchangeable values equally and therefore possibly saves 
checks ut i l i z ing in format ion inc luded in the domain par­
t i t ions. I f we assume tha t the domain par t i t ions (i.e., the 
sets for al l constraints c and al l variables 
are of size a worst case bound of algo­
r i t h m We see tha t i f the s t ructure 
of a constra int network gets no use of domain par t i t ions 
(all domain par t i t ions are of same size as their cor­
responding domains) , a\ would be equal to a and the 
worst case behavior is not worse than tha t of the stan­
dard revise a lgor i thm. Of course, the smaller a\ is in 
comparison to a, the better is the improvement . 

It is easy to see tha t rev ise and rev i se d p produce 
exactly the same outcome. In t ha t way, a lgor i thms 
which use rev ise (such as arc- and path-consistency al­
gor i thms) s imply have to change each call to revise by 
a call to rev ise d p and get effective use of reduced do­
main sizes. Also many backtrack procedures use revise 
and therefore can benefit f r om rev i se d p . The palette 
ranges f rom classical chronological backt rack ing, where 
at each search step the domain of the cur rent variable is 
made consistent to all past assignments, to various forms 
of look-ahead schemes, where the fu tu re search space is 
brought to certain degrees of (arc-)consistency. Par t icu­
lar ly at the lat ter approaches, rev ise is used excessively. 

3.2 B a c k t r a c k S e a r c h 

In the fo l lowing, we want to evolve a s l ight ly modif ied 
tree search scheme where interchangeable search bran­
ches are recognized by the use of domain pa r t i t i on infor-
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mat i on . T h e s t ruc tu re of the a lgo r i thm is basically the 
same as classical backt rack tree search as described, for 
instance, in [Fox and Nadel , 1989]. 

B u t f i rs t we have to give some notat ions we need for 
the development of the search procedure. Each ou tpu t 
of a t rad i t i ona l backtrack procedure is an assignment 
tup le represent ing a so lu t ion for the given CSP. Because 
we wan t to handle groups of interchangeable values, we 
have to mod i f y the f o r m of the ou tpu t . Instead of single 
assignment values, sets are used. In tha t way, assignment 
tuples are shi f ted to assignment bundles. 

D E F I N I T I O N 3.1 ( A S S I G N M E N T B U N D L E ) Let V be the 

set of n variables of a constraint network R. An n-tuple 
where the i t h element of ts a non-

vacuous subset of the domain DV, is called an assignment 
bundle. 

D E F I N I T I O N 3.2 ( S O L U T I O N B U N D L E ) Let T be the set 

of a l l solut ions to a given constraint network R. An 
assignment bundle on the variables 

of R is said to be a solut ion bundle, if and only tf 

Therefore, so lu t ion bundles represent groups of pa th ' 
th rough the search tree, where each path stands for a 
val id var iable assignment of the constra int network. The 
terms of local and global consistency (see, for instance, 
[Dechter, 1992)) can be extended to assignment bundles. 

D E F I N I T I O N 3.3 ( C O N S I S T E N C Y O F A S S I G N M E N T 

B U N D L E S ) 

Now we want to mod i fy the classical backtrack search 
shell such t ha t for each pass a bundle of assignments is 
computed . T h e fo l lowing theorem gives us the funda­
menta l basis for the u t i l i za t ion of domain par t i t ions for 
t ha t purposes. 

Now the modi f icat ion of the backtrack procedure 
is easy Figure 2 sketches the new a lgor i thm 
back t rack ing d p . At each cycle in the search process the 
set of variables can be par t i t ioned in to three groups: the 
past variables, the current var iable, and the fu ture varia­
bles. Since all the remain ing domain values of the cur­
rent variable are consistent to the assignments of the past 
variables ( this is guaranteed by the rev ise at l ine 2) , they 
are interchangeable w. r . t . t ha t pa r t i a l so lut ion (bundle) . 
Now the domain of the current variable is going to be 
par t i t ioned along their constra ints to fu tu re variables. 
For each group of such interchangeable values a new 
search branch is opened. Clear ly , each ou tpu t of a call 
to tha t procedure is an assignment bundle. T h e fol lo­
wing theorem states soundness and completeness of the 
proposed a lgor i thm. 

T H E O R E M 3.2 Let D be the set of a l l variable domains 
of a constraint network R. Each output of a procedure 
call b a c k t r a c k i n g d p ( 1 , D) ts a so lut ion bundle to R. The 
set of a l l outputs cover a l l solut ions. 

P R O O F S K E T C H : The design o f the a lgo r i t hm is gui­
ded by Theorem 3.1 . Thus , at each cycle of the search 
process the derived assignment bundle is ei ther globally 
consistent or inconsistent. Inconsistency leads to a dead-
end, each ou tpu t is g lobal ly consistent. 

The a lgo r i thm passes th rough the whole search tree 
(even if interchangeable subtrees are condensed) and the­
refore computes a l l solut ions. 

The advantageous behavior of the search shell 
back t rack ing d p for certain prob lem types is obvious. In ­
terchangeable search branches are bundled and visited 
once. If a dead-end occurs, al l the par t ia l assignments 
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represented by the derived assignment bundle are proven 
to be conflicting. A solution bundle represents a group 
of valid assignments. 

So we conclude, if the described domain partition 
knowledge is available, it can be used in a wide range of 
CSP algorithms (both at filtering and search) with mini­
mal change of procedures. Apart from a small amount of 
additional overhead of computing domain partitions in 
a preprocessing phase and managing groups of domain 
values instead of singular elements, the new worst-case 
complexities are not worse than that of the original algo­
rithms. If the problem structures are adequate for (i.e., 
if the cardinality of domain decompositions are really 
smaller than the original domain sizes), effective cost re­
ductions can be achieved. 

4 Performance Analysis by 
Exper iments 

Now we want to investigate the indicated performance 
improvements of our augmented search technique by ex­
perimental analysis. To identify those areas of CSPs in-
terchangeability makes most capital out of, we are going 
to use the same test model as proposed in [Benson and 
Freuder, 1992]. 

4.1 T h e E x p e r i m e n t a l M o d e l 

Different types of problems can be characterized by the 
following four parameters: (1) n, the number of cons­
traint variables. (2) a, the maximum domain size. (3) 
t, the constraint tightness. The tightness of a constraint 
is the fraction of the number of forbidden tuples to the 
number of all possible tuples, and ranges therefore bet­
ween 0 and 1. The higher t grows, the more value tuples 
are ruled out by the constraint (constraints with high 
values of t are said to be tight). (4) d, the constraint 
density. This is an indicator of how many constraints 
are defined in the network and therefore, how dense the 
constraint network is. d is a value between 0 and 1 and 
is specified as follows: Let n be the number of variables, 
e the number of constraints; the maximum number of 
constraints , the minimum e m i n is n — 1 
(a connected constraint graph is assumed); then d is the 
v a l u e . In that way, the higher d is, the more 
constraints are in the network. 

Different algorithms are run on randomly generated 
CSPs and the results are compared. The tests are re­
stricted to binary CSPs. 

4.2 Test Cases and Resul ts 

Our CSP generator produces samples of random CSPs, 
where the four parameters n, a, t and d ranges on adju­
sted intervals. In [Benson and Freuder, 1992] it was poin­
ted out that interchangeability techniques are most pro­
fitable if (1) the problem space grows (n and a grow), (2) 
the constraint tightness is small, and (3) the constraint-
density is small. The combination of the last two points 
specifies those regions of problems where the CSPs are 
under-constrained. These are problems with many solu­
tions. 

Figure 3: The effects of the use of interchangeability 
w.r.t. the number of variables. 

The first test demonstrates that utilization of inter­
changeability grows if the problem increases. The varia­
ble size n steps from 6 to 10, the maximum domain size 
a is fixed on 5, and the constraint tightness t and density 
d are from the interval (the profitable ranges 
for the use of interchangeability!). 

Figure 3 shows the results. It can be seen that the 
positive effect of and grows with the size 
of n. Furthermore, our algorithm is clearly bet­
ter than FC-NI, and the distance increases with n. 

The second and third test holds n = 10, d = 5, and 
steps t (resp. d) from 0.1 to 0.9, d (resp. t) is randomly 
chosen from interval [0.1 — 0.3]. As depicted in Figure 4 
and Figure 5, FC-NI and FC-DP are superior to classical 
FC when t (resp. d) is small. It can also be seen that 
FC-DP definitely beats FC-NI at these problem types. 

These results are convincing. The more tuples are 
permitted by a constraint (the smaller t is), the better 

6Forward-checking is a backtrack procedure where at each 
cycle in the search process all the future variables are filtered 
against the last-assigned variable. This method is known to 
behave in a very efficient manner [Haralick and Elliott, 1980]. 
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We tested our algorithms in that manner and came to 
similar results. Furthermore, our analysis shows that 
the use of domain partitions w.r.t. single constraints 
beats neighborhood interchangeability in all the test ca­
ses. This should be demonstrated by the subsequent 
results. 

In the following, three forward-checking search pro-
cedures are compared. The first is classical forward-
checking (FC). The second is forward-checking where 
all neighborhood interchangeable domain values are re­
placed by one representative value in the preface of 
search (FC-NI). The third is an instance of the search 
scheme backtrackingdp (see Figure 2) where forward-
checking filtering is used. We call it FC-DP. A good 
indicator of the complexity of the search process is the 
number of consistency checks. Of course, the checks nee­
ded for the computation of neighborhood interchange-
ability resp. the domain partitions are added to the run­
time checks. The sample of each test are 50 randomly 
generated CSPs. 



Figure 4: The effects of the use of interchangeabi l i ty 
w. r . t . const ra in t t ightness. 

Figure 5: The effects of the use of interchangeability 
w.r.t. constraint density. 

is the chance tha t dif ferent variable values behave in the 
same manner w. r . t . the constraint and therefore came 
in to the same class of domain values. I f the constraint 
net is not dense ( there are few constraints) , there are at 
each choice po in t for a variable assignment few future 
constraints and the interchangeable groups of values are 
going to spl i t less ( l ine 8 of the backt rack ing d p algo­
r i t h m , depicted in Figure 2). 

The lack of F C - N l is tha t i t uses only the informa­
t ion t ha t domain values are interchangeable w.r . t . all 
the connected constra ints. In tha t sense, F C - D P is more 
accurate because of greater degree of granular i ty . And 
th is can be achieved w i t h the same overhead as the com­
pu ta t ion of al l neighborhood interchangeabi l i t ies. 

5 C o n c l u s i o n 

We have developed a formal basis for ext ract ion and re­
presentat ion of interchangeable domain values in cons­
t ra in t sat isfact ion problems. The bulk of exist ing cons­
t ra in t sat isfact ion a lgor i thms can be adapted to ex­
p lo i t th is i n fo rma t ion . App l i ca t ion fields arise in many 
areas of model-based reasoning (such as configuration, 
s imula t ion or diagnosis), main ly in those cases where 

component-or iented systems are model led in terms of 
constraint problems. Thereby, ident i fy ing the variables 
for a CSP, possible values for the variables are most of­
ten representations of complex real-world objects rather 
than unst ructured constants. These objects (consider 
components) are described by various features. A long 
these features objects can be grouped in to classes where 
the elements of each class have some set of common pro-
perties. In tha t way, constraints are specifying relat i ­
ons on different aspects of the system and take classes 
of components rather than singular values in to conside­
ra t ion . If tha t is not iced at reasoning, a much more 
adequate inference technique is employed. 
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