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Abstract

This paper deals with learning in reactive
multi-agent systems. The central problem ad-
dressed is how several agents can collectively
learn to coordinate their actions such that they
solve a given environmental task together. In
approaching this problem, two important con-
straints have to be taken into consideration:
the incompatibility constraint, that is, the fact
that different actions may be mutually exclu-
sive; and the local information constraint, that
is, the fact that each agent typically knows only
a fraction of its environment.

The contents of the paper is as follows. First,
the topic of learning in multi-agent systems is
motivated (section 1). Then, two algorithms
called ACE and AGE (standing for "ACtion
Estimation" and "Action Group Estimation",
respectively) for the reinforcement learning of
appropriate sequences of action sets in multi
agent systems are described (section 2). Next,
experimental results illustrating the learning
abilities of these algorithms are presented (sec-
tion 3). Finally, the algorithms are discussed
and an outlook on future research is provided
(section 4).

1 Introduction

Multi-Agent Systems. In computer science and arti-
ficial intelligence the concept of multi-agent systems has
influenced the initial developments in areas like cognitive
modelling [Selfridge, 1959; Minsky, 1979], blackboard
systems [Erman and Lesser, 1975], object-oriented pro-
gramming languages [Hewitt, 1977], and formal models
of concurrency [Petri, 1962; Brauer et ai, 1987]. Nowa-
days multi-agent systems establish a major research sub-
ject in distributed artificial intelligence; see [Bond and
Gasser, 1988; Brauer and Hernandez, 1991; Gasser and
Huhns, 1989; Huhns, 1987]. The interest in multi-agent
systems is largely founded on the insight that many real-
world problems are best modelled using a set of agents
instead of a single agent. In particular, multi-agent mod-
elling makes it possible (i) to cope with natural con-
straints like the limitation of the processing power of a
single agent or the physical distribution ofthe data to
be processed and (it) to profit from inherent properties
of distributed systems like robustness, fault tolerance,
parallelism and scalability.

Generally, a multi-agent system is composed ofa num-
ber of agents that are able to interact with each other

and the environment and that differ from each other in
their skills and their knowledge about the environment.
(Usually an individual agent is assumed to consist of sen-
sor component, a motor component, a knowledge base,
and a learning component.) There is a great variety
in the multi-agent systems studied in distributed arti-
ficial intelligence [Huhns, 1987, foreword]. This paper
deals with reactive multi-agent systems, where 'reac-
tive" means that the behavior and the environment of
the system are strongly coupled (there is a continuous
interaction between the system and its environment).

Learning. There is a common agreement that there
are two important reasons for studying learning in multi -
agent systems: to be able to endow artificial multi-
agent systems (e.g., systems of interacting autonomous
robots) with the ability to automatically improve their
behavior; and to get a better understanding of the learn-
ing processes in natural multi-agent systems (e.g., hu-
man groups or societies). In a multi-agent system two
forms of learning can be distinguished [Shaw and Whin-
ston, 1989]. First, centralized or isolated learning, i.e.
learning that is done by a single agent on its own (e.g.
by creating new knowledge structures or by practicing
motor activities). And second, distributed or collective
learning, i.e. learning that is done by the agents as a
group (e.g. by exchanging knowledge or by observing
other agents). This paper focusses on collective learn-
ing, and the central question addressed is: "How can
eacn agent learn which action it shall perform under
which circumstances?" In answering this question, two
important constraints have to be taken into consider-
ation [WeiB, 1993a, 1993b]. First, the incompatibility
constraint, i.e. the fact that different actions may be
incompatible in the sense that the execution of one ac-
tion leads to environmental changes that impair or even
prevent the execution of the others. And second, the
local information constraint, i.e. the fact that an agent
typically has only local information about the actualen-
vironmental state, and this information may differ from
the one another agent has; this situation is illustrated by
figure 1.

Two algorithms called the ACE algorithm and the
AGE algorithm for reinforcement learning in reactive
multi-agent systems are described (ACE and AGE are
acronyms for "ACtion Estimation" and "Action Group
Estimation", respectively). These algorithms base on
the action-oriented version [WeiB, 1992] of the bucket
brigade learning model for classifier systems [Holland,
1986]. According to both algorithms the agents collec-
tively learn to estimate the goal relevance of their actions
and, based on their estimates, to coordinate their actions
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Figure 1: System—environmest in-
teraction. Each agent A; only knows
a fraction S; of the actual environ-
mental state §. The agents may
know different aspects of the actual
state, and there may be environmen-
tal aspects that none of the agents
knows. The agentis interact with
each cther as well as with the en-
vironment.

b

and to generate appropriate action sequences.

Notational Preliminaries. For a description of
the ACE and the AGE aigorithm the following elemen-
tary notation is used throughout the rest of this paper,
Ag = {A1,...,An} (n € N) denotes the set of all

agents. & (7.U,...) refers to an environmental state,
and §; refers to the part of § that is known to the agent
A € Ag (S C 8); S is called A;'s knowledge about
S. AL = {a},...,a™} (m; € N} denotes the set of
all possible actions of the agent A;, and it is called the
action potential of A;. Acf®**[S] denotes the set of all ac-
tions that A, could carry out (identifies as “executable”)
in the environmental state § (Acf**[S] C AcP™’).

It is worth emphasizing that §; N S; may but need
not be empty, and that |J]_, & is not necessarily equal
to § {(1.e. the agents may have incomplete information
about an environmental state, see figure 1). Similarly,
if $ and 7 are two different environmental states, then
8; NT; may but need not be empty; in particular, it may
be the case that &; = 7; (i.e. an agent may be unable to
distinguish between different environmental states).

2 Collective Learning

The ACE Algorithm. According to the ACE al-
gorithm the learning activity of the multi-agent system
results from the repeated execution of a basic working
cycle which consigts of the three activitities action deter-
mination, competition, and credtt assignment as follows.

First, each agent A; € Ag determines, in dependence
on its knowledge S; about the actual environmental state
S, the set Acf*’[8] of actions that it could carry out.

Then the agents compete for the right to become ac-
tive. This competition encompasses the calculation and
announcement of bids and the selection of the actions
that are actually carried out:
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(i) Each agent A; makes a bid BJ[S] for each of its
possible actions a} € Acf”"'[S] and announces it to
the other agents. The bid is calculated by

where a is a small constant called riskt faclor, S is a
small random number called noise term, © is a con-

stant called estimeic minimem, and Ei[S]is A’
estimate of the goal relevance of a! in dependence
on its knowledge &; about §. The o indicates the
fraction of E‘;’ [S] the agent A, is willing to risk for

being allowed to perform the action al; the 8 intro-
duces noise into the competition in order to avoid

etting stuck into local learning minima; and the ©

elpe to prevent executing useless (low-estimated)
actions. (Whenever an agent A, can execute an ac-
tion under some knowledge S, for the first time, it
initializes the estimated goal relevance of this ac-
tion with a predefined value E'™**; afterwards the
estimated goal relevance is adjusted during credit
assignment as it is described below.)

(ii) After the agents have announced their bids, they
select the actions to be carried out. The agent hav-
ing made the highest bid is allowed to execute ita
corresponding action, and all agents withdraw the
bids for those actions that are incompatible to this
selected action; this is repeated until no further ac-
tion being associated with a non—zero bid can be
selected. This action selection may be formally de-
scribed as follows:

o AP [S] =L AG™[S] and A=19
¢ until Ac”**’{S] =8 do

- select a] € AcP***[S] with
BI[S] > BL[S] for all ol € AcPo**[S)
- A= AU {d])
— AP (8] = A [S] \
( a] U {a} € AcP***[5]:
al and ! are incompatible} )

The set A is called the actual aclivity contert, and
the actions contained in in this set are called the
actual actions (in state §). (The selection requires a
rational or non—egoistic behavior of the agents in the
sense that none of the agents insists the execution
of a low-bid or an incompatible action.)

Finally, the agents assign credit to each other by ad-
justing the estimates of the goal relevance of their ac-
tions. This adjustment is done according to the action-
oriented bucket brigade mechanism [WeiB, 1992]. Infor-
mally, the agents reduce the estimates of their actual ac-
tions (the actual winners pay for their previlege to carry
out their actions), and hand the amount of all reductions
back to the agents that won the previous competition
{the previous winners are rewarded for appropriately set-
ting up the environment). The previous winners, in turn,
adg the received amount to the estimates of the actions
they performed last. Additionally, if there is an external
reward from the environment, then the agents distribute
this reward among the actual actions. Formally, this can
be described as follows:

(i) For each actual action al € A the agent A; modifies
its estimate EJ[S] according to



E[S] = El|S]- B{[S]+ R*'/|Al , (2

where B![S] is the corresponding action-specific bid
and R**‘ is the external reward (if there is any).

{ii) The agents sum up the bids they made for the actual
actions. The resulting sum B4[S],

BalS)= )_ BlIS), (3)

a-:eA

is distributed in equal shares among those actions
that were carried out during the previous competi-
tion. Suppose that T is the previous environmental
state, B is the previous activity context, and a} € B.

Then EL[T] is increased by
ELT] = E,[T]+ BaiSl/ IB| - (4)

This credit assigment mechanism has two major effecis
[Holland, 1985]: the estimates of actions that are in-
volved in a successful sequence of action sets (i.e. a se
quence that leads to external reward) increase over time
and, by the way, stabilize this sequence; and conversely,
the estimates of actions that are involved in an unsuc-
cessful sequence decrease over time and destabilize this
sequence.

The AGE Algorithm. The AGE algorithm retains
the basic working cycle of the ACE algorithm — re-
peated execution of action determination, competition
and credit assignment — but realizes competition in a
different way. Now an agent estimates the goal relevance
of an action not only in dependence on its knowledge
about the actual environmental state but also in depen-
dence on the possible activity conteris, and the agents
do not compete for carrying out individual actions but
for carrying out groups of actions. Generallg, an activ-
ity context is a group of mutually compatible actions.
Formally, the set of all possible activity contexts in an
environmental state $ is given by

AlS] = {AC U AL (8]

(Vﬂi.ﬂf, € A:al and af are compatible)} . (5)

The competition is organized as follows (let & be the
actual environmental state).
(i) For each A € A[S] the agents calculate a bid B 4[]

for being allowed to carry out ail the actions con-
tained in A4 by

BalS)= > B[S, A] (6)
aleA
with , .
BlS, AJ=(a+ B -ElS.A . D

where a is a risk factor, § is a noise term, and
E][S,A] is A;’s estimate of the goal relevance of
a! in dependence on §; and A,

(i) The activity context A € A[S] being associated with

the greatest bid B4[S] is selected, and all actions
contained in this context are carried out.

Credit assignment is done analogously to the ACE al-
gorithm (suppose that the activity context .4 has been
selected):

(i) For each al € A the agent A; modifies its estimate
E![S, A] according to

El[S, Al = EI{S, A - B![S, A] + R***/|A| . (8)

(i) The total bid B4[S] is distributed among the ac-
tions that were carried out in the previous competi-
tion. Suppose that T is the previous environmental
state and that B is the previously selected activity
context. For each a} € B the agent A; increases

EL[T,B] by

EL[T B = E[T,B]+ BalS]/ Bl . (9

Like the ACE-type adjustment does, this AGE-type ad-
Justment of the estimates induces the stabilization of suc-
cessfu] sequences of action sets and to the destabilization
of unsucceasful ones.

3 Experimental Results

Task Domain.  As a task domain the blocks world is
chosen. This domain is clearly enough for experimental
studies in an unknown field like collective learning, and
it i1s well suited for illustrating the essential features of
the ACE algorithm and the A&E algorithm.

The task to be solved by the agents is to transform
a start configuration of blocks into a goal configuration
within a limited time interval. Figure 2 shows such a
task together with the actions that can be carried out
by the agents. In this example each agent is assumed
to have imited motor capabilities and to be specialized
in moving one specific block; for instance, agent A, is
responsible for biock A, and is able to put this block on
block B (put(A, B)) or on the ground {pui(A, 1)). The
precondition for the application of an action put(z,y) is
that the blocks r ang y are empty, 1.e. that no other
blocks are placed on them. (Note that an agent’s action
is quite complex and involves a number of activities; for
instance, in order to put A on B the agent has to walk
to A, to pick up A, to walk to B, and to place A on B}

Each agent 15 assumed to have limited sensor capa-
bihities (it only “sees” what is directly relevant to its
actions) and, as a consequence, to have only local infor-
mation about each environmental state. Tﬁe part §; of
an environmental state § that is known to an agent A, is
specified as follows. For each of its actions a = put(z, y)
an agent only knows (i) the block on which z € {z,y}
is positioned and (ii} whether 2z € {z,y} is empty. The
knowledge specified by (1) and (1) is called the environ-
mental contert of the action pui(x, y).

Furthermore, twe actions are considered to be in-
compatible if the execution of one of them changes
the environmental context of the other. Formally, this
can be expressed as follows: two actions, put{x,y) and
put(u, v), are incompatible if z € {u, v} or u € {2,y} or

= v # L. Examples of sets of incompatible actions are

pui(B,C), put(B, D)} (“a block cannot be put on dif-
ferent blocks at the same time”), {put( D, C), put( E,C)}
{“two different blocks cannot be put on the same block at
the same time”), and {put(E, B), put(B,C)} (“a block
cannot be put on a block which at the same time is put
on another block"?. It is assumed thal the agents know
these incompatibility constraints.
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A;: put(A, B), put(A, 1)
Az: put(B,C), put(B, D)
As: put(C, D), put(C, 1)
. put(D,C), put(D, E)

: put(E, B), pul(E,C), put(E, 1)

Limited Time Interval: at most four cycles

Goal Configuration

Figure 2: A blocks world task.

As it is described in section 2, learning proceeds by the
repeated execution of the basic working cycle. A trial is
defined as any sequence of at most four cycles that trans-
forms the start into the goal configuration (successful
trial), as well as any sequence of exactly four cycles that
transforms the start into a non-goal configuration. At
the end of each trial the start configuration is restored,
and it is again presented to the agents. Additionally,
at the end of each successful trial a non-zero external
reward R®™ is provided.

Task Analysis. As a consequence of the local infor-
mation constraint, an agent may be unable to distinguish
between environmental states in which its actions are
useful and relevant to goal attainment and environmen-
tal states in which its actions are useless. (This situation
is sometimes called the Sussman anomaly.) Consider
the environmental states T, U and V shown in figure 3.
Based on the usual blocks world notation, these three
states are completely described by

T = {on(A,1),on(B,C),on(C, 1), on(D, E),
on(E, 1), empty(A), empty(B), empty(D)}

U = {on(A,l),on(B,D),on(D, 1),on(C, 1),
on(E, L), empty(A), empty(B), empty(C),
empty(E)} aend

V = {or(A,Ll},on(B,C),on(C, D),on(D, 1),

on(E, L), empty(A), empty(B), empty(£)} .

As it is easy to see, the action put(A; B) of the agent
A\ is useful in state T but not useful in state V. How-
ever, because A;s local information T\ and V; about
the states T and V. respectively, are identical, the agent
A\ is unable to distinguish between these two states.
(Of course, an agent does not always fail to distin-
guish between "useful and useless states"; see e.g. the
states 7 and U. Ass local information is given by

314 Distributed Al

Ty = Vi = {on(A, 1}, on(B,C), empty(A), empty(B)}
and U = {on(A, 1), on(B, D), empty( A}, empty(B)}.)

An analysis of the search space of the task depicted
in figure 2 shows that there are only 3 successful tri-
als of length 3, and 13 successful trials of length 4.
The probability that a randomly generated sequence
of applicable sets of compatible actions transforms the
start into the goal configuration is 2.6 percent, if the
sequence has the length 3, and 3.3 percent, if the se-
quence has the length 4. With that, the probabil-
ity that a random trial solves the task to be learnt
is less than 6 percent. (An example of a successful
trial of length 3 is given by {{put(C,.L), put(E, 1)},
{put(B,C), put(D, E)}, {put(A, B)}}. Note that a se-
guential "one-action-per-cycle" approach would require
five cycles in order to implement this sequence.)

Experimental Results. A series of experiments
was performed to test the ACE and the AGE algorithm.
Figure 4 shows the performance profiles ofthe ACE algo-
rithm, the AGE algorithm, and a random walk algorithm
(i.e. an algorithm which randomly chooses an applicable
set of compatible actions in each cycle). The parameter
setting underlying these performance profiles was as fol-
lows: E™ = R**! = 1000, a = 0.1, € [-a/5.. +a/5]
(randomly chosen), and & = 0.7 - E™%. (It has to be
mentioned that the learning effects reported below can
be observed for a broad range of parameters and are
not limited to this setting.) Each data point in figure
4 reflects the average external reward per episode ob-
tained during the previous 50 episodes. There are sev-
eral important observations. First, the ACE and the
AGE algorithm performed significantly better than the
random walk algorithm, and they reached their max-
imum performance level after about 250 trials. After
that, the performance levels remained almost constant;
this shows that the ACE/AGE algorithms were able to
learn stable sequences of action sets. Second, the perfor-
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Figure 4: Performance profiles.

mance level of the AGE algorithm is clearly above the
performance of the ACE algorithm. This illustrates the
importance of estimating the goal relevance of an action,
as it is done by the AGE algorithm, in dependence on
other (concurrent) actions. The reason for that is that
an action may be useful in one activity context but use-
less in another. However, the improved performance is
achieved at the cost of higher space and computation
time: whereas the costs of the ACE algorithm are pro-
portional to the number of possible actions that can be
carried out by the agents, the costs of the AGE algo-
rithm are proportional to the number of possible action
sets. And third, despite their learning abilities both algo-
rithms remain below the possible maximal reward level
(which is 1000). The reason for that is the local infor-
mation constraint and, with that, the inability of the
agents to distinguish between all different environmen-
tal states; as a consequence, the same estimates are used

for different environmental states and necessarily remain
inaccurate on some scale.

4

This paper took the first steps towards learning to coor-
dinate actions in multi-agent systems. Two algorithms
called the ACE algorithm and the ACE algorithm for the
delayed reinforcement learning of sequences of action sets
were introduced and experimental results illustrating the
learning abilities of these two algorithms were presented.
Both algorithms are "elementary” in a twofold sense. On
the one side, they make only weak demands on the cog-
nitive abilities of the individual agents. For instance,
they do not require that the agents are able to reason
about the other agents' knowledge or intentions and they
do not require that the agents possess complex decision
making strategies. As a consequence, the algorithms are

Concluding Remarks
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even applicable to systems that are composed of rather
simple agents. On the other side, both algorithms are
very flexible learning schemes that can be extended in
a number of ways. For instance, they allow to incor-
porate high-level problem solving and planning mecha-
nisms known from the field of single-agent systems, as
well as a number of refinements that have been proposed
for the bucket brigade learning model (e.g., tax payment,
support and look-ahead mechanisms).

Our future research will concentrate on these possible
extensions of the ACE/AGE algorithms. A major topic
is the development of algorithms that implement multi
agent learning of sequences of compatible actions like the
ACE/AGE algorithms do, but that better cope with the
local information constraint.

Another goal of future research is the development of
learning algorithms for more complex structured (e.g. hi-
erarchically organized) multi-agent systems [Fox, 1981].
Up to now this topic has been not addressed in the field
of distributed artificial intelligence. However, there are
various related works from other disciplines like psychol-
ogy (e.g., [Guzzo, 1982; Laughlin, 1988]) and economics
(e.g., [Argyris and Schon, 1978; Galbraith, 1973; Hed-
berg, 1981; Sikora and Shaw, 1989J) that are likely to be
very stimulating and useful for achieving this challanging
goal.
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