All They Know: A Study in Multi-Agent Autoepistemic Reasoning

PRELIMINARY REPORT

Gerhard Lakemeyer
Institute of Computer Science Il
University of Bonn
Romerstr. 164
5300 Bonn 1, Germany

gerhard@cs.uni-bonn.de

Abstract

With few exceptions the study of nonmonotonic
reasoning has been confined to the single-agent
case. However, it has been recognized that
intelligent agents often need to reason about
other agents and their ability to reason non-
monotonically. In this paper we present a for-
malization of multi-agent autoepistemic rea-
soning, which naturally extends earlier work by
Levesque. In particular, we propose an n-agent
modal belief logic, which allows us to express
that a formula (or finite set of them) is all an
agent knows, which may include beliefs about
what other agents believe. The paper presents
a formal semantics of the logic in the possible-
world framework. We provide an axiomatiza-
tion, which is complete for a large fragment of
the logic and sufficient to characterize interest-
ing forms of multi-agent autoepistemic reason-
ing. We also extend the stable set and stable
expansion ideas of single-agent autoepistemic
logic to the multi-agent case.

1 Introduction

While the study of nonmonotonic reasoning formalisms
has been at the forefront of foundational research in
knowledge representation for quite some time, work in
this area has concentrated on the single-agent case with
only few exceptions.

This focus on single agents is somewhat surpris-
ing, since there is little doubt that agents, who have
been invested with nonmonotonic reasoning mechanisms,
should be able to reason about other agents and their
ability to reason nonmonotonically as well. For exam-
ple, if we assume the common default that birds nor-
mally fly and if Jill tells Jack that she has just bought
a bird, then Jill should be able to infer that Jack thinks
that her bird flies. Multi-agent nonmonotonic reasoning
is also crucial when agents need to coordinate their ac-
tivity. P'or example, assume | promised a friend (who is
always on time) to meet him at a restaurant at 7/PM. If |
leave my house knowing that | will not make it there by
7PM, 1 will probably not change my plans and still go
to the restaurant. After all, | know that my friend has
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no reason to believe that | am not on my way to meet
him and that he will therefore wait for me. Note that |
reason about my friends default assumption to wait in
this case. Other examples from areas like planning and
temporal projection can be found in [Mor90].

One of the main formalisms of nonmonotonic reason-
ing is autoepistemic logic (e.g. [Moo85]). The basic idea
is that the beliefs of agents are closed under perfect in-
trospection, that is, they know' what they know and
do not know. Nonmonotonic reasoning comes about in
this framework in that agents can draw inferences on
the basis of their own ignorance. The following exam-
ple by Moore illustrates this feature: | can reasonably
conclude that | have no older brother simply because |
do not know of any older brother of mine. A partic-
ular formalization of autoepistemic reasoning is due to
Levesque [Lev90], who proposes a logic of only-knowing
{OL), which is a classical modal logic extended by a new
modality to express that a formula is all an agent be-
lieves. An advantage of this approach is that, rather
than having to appeal to non-standard inference rules as
in Moore's original formulation, OL captures autoepis-
temic reasoning using only the classical notions of logical
consequence and theoremhood.

In this paper, we propose a propositional multi-agent
extension of OL. We provide a formal semantics within
the possible-world framework and a proof theory, which
is complete for a large fragment of the logic. The new
logic also leads us to natural extensions of notions like
stable sets and stable expansions, which were originally
developed for the single-agent case.

General multi-agent nonmonotonic reasoning for-
malisms have received very little attention until
recently.2 A notable exception is work by Morgen-

stern and Guerreiro [Mor90, MG92], who consider both
multi-agent autoepistemic reasoning and multi-agent cir-
cumscription theories. On the autoepistemic side, they
propose multi-agent versions of stable sets, which al-

"While we are concerned with belief and, in particular,
allow agents to have false beliefs, we nevertheless use the
terms knowledge and belief interchangeably.

2There has also been work applying nonmonotonic the-
ories to special multi-agent settings such as speech acts
(e.g. [Per87, AK88]). Unlike our work, these approaches are
not concerned with general purpose multi-agent nonmono-
tonic reasoning.



low agents to reason about other agents' nonmonotonic
inferences. In contrast to our work, however, these
stable sets are not justified by an independent seman-
tic account. Recently, and independently of our work,
Halpern [Hal93] also extended Levesque's logic OL to
the multi-agent case. While Halpern's logic and ours
share many (but not all) properties, the respective model
theories are quite different. In particular, while our ap-
proach remains within classical possible-world semantics,
Halpern uses concepts very much related to the so-called
knowledge structures of [FHV91]. Using the same tech-
nique, Halpern also extends the notion of only-knowing
proposed in [HM84] to the multi-agent case. There, how-
ever, agents are not capable of reasoning about other
agent's nonmonotonic inferences because only-knowing
is used only as a meta-logical concept.

The rest of the paper is organized as follows. Section 2
defines the logic OLn, extending Levesque's logic of only-
knowing to many agents. Besides a formal semantics we
also provide a proof theory, which is complete for a large
fragment of OLn. Furthermore, we look at the proper-
ties of formulas in OLn which uniquely determine the
beliefs of an agent and are thus of particular interest to
knowledge representation. Section 3 considers examples
of multi-agent autoepistemic reasoning as modeled by
OLn  Section 4 shows how OLn yields natural multi-
agent versions of stable sets and stable expansions. Fi-
nally, we summarize the results of the paper and point
to some future work in Section 5.

2 The Logic OLn

After introducing the syntax of the logic, we define the
semantics in two stages. First we describe that part of
the semantics that does not deal with only-knowing. In
fact, this is just an ordinary possible-world semantics for
n agents with perfect introspection. Then we introduce
the necessary extensions that give us the semantics of
only-knowing. Finally, we present a proof theoretic ac-
count, which is complete for a large fragment of the logic,
and discuss properties of the logic which are important
in the context of knowledge representation.

2.1 Syntax

Definition 1 The Language OL,

The primitives of OL, consist of a countably infinite
set of atomie propositions (er aloms), the connectives
V, =, and the modal operators Ly and O for 1 < <
n. (Agents are referved to as 1,2,...,n.) Formulas are
formed in the usual way from these primitives® L;a
should be read as “the agent i belicves a” and O;a as “a
is all agent § believes.” A formula a is called basic iff
there are no occurrences of O; {1 < {1 < n) in .

Definition 2 A modal operalor occurs af depth n of
a formula o ff it occurs within the scope of ezactly n
modal operators.

*We will freely use other connectives like A, > and 3=,
which should be understood as syntactic abbreviations of Lthe
usuval kind.

For example, given @ = pALLy(L3qV—0,r), L) occurs
at depth 0, Ly at depth 1, and Ly and O3 occur both at
depth 2.

Definition 3 A formule o is called i-objective (fori =
1,...n) iff every modal operaior al depth 0 is of the form
O; orL; withi # j.

In other words, i-objective formulas Lalk about the ex-
ternal world from agent i's point of view, which includes
beliefs of other agents but not his own. For example,
(pvL2g)A—~O3L,p is 1-objective, but (pVLy¢)A-L; Ozp
15 not.

Definition 4 A formula a is called i-subjective ¢ff ev-
ery modality at depth 0 is of the form L, or O; and every
atom occurs within the scope of a modal operaior,

That is, i-subjective formulas talk only about what ageni
i believes. For example, LypA—0,pis 1-subjective, LipA
g and L,p A Lzg are not.

2.2 The Semantics of Basic Formulas

Basic formulas are given a standard possible-world se-
mantics [Kri63, Hin62, Hin71], which the reader is as-
sumed to be familiar with.* Roughly, a possible-world
model consists of worlds, which determine the truth of
atomic propositions, and binary accessibility relalions
between worlds. An agent’s beliefs at a given world w are
determined by what is true in all {hose worlds that are
accessible to the agent from w. Since we are concerned
with agenis who possess perfect inirospeciion, we restricl
the accessibility relations in the usual way, that is, they
are both transitive and Euclidean.® The resulting logic
is called K{5, or weak S5,.%

Definition 5 A Ki{5.-Model
M = (W x R,... R, is called ¢« K{5,-model (or
simply model } iff

1. W is a set [of worids).

2. w is ¢ mapping from the set of atoms into 2% .

S RRCWxW forl <i<n.

4. R, is transitive and Fuclidean for 1 < i <n,

Given a model M = {W,=n, Ry,...,R,) and a world
w € W, the possible-world semantics of basic formu-
las is defined as follows: Let p be an atom and « and 8
arbitrary basic formulas.

wkp <= we x(p)

wE-e — wha

wkaV g <<= wka or wkf

wkLiae <= forall v, if wRw' then w'a
A set of basic formulas I" is satisfiabie iff there is a model
M={(Wx Ry, ...,Rs) and w € W such that wi=y for
all reT.

In the single-agent case, Levesque made use of the fact
that the semantics of K{5, has a much simpler formula-
tion. There we can assume a fixed set of worlds, which is
the sel of all truth assignments. A model then consists

*See [HO84, BM92] for an introduction,

* R, is Euclidean iff Yw, v, w”, if wR,w' and wR.w", then
w' Rw'".

®The subscript n indicates that we are concerned with the
n-agent case.
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of a world w, which corresponds intuitively to the real
world, and a set of worlds W', which determine the beliefs
of the agent. There is no need for an explicit accessibil-
ity relation, since the worlds in M are globally accessible
from every world and a sentence is believed just in case
it is true at all worlds in W. Unfortunately, such a sim-
ple model does not extend to the multi-agent case and
we are forced to a more complicated semantics with ex-
plicit accessibility relations as defined above.7 For this
reason, the extension of Levesque's logic OL to many
agents turns out to be a non-trivial exercise.

2.3 The Canonical Model

It is well known that, as far as basic formulas are con-
cerned, it suffices to look at just one, the so-called canon-
ical model [HC84, HM92]. This canonical model will be
used later on to define the semantics of only-knowing.

The central idea behind canonical models are maxi-
mally consistent sets.

Definition 6 Maximally consistent sets

Given any proof theory of K45n and the usual notion of
theoremhood and consistency, a set of basic formulas T
is called maximally consistent iff T is consistent and
for every basic @, either &« or —ar is contained in T.

The canonical K45n-model Mc has as worlds precisely
all the maximally consistent sets and a world w' is in-
accessible from w just in case all of i's beliefs at w are
included in w'.

Definition 7 The Canonical K45n-Model Mc
The canonical model Mc = (We¢, TI, R1,..., Rn) is a
Kripke structure such that

I. W, = {w | w is @ marimally consislent set}.
2 Forallatomspandwe W, wen(p) iffpew.
S whiw' ff for all formulas Ljo, if Lia € w then
a€w.
The following (well known) theorem tells us that noth-

ing is lost from a logical point of view if we confine our
attention to the canonical model.

Theorem 1 Mc is a K{5,-model and for every set of
basic formulas T, T is satisfiable iff it is satisfiable in
Mc.

2.4 The Semantics of All They Know

Given this classical possible-world framework, what does
it mean for an agent i to only-know, say, an atom p at
some world w in a model MI Certainly, i should believe
p, that is, all worlds that are i-accessible from w should
make p true. Furthermore, i should believe as little else
as possible apart from p. For example, i should neither
believe q nor believe that j believes p etc. Minimizing
knowledge using possible worlds simply means maximiz-
ing the number of accessible worlds. Thus, in our ex-
ample, there should be an accessible world where q is
false and another one where j does not believe p and
so on. It should be clear that in order for w to satisfy

7In essence, if we have more than 1 agent and a global

set of worlds for each agent, the agents would be mutually
introspective, which is not what we want.

378 Distributed Al

only-knowing o this way, the model M must have a huge
supply of worlds that are accessible from w. While not
essential for the definition of only-knowing, it turns out
to be very convenient to simply restrict our attention to
models that are guaranteed to contain a sufficient sup-
ply of worlds.® In fact, we will consider just one, namely
the canonical model of K45,. Let us call the set of all
formulas that are true at some world w in some model
of Ki5, a world state. The canonical model has the nice
property that it contains precisely one world for every
possible world state, since world states are just maxi-
mally consistent sets.

With that agent { is said to only-know a formula o
at some world w (in the canonical model) just in case
a is believed and any world w' which satisfies « and
from which the same worlds are i-accessible as from w
is itself i-accessible from w. We now turn to the formal
definitions.

Definition 8 Given g model M = (W, x, R),..., Ry)
and worlds w and w' in W, we say that w and w' are i-
equivalent (w ==; w'} iff for all worlds w* € W, wR;uw*
iff w' Riw*.

Given an arbitrary formula a of OL,, a world w in a
model M, let

wEO;a¢ < for all v’ s.t. vy v, wRiw iffl vieo.

A formula o of OL, is a logical consequence of a set of
formulas T' ifl for all worlds w in the canonical model
M., if wEy for all ¥ € I', then wl=a. As usual, we say
that a is valid (|=a) iff {}lEo. A formula a is satisfiable
iff —er is not valid.

Note that Theorem 1 guarantees that OL, restricted
to basic formulas is still simply K{5,.

A superficial comparison of the rules for O, and L,
suggests that they differ at two places. For one the O;-
rule quantifies over i-equivalent worlds only. For another,
the “if ... then” of the L;-rule is replaced by an “iff.”
While the latter is significant, it can be easily shown that
we cah restrict the L;-rule to quantify over i-equivalent
worlds as well.

Lemma 2.1
For any K{5,-model M and world w in M,

wEL;a < for all w’s.t. w=; v if wR;vw' then v'Eo

2.5 A Proof Theory

In order to obtain a proof theory for a large fragment of
OL,, we apply the same idea Levesque used to axiom-
atize his logic GL. The idea is to add a dual operator
N; for every L; to the language OL,, which we refer to
as ONL,. While Lo can be read as “agent i knows a¢
least &,” N;a should be read as “agent i knows at mos!
that o is false.” O,e now becomes simply an abbrevi-
ation for L;o A N;-a, that is, agent 7 believes only «
iff he believes at least and at most a. We extend the
notion of an i-subjective or i-objective formula to cover
the N;-operators as well. For example, -L;p AN1=Lsp
is both l-subjective and 2-objective.

®In Levesque’s OL, this is automatically given since worlda
are drawn from the fixed set of all truth assignments.



“The semantica of N; is as follows. N;a is true at
a world w ifl & is true at all i-equivalent worlds of w
which are not accessible from w. In the formalization
it 18 convenienl to add new accessibility relations R; for
just these non-accessible worlds to the canonical K45,-
model. This way, the N; behave just like ordinary K{§
belief operators,

Definition 9 The Fztended Canonical Model
Given the canonical model M, = (W, m, Ry, ..
the extended canonical model be

Mec = (wtyﬂ-)RlI"':Rﬂ&Ell"

. RBp), let

-1 TZ"),
where for all w, w' € W,, wRiv' iff w = w' and wil,w'.
Lemma 2.2 The B; are transilive and Euclidean.

Given the extended canonical model M,, and a world
w € W,, the semantic rule for N; is simply:

whNia <=3 for all w', if wiiw' then w'fa.

Noticns like logical consequence and validity for this ex-
tended logic are defined as for 0L, with M, replaced by
M.

Given Lemma 2.2, it is obvious that the N; have all
the properties of a K{5,-operator. Moreover, if we view
L; and N; as two different agents, then the L,-agent
knows exactly which worlds the N;-agent can see and
vice versa. In other words, the L;-agent and N;-agent
are mutually introspective. For example ~L;p O N;-L;p
1s valid. Finally, note that for every equivalence class of
worlds W, under =, R; and T; cover all worlds in W; ex-
haustively, that is, taken together, the two relations form
a complete subgraph over W,. This feature is reflected
in valid formulas of the form Nja D -L;a for falsifiable
@.

Axioms:

Al Axioms of propositional logic

A2 L.-(u ] ﬂ) N (L,—rx D L.ﬁ)

A3 Ni{a D 8) D (Nia D N;g)

A4 o5 D Lijo ANjo for all i-subjective o

Ab N;a D -L,a for all basic i-obj. o falsif. in A4S,
A6 Oia =(L;o AN;-a} forall a

Inference Rules:

MP  From e and o« D # infer S.
Nee  From a infer Lya and N;or.

Note that A2-A4 imply thal the L; and N, have all
the propertics of regular K {J,-operators. Also, A4 not
only gives us the regular introspection axioms of X435,
but also cross axoms (mutual introspection) such as
=L;a D N;-L;a. Ab provides the crucial link between
L, and N; capturing the relationship between “knowing
at least” and “knowing at most.”®

Theorem 2 Soundness

Given the usual definition of theoremhood () with re-
spect 1o the above proof theory, for all o in ON L,
ifFo then Eo.

9 Levesque, in his axiomatization of O, uses a special case
of this axiom. In hig case, o ranges merely over the {alsifiable
formulas of classical propositional logic {no modalities).

Notice that axiom A5 assumes that o ranges only over
basic i-objective formulas. We need this restriction in or-
der to appeal to falsifiability in the existing logic K45,.1°
For the axiomatization to be complete, such a restric-
tion essentially requires that arbitrary formulas N8 or
L;8 are reducible to equivalent forms N;#* and L;3°,
where " is a basic formula, that is a formula without
any N;’s. That, however, is not true in general. For
example, LyN;p and N;L;N;p are not reducible for dis-
tinct ¢ and 7. However, if we rule out such cases, the
proof theory is indeed cotnplete for the restricted lan-
guage, which we call ON L.

Definition 10 The Language ONL]

a i5 a formuls of ONL; iff @ 15 a formule of ONL,
and, after replacing every occurrence of O, within & by
its definition L;§ A N;—f, no N; may occur within the
scope of an Ny or L; for i # j.

For example, while N;L;—N;p and N;(L;p V N,—p) are
in ONL;, NiN;p and N;L;N;p are not for distinct #
and j.

Theorem 3 Completeness For ONL;,

For alla € ONL, if Fa then bFa.

Proof : The proof is an adaptation of Levesque’s com-
pleteness proof for OL [Lev80]. B

(Halpern recently proved that the above proof theory is
indeed nof compiete for all of OL,.)

Given Theorem 2 and 3, it is not hard to prove
that OL, is equivalent to the propositional version of
Levesque’s logic OL because Levesque’s proof theory is
a special case of ours.

Theorem 4 OL, and OL are eqguivalent
A Jormula o in OL; t5 a theorem of OLy) iff o is a
theorem of OL.

We introduced the operator N; mainly for the purpose
of obtaining a proof theory for OL,. Except for a for-
mal derivation using the axioms in Section 3, we will no
longer be concerned with the N;-operators in the rest
of the paper and go back to the original OL, and its
language OL,,.

2.6 i-Determinate Sentences
We now turn to a class of formulas which are of par-
ticular interest to knowledge representation, since they
determine, when only-known, precisely what an agent
believes and does not believe.
Definition 11 i-Deferminate Formulas'!
A formula o € OL, is i-determinate iff

1. there is a world w in M, such thal wEO;o and

2. for all worlds ', if WO then w = /',
The following theorem demonstrates that i-determinate
formuias indeed deserve their name.
Theorem 5 For all a € OL,, a is i-delerminate iff
Jor all B, exactly one of O;a D L and O;a D -L;f 3s
valid.

1®Note that this peculiar axiom schema is recursive since
falsifiability in propositional K{5, is decidable.

11n the single-agent case, the analogous concept of deter-
tninate formulas was defined in [Lev90).
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What are examples of determinate formulas? In the
single-agent case, it has been shown that all objective
formulas (no modalities at all) are determinate. Not
surprisingly, objective formulas are also i-determinate.
In fact, this result can be generalized to include all basic
i-objective formulas.

Theorem 6
All basic i-objective formulas are i-determinate.

Other examples of i-determinate formulas, which are
not i-objective, include ~L;~p D p and -L;L;p D -L;p,
which allow agents to reason nonmonotonically and are
discussed in more detail in Section 3.

So far we have only considered basic i-determinate
sentences. Does the above result extend to non-basic
i-objective formulas as well? The answer, surprisingly,
is: sometimes but not always! For example, it is not
hard to show that the formula O;p (where p is an atom)
is also i-determinate, that is, the beliefs of agent i are
uniquely determined if all i knows is that all j knows is p.
However, the formula—Q;p is not i-determinate because
#_'O.'“ij.lz In other words, it is impossible for i to
only-know that j does not only-know p. Intuitively, for
i to know that j does not only-know p, i needs to have
some evidence in terms of a basic belief or non-belief of
j. It is because of properties like E=-(}~0;p that our
axiomatization is not complete for all of QN L,

3 Multi-agent Nonmonotonic
Reasoning

While our axiomatization is complete only for a subset of
OL, it is nevertheless strong enough to model interest-
ing cases of multi-agent nonmonotonic reasoning. Here
are two examples:

1. Let p be agent i's secret and suppose i makes the
following assumption: unless 1 know that j knows my
secret assume that j does not know it. We can prove
in OL, that if this assumption is all i believes then he
indeed believes that j does not know his secret. Formally
F Oi(-LiL;p > ~L;p) D Li~L;p."?

A formal derivation of this theorem of OL, can be ob-
tained as follows. Let & = =L;L;p 2> —~L;p. The justifi-
cations in the following derivation indicate which axioms
or previous derivations have been used to derive the cur-
rent line. PL or K43, indicate that reasoning in either
standard propositional logic or A'45, is used is without
further analysis.

l O;o 2L A6 PL
2 Oia D Ni—a A6, PL
3 (Lian -LiL;p) O Li-L;p K45y

4 Ni=aD (N.'-!L,'Ljp/\ N.‘Ljp) K45,

5 N.'Ljp ) —'L.‘L,'p AS

68 O;ad —lL,‘Ljp 2;4;5;PL
7 Oia D Li-L;p 1;3;6; PL

To see that i's beliefs may evolve nonmonotonically given
"?In contrast, 0:~Q,p is satisfiable in Halpern's logic.

®Note that if we replace L,p by p we obtain regular single-
agent autoepistemic reasoning.

380 Distributed Al

that { only-knows a, assume that i finds out that j has
found out about the secret. Then ¢’s belief that j does
not believe the secret will be retracted. Formally
F Oi(Ljp A (~L:Ljp D =L;p)) D (-Li-~L;p A L;L;p).
Notice that, while OL, is itself a regular monotonic logic,
the nonmonotonicity of agent i's beliefs is hidden within
the O;-operator.

Finally, ~L;L;p O -L;p is also i-determinate.
In particular, O,;(~L;L;p D -L;p) = O;-L;p is valid.

2. Now let p stand for the old “Tweety flies.” As
expected, we obtain - Q;(~L;~p D p) 3 L;p. (Not sur-
prisingly, ~L;—p O p is )-determinate.) By the rule of
necessitation and the distribution axiom for belief we
immediately get F L;O;(-L;-p D p) D L;L;p. In other
words, { is able to reason about j’s ability to reason non-
monolonically, essentially by simulating f’s reasoning.

It should be poinied out that an assumption like i
knows that @il § knows is a is certainly unrealistic in
general and is related to what Morgenstern calls arro-
gance [Mor90). It would be much more reasonable if we
could say that 1 knows that « is all § knows about some
relevant subject, say Tweetly. In fact, we have proposed
such a notion of only-knowing-about as an extension of
OL, in [Lak93]. There we also show that only-knowing
is often a good approximation of only-knowing-aboul in
the sense that, if we restrict ourselves to beliefs that are
only about the subject matter in question,! then the be-
liels that follow from only-knowing-about are the same
as those that follow from only-knowing.

4 i-Stable Sets and i-Stable Expansions

Single-agent autoepistemic logic was originally devel-
oped using the concepts of stable sets [Sta80] and ste-
ble expansions [MooB5]. Here we define natural n-agent
extensions of these notions and show how they relate to
Ol.. For the purposes of this paper, we confine our-
selves to basic formulas only.

Definition 12 i-Epistemic Siale

A set of basic formulas I' is called an t1-epssiemic siate
iff there is a world w in M, such thai for all basic «,

wkL;y if y€T.
Definition 13 +-Steble Sets
Let T be a set of basic formulas. T is called i-stable iff

1. T containz all valid formulas of K{5,.

L Haelandad B eET then BeT.

S Ifo €Tl then Lie I,

§ Ifoagl therm "Lia € T
Note that the only difference between i-stable sets and
the original definition of stable sets lies in condition 1.
While stable sets are only required to contain the tau-
tologies of regular propositional logic, i-stable sets must
contain all K435,-valid formulas.

The next theorem proves that i-stable seta and i-
epistemic states are equivalent noticns. In other words,
the definition of i-stability falls out naturally given the
semantics of OL,,.

14The subject matter is defined as a set of atomic proposi-
tions x, The restriction says that the atoms occurring within
a belief must be contained in .



Theorem 7
Let T be a set of basic formulas. T is i-stable tff T 1s an
$-episiemic stale.

Halpern arrived at the same notion of i-stability inde-
pendently [Hal93]. He also considered definitions based
on logics other than K{3,.

Given a set of basic formulas T, let T =
{7 | v is basic and ¥ g T'}, L;I" = {L;v | for all y € T},
and -L,T = {=L;¥ { for all v € T'}.

Definition 14 i-Stable Ezpansion
Let A be a sei of basic formulas and let =, . denote
logical consequence in K{§5,. T is called an 1-stable ez-

pansion of A iff T = {basic v | AUL;T U-LTk, 7}

The definition of i-stable expansions looks exactly like
Moore's definition of stable expansions except that we
use logical consequence in K45, instead of logical conse-
quence in propositional logic. Using the stronger K{5, is
necessary in the multi-agent case, since an agent knows
that other agents are also perfectly introspective. For
example, if agent i believes —L;p for a different agent j
then he also believes L, -L;p.

Finally, the following theorem demonstrates that the
i-stable expansious of a formula o correspond precisely
to the different i-epistemic states of agent i who only-
knows a.

Theorem 8 Only-Knowing and i-Stable Ezpansions
Let e be basic and w € W, with T' = {basic o } wEL;a}.
Then wEO;a ff T is en 1-stable expansion of {o}.

An analogous result was obtained by Halpern [Hal93)].

Corollary 4.1 Hasic i-objective formulas have a unigue
t-stablc expansion.

5 Conclusion

We proposed a multi-agent logic of only-knowing that
extends earlier work by Levesque regarding the single-
agent case. Our logic gives a semantic and proof theo-
retic account of autoepistemic reasoning for many know-
ers. Notions like stable set and stable expansion fall out
as natural extensions of single-agent autoepistemic logic.

As for future work, it would be interesting to ob-
tain a complete axiomatization for all of OL. Also, as
noted earlier, there are subtle differences between OL,
and Halpern's logic. Halpern showed that every valid
sentence in his logic is also valid in OL, and that the
valid sentences of both logics coincide when restricted to
(')N.C;. However, there are sentences such as ~(;-(};p
that are valid in OL, but not in Halpern's case. For
a better comparison of the two approaches it would be
interesting to see which modifications are necessary to
obtain identical logics. Finally, a more expressive first-
order language should be considered to make OL, more
applicable in real world domains. We conjecture that an
approach as in [Lev90] could be adapted for this purpose
without great difficulty.
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