Satisfiability of Boolean formulas over linear constraints

Henri BERINGER, Bruno DE BACKER
IBM CEMAP
68/76 Quai de la Rapee
75592 PARIS CEDEX 12
{beringer,bdb}©vnet.ibm.com

Abstract

Testing the satisfiability of a Boolean formula
over linear constraints is not a simple mat-
ter. Existing Al systems handle that kind of
problems with a general proof method for their
Boolean parts and a separate module for com-
bining linear constraints. On the contrary, tra-
ditional operations research methods need the
problem to be transformed, and solved with a
Mixed Integer Linear Programming algorithm.
Both approaches appear to be improvable if no
early separation is introduced between the log-
ical and numerical parts. In this case, com-
binatorial explosion can be dramatically re-
duced thanks to efficient looking-ahead tech-
niques and learning methods.

Indeed, propagating bounds following the ini-
tial formula gives precious information. Be-
sides, an especially tight linear relaxation can
be driven from the formula, and allows a Sim-
plex algorithm to make a good test for satisfi-
ability. Finally, these two looking-ahead meth-
ods can be easily coupled for more efficiency
and completed by local enumeration.
Moreover, discovering a good failure explana-
tion is relatively easy in the proposed frame-
work. By "learning" these explanations, it is
possible to prune important redundant parts of
the search tree.

areal/subarea: Automated reasoning, Constraint

satisfaction

1 Introduction

It is now widely accepted that general theorem provers or
problem solvers cannot be efficiently implemented with-
out relying on modules specialized in solving some well
delimited problem classes [Lassez, 1991]. In particular,
the most natural formalization of many concrete prob-
lems often relies on arithmetics over a continuous domain
(as real or rational numbers) which cannot be handled di-
rectly by general theorem-proving algorithms such as res-
olution. In such a case, it is often proposed to still use a
general theorem-proving algorithm which handles arith-
metic constraints as uninterpreted propositions, and to

296 Constraint Satisfaction Problems

control this proof by calling a constraint solving mod-
ule able to check the compatibility between arithmetic
constraints. This is, for example, what is done with the
CLP(R) language.

Unfortunately, such a strong decomposition limits
drastically the performance of the resulting algorithm.
This is the reason why we propose here to solve di-
rectly problems combining logical and arithmetic con-
straints. More precisely, this paper deals with the sat-
isfiability problem for formulas built with Boolean op-
erators, Boolean variables and linear constraints. Note
that this is a language powerful enough to model many
physical systems by piecewise linear approximation, for
example electronic circuits or mechanical systems.

After describing precisely the problem to solve, we will
present the main components of the proposed algorithm.
This algorithm, based on implicit enumeration, is com-
plete. Moreover, it succeeds in reducing combinatorial
explosion in two ways. Firstly, it "looks ahead" effi-
ciently by both testing the satisfiability of a "tight" lin-
ear relaxation ofthe overall problem, and by inferring the
value of some decision variables early thanks to bounds
propagation. Secondly, it is able to learn at low cost
from failure analysis, and then avoids many redundant
computations.

2 The Problem

The problem to be solved is the satisfiability of formulas
having the following syntax:

LForm 1= LFormA LForm

LForm = LFormV LForm

LForm 2= LForm = LForm|~LForm

LForm 1= Proposition | LCst

LCst 1= LEzpr= LEzpr| LEzpr < LEzpr|

LEzpr > LExpr

LEzpr 1= Real Num | Real Num » Real.Var

LEzpr := LEzpr+ LEzpr | LExzpr — LEzpr

This language allows many problems to be described. In
particular, it can be used to model physical systems by
piecewise linear approximation. Thus, in the domain of
analog electronic circuit diagnosis the following formulas
about a transistor's good behavior have been successfully
used in [Dague et al., 1991]:

correct(transistor_i1) =
Il e> -1.E-4
A (VAlbe>06AV_tlce>03
> I tle > 50T 21 bAT 11 c < 100+ It1.b)
A (V2lbe<0.4=off(transitor_tl))

where correct(transitor_{1) and of f(transisior_il)
are propositions meaning respectively that the transistor
tl is working correctly and that the same t1 is in blocking
mode. J_t1_c and 7_t1_b represent currents, and V _t1_b.e
and V_tl_c_e are voltage drops.

The overall satisfiability problem can be encountered
in several applications as design, verification or diagno-
gis. In each of these application domains, it is possible
that the proposed algorithm should be modified. In any
case the basic technology presented here remains valid.

3 A normal form

In order to simplify the exposal, we suppose the prob-
lem formulation has been normalized according to the
following rewriting rules:

X=2Y — XvY
SXVY) = «(X)A(Y)
(X AY) — ={X)v-=(Y)
LEzprl = LEzpr2 — LEzprl < LEzpr2

A LEzprl > LEzpr2
—LEzpr]l < —LEzprd
LEzspr2 + ¢ < LEzprl

l

LEzpr] > LEzpr2)
~(LEzprl < LEzpr)

l

where ¢ is a small enough number dependent of the
application (if necessary, this « may be handled symbol-
icatly). The result of this rewriting operation is then a
formula built with only "and” and "or” applied to propo-
sitions (possibly negated) and to linear constraints which
may be written a.z < b where z is a column vector of
variables, a is a line vector of constants, & is a constant,
and ”.” denotes the internal product. Such a formula
follows the syniax:

Disj CA...nDisj C | Disj.C
Norm_Formv ..V Norm_Form |
a.r < 4| Propostn | —~Propostn

Norm_Form =
Disj C =

The example of section 2 is thus rewritten as :

—eorrect(transistor_il)
V(—I1le<1.E—-14
A (Vialbe<O0B—cvVilee<03—¢
V (—1tle+50+1215<0
ATl c—1007215<0)
A (—V_tlbe< —04—cVoff(transitor_fl})

Below, in order to further simplify the presentation, a
positive proposition Prop will be replaced by the linear
constraint Prop = 1 and —Prop by Prop = 0 where
Prop 18 considered as a real variable about which the
constraint Prop = 0V Prop = 1 is added to the problem.
In the practical implementation such a transformation is
not performed.

4 A basic and complete solving
algorithm: enumeration

A basic but always useful algorithm for solving combi-
natorial problems is implicit enumeration. Its principle
is to explore systematically the search space by succes-
sively dividing it, i.e., choosing alternatives, until the
problem becomes simple enough to be directly solved.

Thus, it is possible to solve the above problem by a
so called "depth-first backtrack search" (see for example
[Dechter, 198990]). After making all the possible choices
(elements in disjunctions), a simple conjunction of linear
constraints is obtained. Such a system is then easily
tested for solvability by an efficient algorithm such as
the Simplex.

As the Simplex is a complete algorithm, if all the pos-
sible choice combinations are tried, the overall algorithm
is complete. However, it may spend a time proportional
to the exponential of the number of disjunctions. For-
tunately, this can be dramatically improved by looking-
ahead and learning techniques as presented below.

5 Looking-ahead techniques

During the search, each time a subproblem is generated,
even if the resulting formula is still not directly solvable
by a Simplex because of remaining disjunctions, it is
possible to analyze it and reduce a priori the remaining
search space by removing some alternatives. Sometimes,
the analysis will detect, without combinatorial search,
that the subproblem is unsatisfiable. Two complemen-
tary analysis methods may be used: constraint propaga-
tion and linear relaxation. Especially interesting meth-
ods of these two kinds are presented below.

5.1 Bound propagation

Bound propagation based on linear constraints can easily
be implemented. Indeed, given a single linear constraint
and some initial bounds on its variables, it is quite sim-
ple to compute how the bounds of each variables may be
changed: the constraint may be rewritten as 2 < Expr
or x > Expr for any of its variables x. Given a conjunc-
tion of linear constraints, bounds may be propagated by
using each constraint after the other until stability is
reached (or some stopping criterion is verified). It is to
be noted that this process is fairly incomplete. As an
example, with the constraint set: x = y and x = —y and
x and y in [—1,1], this method fails to infer any stricter
bound, though x and y are necessarily 0.

In order to apply bound propagation to any formula,
it suffices to work bottom up in the formula tree com-
puting bounds which may be inferred from each terminal
conjunctions of linear constraints, then grouping the re-
sults for the disjunctions by selecting the less tightening
bounds and so on until new bounds are computed for
the root, i.e., for the whole problem. For example, if
the formula (Al V A2} A (B1V B2} is considered where
A; and Bi are the triangles shown in figure 5.1, the first
step of bound propagation yields the bounds represented
by the box enclosed in the dashed lines. This example
demonstrates that bound propagation can last forever:

Beringer and de Backer 297

its solution is (0,0) and at each step the bounds are only
reduced by a factor of 2.

Figure 1:
¥

In order to draw the best of such a method, it is im-
portant to propagate any new bound inferred at one
level of the formula tree in its subtrees (i.e., to propa-
gate bounds under hypotheses in the part of the formula
which holds under the same hypotheses). This may be
done with the algorithm described below. The recur-
sive function propagate.bounds takes as arguments a set
of initial Bounds for the variables, and a Formula. It
returns either a set of bounds implied by Formula, or
the information Unsolvable if the formula is discovered
incompatible with the initial Bounds.

propagate_bounds(Bounds, Formula)

if Formula is a single linear constraint

for each variable x in this constraint update its bound

in Bounds as described above and return the result

(which may be Unsolvable)

if Formula is a conjunction Formulay; and Formula;

repeat
Old_Bounds
Bounds :=

: = Bounds

propagate.bounds(Bounds, Formula\)
Bounds := propagate.bounds(Bounds, Formulay)

until Bounds = Unsolvable or Old-Bounds = Bounds
(or after n iterations)

return Bounds

if Formula is a disjunction Formula\ V Formula2

Bounds] = propagate_bounds{Bounds, Formula\)

Bounds, — propagate' .bound s(Bounds, Formulay)

if (Boundsy = Unsolvable) return Bounds;

if (Bounds2 — Unsolvable) return Bounds;

else return Bounds] U Bounds2

(union of each intervals)

The propagation is started by calling this function
with Bounds containing no restriction and Formula be-
ing the whole formula to be tested for satisfiability.

The practical implementation of this algorithm is in
fact more incremental. At each disjunctive node of

298 Constraint Satisfaction Problems

the tree, the Bounds\ and Bounds, sets are cached.
Then, whenever propagation of Bounds is requested
for this node, only the new information contained in
Bounds compared to Boundss (or Bounds;,) is propa-
gated through Formula, (respectively Formula;). Note
that, at the end of the algorithm, Bounds4 (respectively
Bounds;) may be regarded as the bounds which hold un-
der the hypothesis that the first (respectively second) al-
ternative of the disjunction have been chosen (and there-
fore that the whole path leading to this disjunction has
been selected).

Despite its incompleteness, bound propagation up-
dated at each level of the search tree often reduces the
combinatorial explosion in an important manner by dis-
covering soon that some alternatives may be suppressed.

5.2 Linear relaxation

Solving a simple conjunction of linear constraints is an
easy matter thanks to algorithms such as the Simplex.
Even if a problem of the class studied here contains dis-
junctions, it is possible to derive from it a new prob-
lem containing only conjunctions and whose solution set
includes every solution to the initial problem. This is
called a linear relaxation. Testing the solvability of a
relaxation already gives important information: if the
relaxation is unsolvable, then so is the initial problem.

Obviously, a tight relaxation, i.e., one whose solution
set is as small as possible, is of great interest. In ge-
ometrical terms, a set expressed using disjunctions of
linear constraints is not convex, whereas one expressed
using only conjunctions is convex. The idea is then to
use the convex hull of a disjunction for its relaxation.
The linear constraints defining this convex hull can be
computed symbolically, by using a variable elimination
algorithm [Lassez and Lassez, 1991]. This is however to
be avoided, because the number of constraints defining
the convex hull may grow exponentially with respect to
the number of constraints appearing in the disjunction.

Nevertheless, there exists an interesting construction
adapted from Balas [Balas, 1985] which allows the con-
vex hull of a disjunction of linear constraint sets to be
represented compactly by only adding new variables. It
is presented here for a disjunction with two elements,
but the extension to more elements is straightforward.

Let D be the set defined by {y | 4;.y < by VAs.y < ba}
(here A; are matrices and b; are column veclors). Let =
be an element of conv(D}), the convex hull of D). Then
there exist reals y, and y3, and positive reals &, and §;
such thai z = 61y1 + 621}2, & + 62 = 1 with A1y < b
and Azyg < 52‘ Let T = 611}1 and Fz = 621}‘2. This
yields the relaxation rel(D):

T = n+zx

1 = 6146
Azy £ by
Agzy < baby

In the definition of rel(D), the positivity constraints
on the 6; can actually be removed. This is one differ-
ence between Balas' result and the following theorem.
Moreover, we have demonstrated it even for unbounded
polyedron.

Theorem 1 z € conv(D) < z € rei(D)

Proof 1

s (<) Let c.x < d be a constraint implied by conv(D).
Then by Fourier’s theorem there exiat veclors Ay and
Az such that M A; = ¢ and Miby < d fori € {1,2}.
This, logether with Ajz; < b;6;, gives c.x; < d&;, for
i € {1,2}. By summing thesc fwo conalrainls, we
get e(zy + z3) < d(by + 8y}, As 2 =z, + 23 and
8y + 62 = 1, this means that any point z of rel(D)
verifies c.z < d.

e (=) By the above consiruction.

Now, any problem in normal form can be relaxed into
a conjunction of constraints, using Balas' relaxation to
remove each disjunction. Please note that, because of
the conjunctions connecting different disjunctions with
each other, it is not the convex hull of the solution of
the global problem which is obtained, but instead a less
tight constraint set.

The example in figure 5.2 illustrates how from the in-
consistent formula {Al v A2) A (Bl Vv B2), the space of
possible solutions is well reduced by the relaxation with-
out succeeding in discovering the inconsistency. Note
that on this example bound propagation alone succeeds
in proving inconsistency. However if the drawing is ro-
tated by 45°, bound propagation does not find anything,
while Balas' relaxation will be as precise as without ro-
tation.

Figure 2:

B2

projected
relaxation
Al (AL v A2) A2
A
|81 v K1)

Bl

This linear relaxation is only one possible among
many. It is however the only known one which is so
tight without needing any complex computation. Relax-
ations for a disjunction of constraints which are currently
used in Mixed Integer Programming (see for example
[Williams, 1988]) introduce less new variables in the for-
mulation. However, they do not succeed in approaching
the convex hull of the disjunctions. Balas' relaxation
used here certainly adds many new variables, but be-
cause the average complexity of the Simplex is only pro-
portional to the logarithm of the number of variables,
this is not a real problem. Moreover, as the added con-
straints are only equalities, they can be easily erased by
substitution. Therefore, Balas' relaxation is both com-
putationally convenient and very precise.

5.3 Coupling bound propagation and
relaxation

Balas' relaxation is perfect (i.e., represents the convex
hull of the solutions) only when applied to one disjunc-
tion of constraint sets. However, it is in theory possible
to build a convergent series of relaxations by:

* computing explicitly the projection on the initial x
variables of the first Balas' relaxation (that suppose
each variable z; and &; are removed by an algorithm
such as the one in [Lassez and Lassez, 1991]).

» adding the result to each leaf of the formula tree
« and iterating, i.e., recompute a Balas' relaxation...

Balas has demonstrated in [Balas, 1985] that such a
series converges (in possibly infinite time) toward the
convex hull of the solutions of the initial formula. This
is completely impractical since just computing the pro-
jection may give an exponentially big result, which is to
be duplicated and re-projected. Even so, this theoretical
result is useful in showing the interest of "re-injecting"
in the leaf of the tree the information about the global
solution space. The only manageable information for
this purpose is the bounds on the variables. Now, let us
consider the bounds computed by the propagation for
one leaf of the formula tree. By definition, these bounds
can be added as explicit constraints to the correspond-
ing formula leaf without removing any potential solu-
tion. Then, if Balas' relaxation is consequently updated,
it may become much tighter.

Finally, relaxation can be used to perform a "local
enumeration". This means verifying that each & may
be fixed to 1. If some & cannot be set to 1 then they
are necessarily zero and the corresponding alternative
should be suppressed. After such suppressions it is worth
to restart the looking ahead phase at its beginning, i.e.,
bounds propagation.

6 Learning

By learning, we mean inferring general Boolean con-
straints over hypotheses, in order to reduce a priori unex-
plored paths of the search tree. Such constraints can be
detected using two different methods: incompatibilities
from bounds, and failure analysis. In both cases, these
constraints are of the form —(A:6;). During the con-
straint solving process, many of them can be inferred.
They are stored in a symbolic Boolean constraint solver,
or better in an ATMS [de Kleer, 1986]. Such an algo-
rithm is able to detect early that hypotheses are fixed (in
the case of an ATMS, one-element nogoods), and man-
ages efficiently the constraints in store. Therefore, after
many such constraints have been inferred, the possibili-
ties for the hypotheses & can be reduced drastically. For
example, if § and &, are known to be incompatible, if
one of them is fixed to 1, then the choice corresponding
to the other one will automatically be avoided.

6.1 Learning from bounds

Each bound computed by the bound propagation algo-
rithm can be labeled by the set of hypotheses yielding to
it. When bounds for the same variable are incompatible

Beringer and de Backer 299

with two different sets of hypotheses, for example, z < 3
for 8, A bz Abs and 2z > 4 for 84, the conjunction of all the
hypotheses i8 false. If an extended ATMS similar to the
one described in [Dague ef al., 1991] is used, the bounds
z <3 and y > 4 are recorded along with their justifica-
tion. A new nogood {#§),...,84} is then created, and the
ATMS propagates this informalion, possibly discovering
new nogoods.

6.2 Failure analysis

Relaxing a problem yields a set S of linear constraints
over continuous variables and & variables. If it is un-
solvable, it is interesting to know why. This can easily
be analyzed as being due to a subset of constraints in
S which are incompatible together. This subset will be
called a conflict. As each constraint is related to one hy-
pothesis 8;, a conflict may be easily translated in terms
of hypotheses.

Let us first explain how a conflict in terms of con-
straints may be built. The solvability of the set S
{A.z < b}. where A is a matrix, can be tested by com-
puting minx, on Az + I{s — L.zg = b, where | is the
identity matrix, & = (51, ...84) is a vector of slack vari-
ables, xp is a positive variable, and 1 is a column vector
whose coordinates are all equal to 1. S is solvable if and
only if minx, = 0.

When S is unsolvable, the Simplex reaches a positive
minimum value for X0 with some variables in the ba-
sis (i.e., being not necessaraly stuck to 0). Constraints
whose slack variables are not in this basis are the limits
on which the minimization stumbled. They form a min-
imal conflict of S. As the reader can see, the detection
of this conflict is done a posteriori, without any modifi-
cation of the core constraint satisfaction algorithm, i.e.,
at no cost. For a detailed presentation of this result see
[De Backer and Beringer, 1991].

Once a cause of inconsistency has been found in terms
of constraints, it can be translated in terms of the cor-
responding hypotheses. It can be added as a nogood
in the ATMS, so that it can be used to further reduce
the possibilities on the hypotheses. Please note that the
minimality of a conflict in terms of constraints does not
guarantee at all that the corresponding conflict in terms
of hypotheses is minimal. However, it is usually not far
from being minimal.

7 Comparison with other approaches

Many Al systems just use some kind of bound propa-
gation to draw information from any kind of arithmetic
constraints. Depending on the application, the incom-
pleteness of such a method is more or less disturbing.
For example, in a diagnosis application such as [Dague et
al., 1991], it may forbid to detect some failure cause. In
any case, the hereabove tools may be fruitfully added to
these systems when more completeness is necessary.

71 Mixed Integer Linear Programming

There exist many commercial packages able to solve
Mixed Integer Linear Programming (MILP) problems,
i.e., problems described by a simple conjunction of lin-
ear constraints in which some variables are forced to take

300 Constraint Satisfaction Problems

integer values. The MILP formalism is powerful. In par-
ticular, the satisfiability of Boolean formulas over linear
constraints may be transformed into a MILP problem.

Good MILP packages solve such problems by an im-
plicit enumeration method controlled by a Simplex and
bound propagation. So even without any learning, they
normally perform not too badly. However, when applied
to problem naturally expressed in the disjunctive form
studied here, they have an important limitation: they
are not able to deal directly with the disjunctive for-
mulation. The user is then forced to reformulate com-
pletely the problem in MILP This means that the user
is in charge of generating the relaxation used by the al-
gorithm.

Now, though the relaxation proposed here is the most
precise one without being computationally expensive, it
cannot be used as such with MILP packages. Indeed,
even after adding the constraints that the & variables
are equal to either 0 or 1, this relaxation still has solu-
tions which do not correspond to solution of the initial
formula. To obtain this essential property, many extra
artificial constraints have to be added to enforce x; to
be zero when #§; is zero. This is done by constraining
each variable x, with two artificial bounds z; < M#; and
r; > —Mé; where M is a large enough positive number.
The resulting formulation has so many constraints that
the Simplex may perform poorly on it. This is perhaps
the reason why, despite its qualities, Balas relaxation has
been hardly ever used.

Moreover, whatever MILP reformulation is chosen by
the user, it hides the initial structure of the problem
in such a way that bound propagation applied to this
reformulation makes much less inferences than when it
is applied directly to the initial formulation as proposed
here.

Finally, no MILP package seems to use a learning tech-
nique similar to the one proposed here.

As a result, on difficult problems naturally expressed
as Boolean formulas over linear constraints, our algo-
rithm should perform better than any MILP package
running on any MILP reformulation.

7.2 Constraint Logic Programming

Languages as CLP(R) [Heintze et ai, 1991] which extend
the Prolog language with linear constraints may be used
to express the satisfiability problem considered here, and
even to solve it. However, used as such, the resolution
algorithm handles very poorly the disjunctions: they are
not considered in any way before branching on them.

But note that, when used to solve combinatorial prob-
lems, CLP languages are more programming languages
than ready-to-use solving algorithms. As a matter of
fact, the authors are currently testing and implementing
the methods presented here using CLAIRE, a prototypal
constraint extension of IBM Prolog.

8 Conclusion

Solving Boolean formulas containing linear constraints is
a difficult combinatorial problem. As for any combina-
torial problem, there does not exist an "ideal" algorithm

which would be better than the others on every prob-
lem. Success in combinatorial problem solving lies in
the adequacy of the solving strategy to the restricted
problem set to be solved. In particular, the user must
have a way to specify heuristics able to guide the search.
Indeed, success of Constraint Logic Programming over
finite domains [Hentenryck, 1989] may be explained by
the ability to combine easily efficient algorithm thanks
to a high level programming language.

The present work intended to provide basic procedures
useful to design efficient algorithms while taking ada-
vantage of the problem specificities. The different pro-
cedures proposed here are not only separately efficient,
but are also perfectly complementary. Thus, learning
by failure analysis often gets an information which is
not easily found by a priori analysis; Balas' relaxation is
locally perfect but does not integrate long distance in-
fluences; and, on the contrary, bound propagation is a
rough approximation which takes into account the links
in the overall problem.

The very first experiments with the prototype written
in CLAIRE have shown good results. Further work will
include the benchmarking of the method on problems of
good size.

References

[Balas, 1985] E. Balas. Disjunctive programming and a
hierarchy of relaxation for discrete optimization prob-
lems. SIAM J. Alg. Disc. Meth., 6(3), July 1985.

[Dague et a/.,, 1991] P. Dague, O. Jehl, and P. Tail-
libert. An interval propagation engine and conflict
recognition engine for diagnosing continuous dynamic

systems. In Workshop on model-based diagnosis.
Springer-Verlag, Vienna, 1991.
[De Backer and Beringer, 1991] B. De

Backer and H. Beringer. Intelligent backtracking for
CLP languages, an application to CLP(R). In Inter-
national Logic Programming Symposium, San Diego,
1991.

[de Kleer, 1986] J. de Kleer. An assumption-based
TMS. Artificial Intelligence, 28, 1986.

[Dechter, 198990] R. Dechter. Enhancement schemes
for constraint processing: Backjumping, learning,
and cutset decompostion. Artificial Intelligence, 41,
1989/90.

[Heintze et al., 1991] N. Heintze, J. Jaffar, S. Michaylov,
P. Stuckey, and R. Yap. The CLP(R) programmer's
manual. Technical report, IBM TJ. Watson Research
Center, Yorktown Heights, November 1991.

[Hentenryck, 1989] P. Van Hentenryck. Constraint Sat-
isfaction in Logic Programming. MIT Press, 1989.

[Lassez and Lassez, 1991] C. Lassez and J-L. Lassez.
Quantifier elimination for conjunctions of linear con-
straint via a convex hull algorithm. Technical report,
IBM T.J. Watson Research Center, Yorktown Heights,
1991.

[Lassez, 1991] J-L. Lassez. From LP to LP: Program-
ming with constraints. Technical report, IBM T.J.
Watson Research Center, Yorktown Heights, 1991.

[Williams, 1988] H.P. Williams. Model Building
Mathematical Programming. Wiley, 1988.

Beringer and de Backer

in

301

