
Sat is f iab i l i t y of Boolean formulas over l inear const ra in ts

Henri BERINGER, Bruno DE BACKER
IBM CEMAP

68/76 Quai de la Rapee
75592 PARIS CEDEX 12

{beringer,bdb}©vnet.ibm.com

Abst ract
Test ing the sat is f iabi l i ty of a Boolean fo rmu la
over l inear constraints is not a s imple ma t ­
ter. Ex is t ing AI systems handle tha t k ind o f
problems w i t h a general proof method for their
Boolean parts and a separate module for com­
b in ing l inear constraints. On the contrary, t ra­
d i t i ona l operat ions research methods need the
prob lem to be t ransformed, and solved w i t h a
M ixed Integer Linear P rog ramming a lgo r i t hm.
B o t h approaches appear to be improvable i f no
early separat ion is in t roduced between the log­
ical and numer ica l parts. In this case, com­
b ina to r ia l explosion can be dramat ica l l y re­
duced thanks to efficient looking-ahead tech­
niques and learning methods.

Indeed, p ropagat ing bounds fo l lowing the in i ­
t i a l f o rmu la gives precious i n fo rma t ion . Be­
sides, an especially t i gh t l inear re laxat ion can
be dr iven f r om the fo rmu la , and allows a S im­
plex a lgo r i thm to make a good test for satisfi­
ab i l i ty . F ina l ly , these two looking-ahead meth ­
ods can be easily coupled for more efficiency
and completed by local enumerat ion.
Moreover, discovering a good fai lure explana­
t ion is relat ively easy in the proposed frame-
work. By " l ea rn ing " these explanat ions, i t is
possible to prune i m p o r t a n t redundant parts of
the search tree.

a r e a / s u b a r e a : Au toma ted reasoning, Constra in t
sat isfact ion

1 Introduction
I t is now wide ly accepted tha t general theorem provers or
prob lem solvers cannot be efficiently implemented w i t h ­
out re ly ing on modules specialized in solving some well
de l imi ted prob lem classes [Lassez, 1991]. In par t icu lar ,
the most na tu ra l fo rma l i za t ion of many concrete prob­
lems often relies on ar i thmet ics over a continuous domain
(as real or ra t iona l numbers) which cannot be handled d i ­
rect ly by general theorem-prov ing a lgor i thms such as res­
o lu t i on . In such a case, it is often proposed to s t i l l use a
general theorem-prov ing a lgor i thm which handles a r i t h ­
met ic constraints as uninterpreted proposi t ions, and to

control th is proof by cal l ing a constra int so lv ing m o d ­
ule able to check the compat ib i l i t y between a r i thmet ic
constraints. Th is is, for example, wha t is done w i t h the
C L P (R) language.

Unfor tunate ly , such a s t rong decomposi t ion l i m i t s
drast ical ly the performance of the resul t ing a lgo r i t hm.
Th is is the reason why we propose here to solve d i ­
rect ly problems combin ing logical and a r i thmet i c con­
stra ints. More precisely, th is paper deals w i t h the sat­
isf iabi l i ty prob lem for formulas bu i l t w i t h Boolean op­
erators, Boolean variables and l inear constraints. Note
tha t th is is a language powerful enough to model many
physical systems by piecewise l inear app rox ima t i on , for
example electronic c i rcui ts or mechanical systems.

Af te r describing precisely the prob lem to solve, we w i l l
present the ma in components of the proposed a lgo r i t hm.
Th is a lgo r i t hm, based on imp l i c i t enumerat ion , is com­
plete. Moreover, i t succeeds in reducing combinator ia l
explosion in two ways. F i rs t ly , i t " looks ahead" effi­
c ient ly by bo th test ing the sat is f iabi l i ty of a " t i g h t " l i n ­
ear re laxat ion of the overal l p rob lem, and by in fer r ing the
value of some decision variables early thanks to bounds
propagat ion. Secondly, it is able to learn at low cost
f r om fai lure analysis, and then avoids many redundant
computat ions.

2 The Prob lem
The problem to be solved is the sat is f iab i l i ty of formulas
having the fo l lowing syntax:

Th i s language al lows many problems to be described. In
par t icu lar , i t can be used to model physical systems by
piecewise l inear app rox ima t i on . Thus , in the doma in of
analog electronic c i rcu i t diagnosis the fo l low ing formulas
about a t ransistor 's good behavior have been successfully
used in [Dague et a l . , 1991]:

296 Constraint Satisfaction Problems

4 A basic and complete solving
a lgor i thm: enumerat ion

A basic bu t always useful a lgo r i thm for so lv ing combi -
nator ia l problems is imp l i c i t enumerat ion. I t s pr inc ip le
is to explore systemat ical ly the search space by succes­
sively d i v id ing i t , i.e., choosing al ternat ives, un t i l the
problem becomes s imple enough to be direct ly solved.

Thus , it is possible to solve the above prob lem by a
so called " depth-f i rst backtrack search" (see for example
[Dechter, 198990]). A f te r mak ing a l l the possible choices
(elements in d is junct ions) , a s imple conjunct ion of l inear
constraints is obta ined. Such a system is then easily
tested for solvabi l i ty by an efficient a lgo r i t hm such as
the Simplex.

As the Simplex is a complete a l go r i t hm , if a l l the pos­
sible choice combinat ions are t r i ed , the overal l a lgo r i t hm
is complete. However, i t may spend a t i m e propor t iona l
to the exponent ia l of the number of d is junct ions. For­
tunately, th is can be d ramat ica l l y improved by look ing-
ahead and learning techniques as presented below.

5 Looking-ahead techniques

Dur ing the search, each t ime a subprob lem is generated,
even i f the resul t ing f o rmu la is s t i l l not d i rect ly solvable
by a Simplex because of remain ing d is junct ions, it is
possible to analyze it and reduce a p r io r i the remain ing
search space by removing some al ternat ives. Somet imes,
the analysis w i l l detect, w i t h o u t combina tor ia l search,
tha t the subproblem is unsatisf iable. T w o complemen­
tary analysis methods may be used: constraint propaga­
t ion and l inear re laxat ion. Especial ly interest ing me th ­
ods of these two kinds are presented below.

5 .1 B o u n d p r o p a g a t i o n

Bound propagat ion based on l inear constraints can easily
be implemented. Indeed, given a single l inear constra int
and some in i t i a l bounds on i ts variables, i t is qu i te s im­
ple to compute how the bounds of each variables may be
changed: the constraint may be rewr i t ten as Expr
or x > Expr for any of i ts variables x. Given a conjunc­
t ion of l inear constraints, bounds may be propagated by
using each constraint after the other u n t i l s tab i l i t y is
reached (or some stopping cr i ter ion is ver i f ied). I t is to
be noted tha t th is process is fa i r ly incomplete. As an
example, w i t h the constraint set: x = y and x = — y and
x and y in [—1,1], th is me thod fai ls to infer any str icter
bound, though x and y are necessarily 0.

In order to apply bound propagat ion to any fo rmu la ,
i t suffices to work b o t t o m up in the f o rmu la tree com­
pu t i ng bounds which may be inferred f r o m each te rmina l
conjunct ions of l inear constraints, then group ing the re­
sults for the dis junct ions by selecting the less t igh ten ing
bounds and so on un t i l new bounds are computed for
the root , i.e., for the whole p rob lem. For example, i f
the fo rmu la is considered where
A i and Bi are the tr iangles shown in figure 5 .1 , the first
step of bound propagat ion yields the bounds represented
by the box enclosed in the dashed lines. Th is example
demonstrates tha t bound propagat ion can last forever:

Beringer and de Backer 297

i ts solut ion is (0 ,0) and at each step the bounds are only
reduced by a factor of 2.

In order to draw the best of such a method , it is i m ­
por tan t to propagate any new bound inferred at one
level of the fo rmu la tree in its subtrees (i .e., to propa­
gate bounds under hypotheses in the par t of the fo rmu la
which holds under the same hypotheses). Th is may be
done w i t h the a lgo r i thm described below. The recur­
sive funct ion propagate.bounds takes as arguments a set
of in i t i a l Bounds for the variables, and a F o r m u l a . I t
returns either a set of bounds impl ied by F o r m u l a , or
the in fo rmat ion Unsolvable i f the fo rmu la is discovered
incompat ib le w i t h the in i t i a l Bounds .

propagate_bounds(Bounds, Formula)

if F o r m u l a is a single l inear constraint
for each variable x in this constraint update its bound
in Bounds as described above and return the result
(which may be Unsolvable)
i f F o r m u l a is a conjunct ion F o r m u l a 1 and F o r m u l a 2

repeat
O ld_Bounds : = Bounds
Bounds := p ropagate .bounds(Bounds, F o r m u l a \)
Bounds := propagate.bounds(Bounds, F o r m u l a 2)

un t i l Bounds = Unsolvable or O ld -Bounds = Bounds
(or after n i terat ions)

re turn Bounds
i f F o r m u l a is a d is junct ion F o r m u l a \ V F o r m u l a 2
Bounds] = propagate_bounds{Bounds, F o r m u l a \)
Bounds 2 — propagate' .bound s(Bounds , F o r m u l a y)
i f (B o u n d s 1 = Unsolvable) return B o u n d s 2

i f (Bounds2 — Unsolvable) return Bounds 1

else re turn Bounds] U Bounds2
(un ion of each intervals)

The propagat ion is started by cal l ing th is funct ion
w i t h B o u n d s conta in ing no restr ict ion and Formula be­
ing the whole f o rmu la to be tested for sat isf iabi l i ty.

The pract ica l imp lementa t ion of this a lgo r i thm is in
fact more incrementa l . At each dis junct ive node of

the tree, the Bounds \ and B o u n d s 2 sets are cached.
Then , whenever propagat ion of Bounds is requested
for th is node, only the new in fo rma t ion contained in
Bounds compared to Bounds 1 (or B o u n d s 2) is propa­
gated th rough F o r m u l a 1 (respectively F o r m u l a 2) . Note
tha t , at the end of the a lgo r i t hm, B o u n d s 1 (respectively
Bounds 2) may be regarded as the bounds which ho ld un ­
der the hypothesis tha t the f irst (respectively second) a l ­
ternat ive of the d is junct ion have been chosen (and there-
fore tha t the whole pa th leading to th is d is junct ion has
been selected).

Despite i ts incompleteness, bound propagat ion up­
dated at each level of the search tree often reduces the
combinator ia l explosion in an i m p o r t a n t manner by dis-
covering soon tha t some alternat ives may be suppressed.

5.2 L i n e a r r e l a x a t i o n

Solv ing a simple conjunct ion of l inear constraints is an
easy mat ter thanks to a lgor i thms such as the Simplex.
Even if a prob lem of the class studied here contains dis­
junc t ions , i t is possible to derive f rom it a new prob­
lem contain ing only conjunct ions and whose so lut ion set
includes every solut ion to the in i t i a l p rob lem. Th is is
called a linear re laxat ion. Test ing the solvabi l i ty of a
relaxat ion already gives i m p o r t a n t i n f o rma t i on : i f the
relaxat ion is unsolvable, then so is the in i t i a l p rob lem.

Obviously, a t igh t re laxat ion, i.e., one whose solut ion
set is as smal l as possible, is of great interest. In ge­
ometr ical terms, a set expressed using dis junct ions of
linear constraints is not convex, whereas one expressed
using only conjunct ions is convex. The idea is then to
use the convex hul l of a d is junct ion for i ts re laxat ion.
The linear constraints def ining th is convex hul l can be
computed symbol ica l ly , by using a variable e l im ina t ion
a lgor i thm [Lassez and Lassez, 1991]. Th is is however to
be avoided, because the number of constraints def ining
the convex hul l may grow exponent ia l ly w i t h respect to
the number of constraints appear ing in the d is junct ion .

Nevertheless, there exists an interest ing construct ion
adapted f rom Balas [Balas, 1985] which al lows the con­
vex hul l of a d is junct ion of l inear constraint sets to be
represented compact ly by only add ing new variables. I t
is presented here for a d is junct ion w i t h two elements,
but the extension to more elements is s t ra igh t fo rward .

In the def in i t ion of r e l (D) , the pos i t i v i t y constraints
on the 6 t can actual ly be removed. Th is is one differ­
ence between Balas' result and the fo l low ing theorem.
Moreover, we have demonstrated it even for unbounded
polyedron.

298 Constraint Satisfaction Problems

Now, any problem in normal form can be relaxed into
a conjunction of constraints, using Balas' relaxation to
remove each disjunction. Please note that, because of
the conjunctions connecting different disjunctions with
each other, it is not the convex hull of the solution of
the global problem which is obtained, but instead a less
tight constraint set.

The example in figure 5.2 illustrates how from the in­
consistent formula the space of
possible solutions is well reduced by the relaxation with­
out succeeding in discovering the inconsistency. Note
that on this example bound propagation alone succeeds
in proving inconsistency. However if the drawing is ro­
tated by 45°, bound propagation does not find anything,
while Balas' relaxation will be as precise as without ro­
tation.

This linear relaxation is only one possible among
many. It is however the only known one which is so
tight without needing any complex computation. Relax­
ations for a disjunction of constraints which are currently
used in Mixed Integer Programming (see for example
[Williams, 1988]) introduce less new variables in the for­
mulation. However, they do not succeed in approaching
the convex hull of the disjunctions. Balas' relaxation
used here certainly adds many new variables, but be­
cause the average complexity of the Simplex is only pro­
portional to the logarithm of the number of variables,
this is not a real problem. Moreover, as the added con­
straints are only equalities, they can be easily erased by
substitution. Therefore, Balas' relaxation is both com­
putationally convenient and very precise.

5.3 Coup l i ng b o u n d p ropaga t ion and
re laxa t ion

Balas' relaxation is perfect (i.e., represents the convex
hull of the solutions) only when applied to one disjunc­
tion of constraint sets. However, it is in theory possible
to build a convergent series of relaxations by:

• computing explicitly the projection on the init ial x
variables of the first Balas' relaxation (that suppose
each variable and are removed by an algorithm
such as the one in [Lassez and Lassez, 1991]).

• adding the result to each leaf of the formula tree

• and iterating, i.e., recompute a Balas' relaxation...
Balas has demonstrated in [Balas, 1985] that such a

series converges (in possibly infinite time) toward the
convex hull of the solutions of the init ial formula. This
is completely impractical since just computing the pro­
jection may give an exponentially big result, which is to
be duplicated and re-projected. Even so, this theoretical
result is useful in showing the interest of "re-injecting"
in the leaf of the tree the information about the global
solution space. The only manageable information for
this purpose is the bounds on the variables. Now, let us
consider the bounds computed by the propagation for
one leaf of the formula tree. By definition, these bounds
can be added as explicit constraints to the correspond­
ing formula leaf without removing any potential solu­
tion. Then, if Balas' relaxation is consequently updated,
it may become much tighter.

Finally, relaxation can be used to perform a "local
enumeration". This means verifying that each may
be fixed to 1. If some cannot be set to 1 then they
are necessarily zero and the corresponding alternative
should be suppressed. After such suppressions it is worth
to restart the looking ahead phase at its beginning, i.e.,
bounds propagation.

6 Learning

By learning, we mean inferring general Boolean con­
straints over hypotheses, in order to reduce a priori unex­
plored paths of the search tree. Such constraints can be
detected using two different methods: incompatibilities
from bounds, and failure analysis. In both cases, these
constraints are of the form During the con­
straint solving process, many of them can be inferred.
They are stored in a symbolic Boolean constraint solver,
or better in an ATMS [de Kleer, 1986]. Such an algo­
r i thm is able to detect early that hypotheses are fixed (in
the case of an ATMS, one-element nogoods), and man­
ages efficiently the constraints in store. Therefore, after
many such constraints have been inferred, the possibili­
ties for the hypotheses can be reduced drastically. For
example, if and are known to be incompatible, if
one of them is fixed to 1, then the choice corresponding
to the other one will automatically be avoided.

6.1 Lea rn ing f r o m bounds
Each bound computed by the bound propagation algo­
r i thm can be labeled by the set of hypotheses yielding to
i t . When bounds for the same variable are incompatible

Beringer and de Backer 299

6.2 Fa i lu re analysis
Relaxing a problem yields a set S of linear constraints
over continuous variables and variables. If it is un-
solvable, it is interesting to know why. This can easily
be analyzed as being due to a subset of constraints in
S which are incompatible together. This subset will be
called a conflict. As each constraint is related to one hy­
pothesis , a conflict may be easily translated in terms
of hypotheses.

Let us first explain how a conflict in terms of con­
straints may be built. The solvability of the set S

where A is a matrix, can be tested by com­
puting m inx o on where I is the
identity matrix, is a vector of slack vari­
ables, is a positive variable, and 1 is a column vector
whose coordinates are all equal to 1. S is solvable if and
only if minx o = 0.

When S is unsolvable, the Simplex reaches a positive
minimum value for X0 with some variables in the ba­
sis (i.e., being not necessaraly stuck to 0). Constraints
whose slack variables are not in this basis are the limits
on which the minimization stumbled. They form a m i n ­
i m a l conflict of S. As the reader can see, the detection
of this conflict is done a posteriori, without any modifi­
cation of the core constraint satisfaction algorithm, i.e.,
at no cost. For a detailed presentation of this result see
[De Backer and Beringer, 1991].

Once a cause of inconsistency has been found in terms
of constraints, it can be translated in terms of the cor­
responding hypotheses. It can be added as a nogood
in the ATMS, so that it can be used to further reduce
the possibilities on the hypotheses. Please note that the
minimality of a conflict in terms of constraints does not
guarantee at all that the corresponding conflict in terms
of hypotheses is minimal. However, it is usually not far
from being minimal.

7 Comparison w i t h other approaches
Many AI systems just use some kind of bound propa­
gation to draw information from any kind of arithmetic
constraints. Depending on the application, the incom­
pleteness of such a method is more or less disturbing.
For example, in a diagnosis application such as [Dague et
al., 1991], it may forbid to detect some failure cause. In
any case, the hereabove tools may be fruitfully added to
these systems when more completeness is necessary.

7.1 M i x e d In teger L inear P r o g r a m m i n g
There exist many commercial packages able to solve
Mixed Integer Linear Programming (MILP) problems,
i.e., problems described by a simple conjunction of l in­
ear constraints in which some variables are forced to take

integer values. The MILP formalism is powerful. In par­
ticular, the satisfiability of Boolean formulas over linear
constraints may be transformed into a MILP problem.

Good MILP packages solve such problems by an im­
plicit enumeration method controlled by a Simplex and
bound propagation. So even without any learning, they
normally perform not too badly. However, when applied
to problem naturally expressed in the disjunctive form
studied here, they have an important l imitat ion: they
are not able to deal directly with the disjunctive for­
mulation. The user is then forced to reformulate com­
pletely the problem in M I L P This means that the user
is in charge of generating the relaxation used by the al­
gorithm.

Now, though the relaxation proposed here is the most
precise one without being computationally expensive, it
cannot be used as such with MILP packages. Indeed,
even after adding the constraints that the variables
are equal to either 0 or 1, this relaxation stil l has solu­
tions which do not correspond to solution of the init ial
formula. To obtain this essential property, many extra
artificial constraints have to be added to enforce xi to
be zero when is zero. This is done by constraining
each variable x, with two artificial bounds and

where M is a large enough positive number.
The resulting formulation has so many constraints that
the Simplex may perform poorly on it. This is perhaps
the reason why, despite its qualities, Balas relaxation has
been hardly ever used.

Moreover, whatever MILP reformulation is chosen by
the user, it hides the initial structure of the problem
in such a way that bound propagation applied to this
reformulation makes much less inferences than when it
is applied directly to the initial formulation as proposed
here.

Finally, no MILP package seems to use a learning tech­
nique similar to the one proposed here.

As a result, on difficult problems naturally expressed
as Boolean formulas over linear constraints, our algo­
rithm should perform better than any MILP package
running on any MILP reformulation.

7.2 Cons t ra in t Logic P r o g r a m m i n g

Languages as CLP(R) [Heintze et ai, 1991] which extend
the Prolog language with linear constraints may be used
to express the satisfiability problem considered here, and
even to solve it. However, used as such, the resolution
algorithm handles very poorly the disjunctions: they are
not considered in any way before branching on them.

But note that, when used to solve combinatorial prob­
lems, CLP languages are more programming languages
than ready-to-use solving algorithms. As a matter of
fact, the authors are currently testing and implementing
the methods presented here using CLAIRE, a prototypal
constraint extension of IBM Prolog.

8 Conclusion

Solving Boolean formulas containing linear constraints is
a difficult combinatorial problem. As for any combina­
torial problem, there does not exist an "ideal" algorithm

300 Constraint Satisfaction Problems

which wou ld be better than the others on every prob­
lem. Success in combinator ia l prob lem solv ing lies in
the adequacy of the solv ing strategy to the restr icted
prob lem set to be solved. In par t icu lar , the user must
have a way to specify heurist ics able to guide the search.
Indeed, success of Const ra in t Logic P rog ramming over
finite domains [Hentenryck, 1989] may be explained by
the ab i l i t y to combine easily efficient a lgo r i t hm thanks
to a h igh level p rog ramming language.

The present work intended to provide basic procedures
useful to design efficient a lgor i thms whi le tak ing ada-
vantage of the prob lem specificit ies. The different pro-
cedures proposed here are not only separately efficient,
bu t are also perfect ly complementary. Thus , learning
by fa i lure analysis often gets an in fo rmat ion which is
not easily found by a pr io r i analysis; Balas' re laxat ion is
local ly perfect bu t does not integrate long distance in ­
fluences; and, on the contrary, bound propagat ion is a
rough approx ima t ion which takes in to account the l inks
in the overal l p rob lem.

The very f i rs t exper iments w i t h the pro to type wr i t t en
in C L A I R E have shown good results. Further work w i l l
include the benchmark ing of the method on problems of
good size.

References
[Balas, 1985] E. Balas. Dis junct ive p rog ramming and a

hierarchy of re laxat ion for discrete op t im iza t ion prob­
lems. S I A M J. A lg. Disc. Meth. , 6(3) , Ju ly 1985.

[Dague et a/., 1991] P. Dague, O. Jehl , and P. Ta i l -
l iber t . An in terval propagat ion engine and confl ict
recogni t ion engine for diagnosing continuous dynamic
systems. In Workshop on model-based diagnosis.
Spr inger-Ver lag, V ienna, 1991.

[De Backer and Beringer, 1991] B. De
Backer and H. Beringer. Inte l l igent backtracking for
C L P languages, an appl icat ion to C L P (R) . In In te r -
na t iona l Logic Programming Symposium, San Diego,
1991.

[de Kleer, 1986] J. de Kleer. An assumption-based
T M S . A r t i f i c i a l Intel l igence, 28, 1986.

[Dechter, 198990] R. Dechter. Enhancement schemes
for constra int processing: Back jump ing , learning,
and cutset decompost ion. A r t i f i c i a l Intel l igence, 4 1 ,
1989/90.

[Heintze et a l . , 1991] N. Heintze, J. Jaffar, S. Michay lov ,
P. Stuckey, and R. Yap. The C L P (R) programmer 's
manua l . Technical repor t , I B M T J . Watson Research
Center, Y o r k t o w n Heights, November 1991.

[Hentenryck, 1989] P. Van Hentenryck. Constraint Sat-
is fact ion in Logic Programming. M I T Press, 1989.

[Lassez and Lassez, 1991] C. Lassez and J -L . Lassez.
Quant i f ier e l im ina t ion for conjunct ions of l inear con­
s t ra in t v ia a convex hu l l a lgo r i t hm. Technical repor t ,
I B M T . J . Watson Research Center, Yo rk town Heights,
1991.

[Lassez, 1991] J -L . Lassez. From LP to L P : Program­
m i n g w i t h constraints. Technical report , I B M T . J .
Watson Research Center, Yo rk town Heights, 1991.

[Wi l l i ams, 1988] H.P. Wi l l i ams . Model Bu i ld ing in
Mathemat ica l Programming. Wi ley , 1988.

Beringer and de Backer 301

