
Enhancing Performance of Cooperating Agents in Real-time Diagnostic Systems 

U. M. Schwuttke and A. G. Quan 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Drive 
Pasadena, CA 91109 

818-354-1414 
ums@puente.jpl.nasa.gov 
alan@puente.jpl.nasa.gov 

ABSTRACT 
We present a data-driven protocol and a supporting ar­
chitecture for communication among cooperating intel­
ligent agents in real-time diagnostic systems. The system 
architecture and the exchange of information among 
agents are based on simplicity of agents, hierarchical or­
ganization of agents, and modular non-overlapping 
division of the problem domain. These features combine 
to enable efficient diagnosis of complex system failures 
in real-time environments with high data volumes and 
moderate failure rates. Preliminary results of the real-
world application of this work to the monitoring and di­
agnosis of complex systems are discussed in the context 
of NASA's interplanetary mission operations. 

1.0 INTRODUCTION 

The interaction and coordination of multiple agents in dis­
tributed problem-solving systems have been of interest for a 
variety of domains whose complexity exceeds the practical 
capability of monolithic solutions. Examples of domains in 
which distributed systems have been explored include moni­
toring [Lesser and Corkill, 1988], planning [Howe et ai, 
1990], [Bratman et al, 1988], and diagnosis [D'Ambrosio, 
1990]. These and other approaches [Durfee et ai, 1987], 
[Gasser et al, 1987], [Hayes-Roth et ai, 1988] emphasize 
some form of iterative exchange of partial information 
among nodes for the purpose of eventual convergence on 
complete solutions. 

Recently, the need for mechanisms of cooperation that 
are sufficiently robust for real-world applications has been 
addressed [Jennings and Mamdani , 1992] as part of 

The research described in this paper was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology under a contract with the 
National Aeronautics and Space Administration. The authors wish to 
acknowledge support from JPL's Director's Discretionary Fund. 

GRATE*, an implementation effort targeted at monitoring. 
GRATE* makes contributions toward a clearer and more 
easily implementable interaction of agents during collabora­
tive problem solving. GRATE* addresses a problem domain 
in which events occur unpredictably and decisions may be 
based on incomplete or imprecise data. Toward this end, the 
notion of joint responsibility is proposed as an alternative to 
the more conventional notion of agents acting in self-interest. 
The potential for large communication overhead is a possible 
disadvantage of the GRATE* system, particularly for appli-
cations with time critical analysis. The protocol and archi­
tecture described in this paper builds on the notion of joint 
responsibility and uses modular problem decomposition and 
data-driven reasoning in order to minimize communication 
between agents. This approach has been applied to the MAR­
VEL system [Schwuttke et ai, 1992] for automated moni­
toring and diagnosis of Voyager spacecraft telemetry and has 
been shown to achieve robust and coherent behavior for com­
plex, real-time diagnostic agents embedded in a conventional 
(algorithmic) monitoring system. 

2.0 THE CHARACTERISTICS OF AGENTS 
IN MARVEL 

Agents are embedded diagnosticians. 

Rule-based diagnostic modules are embedded in effi­
cient algorithmic code. The algorithmic code performs all 
functions that do not explicitly require reasoning capability, 
so that the use of the less efficient reasoning modules is lim­
ited to those functions for which it is essential. 

Diagnosis is data-driven. 

Forward-chaining demons are used to represent domain 
knowledge. Reasoning is activated by the appearance of data 
that requires diagnosis. The initial determination that diag­
nosis is required is made by algorithmic monitoring code, 
which detects potential anomalies algorithmically and passes 

332 Distributed AI 



the anomalous data to an appropriate diagnostician. In the 
absence of anomalous data within its domain, an agent is 
idle. 

The domain of individual agents is constrained. 

An agent is responsible for a small, clearly partitionable 
domain of expertise. Partitioning is governed by the natural 
decomposition of the system being diagnosed. This helps 
overcome disadvantages associated with rule-based systems 
for which, typically, implementation can be intractable, exe­
cution is non-deterministic and relatively slow, and verifica­
tion can be difficult. Small, modular knowledge-bases enable 
developers to handle more easily definable subproblems. 
Smaller knowledge bases execute more efficiently, because 
less time is spent in search. Finally, smaller knowledge-bases 
are easier to verify. 

The domain of individual agents is nonoverlapping. 

A particular domain of expertise is assigned only to one 
agent to avoid redundant reasoning. 

Agents carry individual responsibility fo r problems entirely 
within their domain. 

Agents have sufficient knowledge to be fully account­
able for diagnoses within their areas and have no knowledge 
of other domains. This requires that accountability for locally 
detectable failures must be local. 

Failure domains may not map directly to agent domains. 

Diagnosis requires more than one agent when the symp­
toms manifest themselves in more than one domain. 

Meta-knowledge enables agents to instigate cooperation fo r 
diagnosis beyond their domain. 

Agents have meta-knowledge to identify symptoms of 
failures that could possibly extend beyond their domain. 
Meta-knowledge is contained in a set of rules in each 
knowledge-base, and is associated with the occurrence of 
events whose analysis may require the cooperation of other 
agents. 

Agents report a l l problems that extend beyond their 
domain. 

Meta-knowledge enables an agent to determine which 
symptoms from its domain may portend problems beyond its 
domain. The meta-knowledge also includes the specific 
agent(s) to which the information should be forwarded. 

A hierarchy of agents provides coordination. 

An agent forwards all known information pertaining to 
failures beyond its domain to another agent at the next higher 
level in the hierarchy. The underlying assumption on for­
warded messages is "better safe than sorry"; it is up to the 
agent receiving the information to determine whether a fault 
requiring a diagnostic message and an alarm has occurred or 
whether the anomalous data has some other explanation. This 
agent may also receive messages from other lower-level 

agents. Agents at the higher level are also implemented ac­
cording to the principles outlined here; thus reasoning at the 
higher level of the hierarchy is also data driven. The agents at 
the higher level are activated by messages from lower-level 
agents, just as the lowest level agents were activated by mes­
sages of symptoms detected by algorithmic code. Messages 
are directed with meta-knowledge to the relevant agent(s) in 
order to complete the final analysis of the anomalous data 
and provide diagnosis of any associated failures. 

Agents share responsibility fo r diagnosis of problems that 
overlap domains. 

Joint responsibility exists in that the lower-level agents 
are responsible for reporting appropriate symptoms upward 
in the hierarchy and the higher-level agent(s) are responsible 
for correctly determining whether failures have occurred and 
providing appropriate diagnosis. This differs from the "self 
interest" model of communication [Durfee, 19881 and is 
similar to the joint responsibility model [Jennings and Mam-
dani, 1992] in which agents must temper their self-interest 
with consideration to a group. These models have parallels 
in social organizations, with the first being more representa­
tive of an unstructured society and the second paralleling the 
actions of individuals who are dedicated (perhaps for reasons 
of self-interest) to fulfilling a successful role in a structured 
organization such as a corporation. In the latter case, inde­
pendent agents work together with appropriate (and hierar­
chical) division of responsibility towards fulfilling a com­
mon goal. Real-world applications can be sufficiently 
complex that only this second type of organization may en­
able timely, robust, and coherent behavior. 

3.0 COOPERATING AGENTS IN A 
DISTRIBUTED ARCHITECTURE 

The distributed architecture shown in Figure 1 is based on a 
central message routing scheme that is not shown in the 
figure. The various agents are allocated among a configura­
tion of UNIX workstations. The data management module 
receives data from a source (in the case of our current appli­
cation, the data is spacecraft telemetry received from JPL's 
ground data system) and allocates it to the appropriate sub­
system monitor based on identification of data type. (Our 
system is partitioned according to the partitioning of the 
spacecraft itself, with one subsystem monitor for every 
spacecraft subsystem covered by MARVEL. Spacecraft sub­
systems include command and data, attitude and articulation 
control, propulsion, telecommunications, thermal, and 
power. Such a partitioning reflects the natural partitioning of 
the system being monitored, which is desirable for real-time 
diagnostic architectures.) Each of the subsystem monitors 
provides algorithmic functions such as validation of teleme­
try, detection of anomalies, trend analysis and automatic 
reporting. These functions, while not in themselves of inter­
est in AI or computer science research, are vital components 
of a real-world diagnostic system. They are implemented 
here in conventional C code for performance reasons. In ad­
dition, each subsystem process provides diagnosis of failures 
based on anomalous data, and recommendation of corrective 

Schwuttke and Quan 333 



Figure 1. The distributed architecture on the left can currently be configured to run on one to four 
UNIX workstations, with the most common operational configuration involving two worksta­
tions (for compatibility with analyst responsibilities). The hybrid subsystem processes on the left 
are composed of conventional and knowledge processes, as shown in the figure on the right. 
Knowledge processes are used only when a reasoning capability is explicitly required. 

actions. The latter two functions are provided by knowledge-
based agents that are embedded within each of the individual 
subsystem monitors. The remaining modules include the 
graphical user interface and display processes for each of the 
subsystem monitors, and the system-level diagnostic agent 
for handling failures that manifest themselves across multi­
ple subsystems (and therefore cannot be completely analyzed 
by any one subsystem alone).The interconnectivity of the 
distributed system is provided by a TCP/IP central router 
program and a set of messaging routines that are linked into 
the subsystem processes. All processes are connected to the 
central router by UNIX sockets. The basic measurement of 
performance for the distributed system is the speed-up S(N), 
defined as the sequential execution time divided by the exe­
cution time on N processors. The current implementation of 
MARVEL has six basic agents: a data management module, 
four subsystem modules, and a system-level diagnostician. It 
has not been possible to measure a unique value S(N) be­
cause of the heterogeneous nature of the agents. This heter­
ogeneity arises because the processing loads of the six agents 
are not identical. Our alternative to this measurement is the 
lowest speedup of the individual modules. With a four-
processor implementation, a speedup of 3.6, or 0.9N was 
observed. This result indicates that MARVEL is a highly 
efficient distributed system. Two factors contribute to these 
results. The first is the modularity inherent in the application 
(and in many other complex applications). The second factor 
is a distributed design that effectively minimizes the need for 
interprocess communication. 

4.0 APPLICATION TO MONITORING AND 
DIAGNOSIS OF A REAL PROBLEM 
In this section we provide an example of cooperation be­
tween multiple hierarchical agents in an actual real-time 
system, as shown in Figure 2. This figure depicts four 
knowledge-based agents (shown in black), each of which has 
expertise in a different domain of the engineering subsystems 
of the Voyager spacecraft. Two of these agents are responsi­
ble for diagnosing anomalies in specific spacecraft sub­
systems: Computer Command Subsystem (CCS), and 
Attitude and Articulation Control Subsystem (AACS). A 
third agent, the System Level knowledge agent, is at a higher 
level in the agent hierarchy and is responsible for diagnosing 
anomalies that cannot be fully analyzed in any single sub­
system domain. A fourth agent provides data quality infor­
mation to the other agents based on data from the Telecom­
munications Subsystem (Telecom), so that when data quality 
is poor, alarms resulting from the diagnostic activity of the 
other agents (based upon the faulty data) can be suppressed. 
Any diagnostic communication between agents is coordinat­
ed by the System Level agent. Al l data quality message 
communication is handled by the Data Quality Management 
Process, an algorithmic module that also communicates with 
the graphical user interface. There is no direct communica­
tion between subsystem agents. As explained in the previous 
section, each agent has an algorithmic telemetry monitor pro­
cess associated with it. 

334 Distributed Al 



The Telecom agent differs from the other two subsystem 
agents in that its purpose is to determine the quality of the 
telemetry data being received from the spacecraft, rather than 
diagnose subsystem anomalies that occur on the spacecraft. 
The data quality level is passed to the Data Quality Manage­
ment process, which in turn sends this information to the 
various telemetry monitor processes. If the data quality is 
determined to be very poor, the reporting of anomalies is par­
tially suppressed (as explained below) since the telemetry 
that led to the anomaly diagnosis is probably not reliable. 

Our example begins with the arrival of telemetry from 
the CCS subsystem which indicates an abnormally high com­
puter event count. The CCS event count is incremented each 
time an event is initiated by the spacecraft computer. One 
type of event is fault-protection, which attempts to automati­
cally correct a fault that has been detected, or protect against 
harmful consequences of such a fault. Thus, an abnormally 
high event count could indicate entry into fault protection 
sequences. The CCS telemetry monitor compares the telem­
etry event count to the predicted event count and finds that 
they are not equal. Since this is an anomaly, the monitor 
passes the event count to the CCS knowledge agent for fur­
ther analysis. The CCS agent finds that the telemetry event 
count exceeds the expected event count by 56. A difference 
of 56 in the event count may indicate that a 'heartbeat fail­
ure" has occurred on the spacecraft. The CCS " heartbeat'' 
is a signal (called a "power code") sent every ten seconds 
from the AACS subsystem to the CCS subsystem on board 
the spacecraft. If the signal is received at the end of the ex­

pected time interval, the CCS spacecraft subsystem assumes 
that the AACS subsystem is functioning normally. If on the 
other hand the CCS fails to receive the heartbeat signal twice 
in a single hour ("heartbeat failure"), the CCS assumes that 
the AACS has failed in some way, and it issues a series of 
commands to switch to redundant back-up components in the 
AACS, in an effort to correct the problem. 

However, a difference of 56 between the actual event 
count and expected event count is not enough evidence in it-
self to conclude that a heartbeat failure has occurred. There 
may have been other events not related to the heartbeat that 
happened to increase the event count by 56. Furthermore, 
there is no way to confirm the occurrence of a heartbeat fail­
ure from any of the CCS telemetry. The CCS agent knows 
that a complete diagnosis of the problem is beyond its do­
main and so in this case it passes on the heartbeat failure 
evidence to the higher level System Level agent for further 
analysis and possible confirmation by other agents. 

Like the subsystem agents, the System Level agent is 
data-driven. Upon receipt of the message from the CCS 
agent, the System Level agent asserts a fact into its local 
knowledge base indicating that a possible heartbeat failure 
was detected by the CCS. This fact matches half of the an­
tecedent of a data-driven rule in the System Level KB, but 
this is not sufficient to fire the rule. The heartbeat failure 
anomaly can be confirmed by diagnostic rules in the AACS 
agent, but at this point no other messages have been received 

Schwuttke and Quan 335 



at the System Level, so nothing is reported to the user. The 
System Level returns control to the telemetry monitor 
process. 

The next telemetry to arrive is a status word from the 
AACS subsystem. The AACS telemetry monitor compares 
the telemetry status word to the expected status word value 
and finds that they are not equal. It then passes the status 
word to the AACS knowledge agent. The agent analyzes the 
status word bits and determines that several AACS compo­
nents have been swapped off-line and their redundant back-
up units have been activated. Based on this pattern of events 
it concludes that a possible heartbeat failure has occurred. 
But this information by itself is not enough to be certain that 
a heartbeat failure has actually taken place. The AACS agent 
knows that a complete diagnosis of the problem is beyond its 
domain and will require information from one or more other 
agents. So it sends a message to the System Level agent no­
tifying it of the possible heartbeat failure. 

When the System Level agent receives the heartbeat fail­
ure message from the AACS agent, it asserts a fact into its 
local knowledge base indicating that a possible heartbeat fail­
ure was detected by the AACS. At this point the previously 
asserted fact from the CCS agent combined with the new fact 
from the AACS agent match the complete antecedent of a 
data-driven rule in the System Level knowledge base, and the 
rule fires. The consequent of the rule causes an anomaly 
message to be sent to the subsystem monitors that were in­
volved in detecting the anomaly, for display to the user. 
However, before this message is displayed, the subsystem 
monitor checks the current data quality as determined by the 
Telecom agent. If the data quality is in the range of marginal 
to error free, the monitor displays both the anomaly message 
and the data quality level in the output window, and turns the 
output window color to red. If on the other hand the data 
quality is poor, meaning excessively noisy, then the teleme­
try that led to the anomaly diagnosis was probably corrupted 
during transmission, and the resulting conclusion is probably 
incorrect. In the latter case the anomaly message is still out­
put to the user, but the alarm is not sounded and the output 
window color is not changed. In addition, the data quality is 
displayed along with the anomaly message so that the user is 
informed that the anomaly diagnosis was probably due to 
data corruption. 

This example illustrates the cooperation and communi­
cation between four different knowledge agents in a hierar­
chical organization. Information from all the agents is 
required in order to provide a complete diagnosis of the 
anomaly condition. These agents illustrate the principles out­
lined in section 2. Each agent is a data-driven diagnostician 
responsible for a constrained non-overlapping domain. Each 
of the subsystem agents has meta-knowledge that allows it to 
identify symptoms that may indicate problems beyond its do­
main, and it reports these symptoms to a higher level agent 
for cooperative multi-agent analysis. 

5. PRELIMINARY RESULTS 
The distributed architecture described in this paper has been 
applied to the MARVEL system for real-time spacecraft 
diagnostics. It has been recently developed, as a follow-on to 
a uniprocessor version that could accommodate only one of 
the three subsystem agents on any one installation. Prelimi­
nary tests have demonstrated that the distributed system can 
process up to 1500 telemetry values per minute. Individual 
subsystem agents can successfully diagnose anywhere from 
2 to 220 anomalies per minute, depending on the complexity 
of reasoning that is required. The System Level agent can 
process up to 300 anomalies per minute. For anomalies that 
require analysis from multiple agents (e.g., heartbeat failure), 
the maximum number of anomalies that can be processed in 
a given period of time is equal to the speed of the slowest 
agent involved in the analysis (assuming all agents execute 
concurrently), plus approximately 1/5 second for System 
Level inferencing. This is well within acceptable limits for 
real life mission operations demands. 

6. CONCLUSIONS 
The MARVEL distributed architecture demonstrates the suc­
cessful implementation of multiple cooperating agents in a 
complex real-time diagnostic system. We have designed an 
architecture that facilitates concurrent and cooperative pro­
cessing by multiple agents in a hierarchical organization. 
These agents adhere to the concepts of data-driven embedded 
diagnosis, constrained but complete non-overlapping do­
mains, meta-knowledge of global consequences of anoma­
lous data, hierarchical reporting of problems that extend 
beyond an agent's domain, and shared responsibility for 
problems that overlap domains. 

The MARVEL architecture is simple and well suited for 
real-time telemetry analysis. Conventional processing is 
used wherever possible in order to facilitate performance. 
The knowledge-based agents are embedded within the algo­
rithmic code, and are invoked only when necessary for 
diagnostic reasoning. Distribution of telemetry monitoring 
and agent processes across workstations provides significant 
improvement in performance. These qualities allow for effi­
cient real-time diagnosis of anomalies occurring in a com­
plex system. 

7. REFERENCES 
[Bratman et ai, 1988] M. E. Bratman, D. J. Israel, M. L. 
Pollack. Plans and Resource-Bounded Practical Reasoning. 
Computer Intelligence 4, 349-355. 1988. 

[D'Ambrosio, 1990] B. D'Ambrosio. Constrained Rational 
Agency. IEEE Transactions on Systems, Man, and 
Cybernetics. 1990. 

336 Distributed AI 



[Durfee et a i , 1987] E. H. Durfee, V. R. Lesser, D. D. 
Corki l l . Coherent Cooperation Among Communicating 
Problem Solvers. IEEE Transactions on Computers, C-
36:1275-1291,1987 

[Durfee, 1988] Cooperation through Communication in a 
Distributed Problem Solving Network, in Distributed Artifi­
cial Intelligence, Vol. 2. Pitman Publishing, 1988. 

[Gasser et al, 1987] L. Gasser, C. Braganza, and N. Herman. 
MACE: A Flexible Testbed for Distributed AI Research. 

Distributed Artificial Intelligence, M. N. Huhns, Ed., Pit­
man/Morgan Kaufman, 1987. 

[Hayes-Roth et a i , 1988] F. A. Hayes-Roth, L. Erman, S. 
Fouse, J. Lark and J. Davidson. ABE: A Cooperative Oper­
ating System And Development Environment. AI Tools & 
Techniques, Ed M. Richer, Ablex. 1988. 

[Howe e ta i , 1990] A. E. Howe, D. M. Hart, and P. R. Cohen. 
Addressing Real-time Constraints in the Design of Autono­
mous Agents. COINS Technical Report 90-06. University of 
Massachusetts at Amherst. 1990. 

[Jennings and Mamdani, 1992] N. R. Jennings and E. H. 
Mamdani. Using Joint Responsibility to Coordinate Collab­
orative Problem Solving in Dynamic Environments. In 
Proceedings of the Tenth National Conference on Artificial 
Intelligence, San Jose, California. 269-275. 

[Lesser and Corkill, 1988] V. R. Lesser and D. D. Corkill. 
The Distributed Vehicle Monitoring Testbed: A Tool for In­
vestigating Distributed Problem Solving Networks. AI Mag­
azine 4(3): 15-33. 

[Schwuttke et al, 1992] U. M. Schwuttke, A. G. Quan, R. 
Angelino, C. L. Childs, J. R. Veregge, R. Yeung, and M. B. 
Rivera. MARVEL: A Distributed Real-time Monitoring and 
Analysis Application, in Innovative Applications of Artificial 
Intelligence 4, MIT Press, 1992. 


