Oz—A Programming Language for Multi-Agent Systems*

Martin Henz, Gert Smolka, Jorg Wurtz

German Research (‘enter for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
D-6600 Saarbrucken
Germany
E-mail: {henz, smolka, wuertz}@dfki. uni-sh.de

Abstract

Oz is an experimental higher-order concurrent
constraint programming system under develop-
ment at DFKI. It combines ideas from logic and
concurrent programming in a simple yet expres-
sive language. From logic programming Oz in-
herits logic variables and logic data structures,
which provide for a programming style where
partial information about the values of vari-
ables is imposed concurrently and incremen-
tally. A novel feature of Oz is that it accommo-
dates higher-order programming without sacri-
ficing that denotation and equality of variables
are captured by first-order logic. Another new
feature of Oz is constraint communication, a
new form of asynchronous communication ex-
ploiting logic variables Constraint communi-
cation avoids the problems of stream communi-
cation, the conventional communication mech-
anism employed in concurrent logic program-
ming. Constraint, communication can be seen
as providing a minimal form of state fully com-
patible with logic data structures

Based on constraint communication and
higher-order programming, Oz readily supports
a variety of object-oriented programming styles
including multiple inheritance

1 Introduction

Oz is an attempt to create a high-level concurrent pro-
gramming language bringing together the merits of logic
and object-oriented programming m a unified language.

Our natural starting point was concurrent constraint
programming [Saraswat and Rinard, 1990], which brings
together ideas from constraint and concurrent logic pro-
gramming. Constraint logic programming [Jaffar and
Lassez, 1987, Colmerauer and Benhamou, 1993], on the
one hand, originated with Prolog Il [Colmerauer tt al.,
1983] and was prompted by the need to integrate num-
bers and data structures in an operationally efficient,
yet logically sound manner Concurrent logic program-
ming [Shapiro, 1989], on the other hand, originated with

*This work has been supported by the Bundesminister fiir
Forschung und Technologic, contract ITW-9105.

404 Distributed Al

the Relational Language [Clark and Gregory, 1981] and
was promoted by the Japanese Fifth Generation Project,
where logic programming was conceived as the basic sys-
tem programming language and thus had to account for
concurrency, synchronization and indeterminism. For
this purpose, the conventional SLD-resolution scheme
had to be replaced with a new computation model based
on the notion of committed choice. At first, the new
model developed as an ad hoc construction, but finally
Maher [Maher, 1987] realized that commitment of agents
can be captured logically as constraint entailment. A
major landmark in the new field of concurrent constraint
programming is AKL [janson and Haridi, 1991], the first
implemented concurrent constraint language accommo-
dating search and deep guards

Saraswat's concurrent constraint model [Saraswat and
Rmard, 1990] can accommodate object-oriented pro-
gramming along the lines of Shapiro's stream-based
model for Concurrent Prolog [Shapiro and Takenchi,
1983]. However, this model is intolerably low-level due
to the clumsiness of stream communication and the lack
of higher-order programming facilities. This becomes
fully apparent, when the model is extended to provide
for inheritance [Goldberg et al., 1992].

Thus the two essential innovations Oz has to provide
to be well-suited for object-oriented programming are
better communication and a facility for higher-order pro-
gramming Both innovations require stepping outside of
established semantical foundations. The semantics of Oz
is thus specified by a new mathematical model, called the
Oz Calculus, whose technical set-up was inspired by the
m-calculus [Milner, 1991], a recent foundationally moti-
vated model of concurrency.

The way Oz provides for higher-order programming is
unique in that denotation and equality of variables are
captured by first-order logic only. In fact, denotation
of variables and the facility for higher-order program-
ming are completely orthogonal concepts in Oz. This is
in contrast to existing approaches to higher-order logic
programming [Nadathur and Miller, 1988, Chen et a/,,
1998].

Constraint communication is asynchronous and inde-
terimnistic. A communication event replaces two com-
plementary communication tokens with an equation link-
ing the partners of the communication. Constraint com-
munication introduces a minimal form of state that

is fully compatible with logic data structures. Effi-
cient implementation of fair constraint communication
is straightforward.

The paper is organized as follows. The next section
outlines a simplified version of the Oz Calculus. Sec-
tion 3 shows how Oz accommodates records as a logic
data structure. The remaining sections present one pos-
sible style of concurrent object-oriented programming
featuring multiple inheritance.

2 The Oz Calculus

The operational semantics of Oz is defined by a mathe-
matical model called the Oz Calculus [Smolka, 1993]. In
this section we outline a simplified version sufficing for
the purposes of this paper

The basic notion of Oz is that of a computation space.
A computation space consists of a number of agents con-
nected to a blackboard (see Fig 1) Each agent reads
the blackboard and reduces once the blackboard contains
the information it is waiting for. The information on the
blackboard increases monotonically When an agent re-
duces, it may put new information on the blackboard
and create new agents. Agents themselves may have one

Agent ... Agent /\
N/ & o

Blackboard //\

=]]

Figure §: Computation Model

or several local compntation spaces. Hence the entire
campntation system is a tree-like structure of computa-
tion spaces (see Fig. 1.

The agents of a computation space are agents at the
micro-level, They are used to program agents at the
macro-level. Oue iteresting form of macro-agents are
tlhe objects we will 1trediice in o later section of tlas
paper.

Formally, a computation state s an expression ac-
cording to Fig. 2. (If £ is a syntactic category, € de-
notes a possibly empty sequence £...£) Constraints,
abstractions and communication tokens reside on the
blackboard. Applicatious and cowditionals are agents,
Composition and quantification are the glie assemmbhing
agents and blackboard ety into a computation space,
Quantification introduces jocal varables. Abstractions
may he seen as procedure definitions and applications as
procedure calls.

The clauses of a conditional are unordered. Their
guards, 1.e., ¢ 1n 37 (o then 7), constilute local com-
putation spaces. Note that any expression can be taken
as a guard; one speaks of a flat gouard i the goard 18 a
ronstraint.

There are two variable binders: uantilication 3re
binds = with scope o and abstraction r:%/e binds the

variables in % with scope . Free variables of an expres-
sion are defined accordingly.

£, variables

oT =
¢ constraint
r:ylo abstraction
'y put token
2y get token
ry application
ifw, . w,elses conditional
FAT compuosition
dre quantification

w = 37F{~ then 1) clause

b o= 1| Tls=t|r® oAy

Figure 2. Expressions of the Oz Calenlus

Compatation is defined as reduction (i.e., rewriting)
of expressions. A reduction step is performed by ap-
plying a reduction rule to a subexpression satisfying the
application conditions of the rule. There is no backtrack-
ing. Control is provided by the provision that reduction
rules must not be applied Lo mute subexpressions, 1.e.,
subexpressions that ocenr within bodies of clauses, else
parts of conditionals, or bodies of abstractions. It is up
to the unplementation which non-mute subexpression is
rewritten with which applicable rule

Reduction "o — 1" is defined modulo structural con-
gruence “a = 1" of expressions, that is, satisfies the
inference rule

’ ’

c=a o1 =T

a—r
Structural congroence 1s an abstract equality for compu-
tation states turning thets from purely syntactic objects
into semantical ohjects. Structural congruence provides
for associativity and commutalivity of composition, re-
nannng of bound variables, quantifier mobility

draAr=dr(o At if v does not occur free in 7,

constraint simplification, and information propagation
from global Mackboards to local hlackboards.

2.1 Constraints

Constratnts (¢4 in Figure 2) are formulas of first-order
predicate logic providing for data structures. Logical
coujunction of constraints comncides with composition
of expressions. Constraints express partial information
about the values of variables. The semantics of con-
straints 1s defined logically by a first-order theory A and
unposed with the congruence law

¢ = fAE¢—

This law closes the blackboard under entailed constraints

(since A ¢ —~ ¢ ifl Al ¢ — ¢Avy). The congruence

Henz, Smolka, and Wurtz 405

law

r=yAo = r=yAcly/r] ifyisfreeforrine

imposes equalities on the blackboard to the rest of the
computation space {o[y/z] is cbtained from o by replac-
ing every free occurrence of & with y). Equality of vari-
ables is strictly first-order: Two variables x, y are equal if
the constraints on the blackboard entail » =y, and differ-
ent if the constraints on the blackboard entail =(z=y).
Of course, the information on the blackboard may be in-
sufficient. to determine whether two variables are equal or
different. Moreover, an inconsistent blackboard entails
both =y and ~(z=y).
The Anullation Law

FEAFIT) =T

A 3IT¢ and ¥ C L(T, ¢), where
L(7,¢) = {y€T|V2 g ray=:=> 2 €T}

provides for the deletion of quantified constraints and
abstractions not affecting visible variables.

2.2 Application

An application agent rF waits until an abstraction {or
its link = appears on the blackboard and then reduces as
follows:

FF A r:Ife — JT(T=FAe) A & Tfo
i T and ¥ are disjoint. and of equal length.

Note that the blackboard y: /0 A r =y contains an ab-
straction for # due to the congruence laws staled above.
Since the link » of an abstraction z: %/e is a variahle
like any other, abstractions can easily express higher-
order procedures. Note that an abstraction #:§/e does
not impose any constramnts (e.g., equalities} on 1ts link
T

2.3 Constraint Communication

The semnantics of the two communication tokens is de-
fined by the Communication Rule:

slyAzty — r==z.

Application of this rule amounts to an indeterministic
transition of the blackboard replacing two complemen-
tary communication tokens with an equality constraint.
The Communication Rule is the only rule deleting items
from the blackboard. Since agents read only constraints
and abstractions, the information visible to agents nev-
ertheless increases monotonically.

2.4 Conditional
It remains to explain the semantics of a conditional agent,

if 37, (o) then) - 37, (7, then n,) else ju.

The gnards &; of the clauses are local computation
spaces reducing concurrently. For the local computa-
tions to be meaningful it is essential that information
from glohal blackboards is visible on local blackboards.

406 Distributed Al

This is achieved with the Propagation Law (recall that
the clauses are unordered):

r A if 35 (¢ then 1) T else p

* A 3T (r Ao then) & else it

if x is a constraint or abstraction and
no variable in T appears free in 1.

Head from left to right, the law provides for copying in-
formation fromn global blackboards to local blackboards.
Read from right to left, the law provides for deletion of
local information that is present globally. An example
verified by employing the Propagation Law in both di-
rections (as well as constraint simplification) is

z=1 A if (=1 then o) (z=2 then r) else u

= r=1 A if (T then ¢) (L then 7) else u.

The example assumes that the constraint theory entatils
that 1 and 2 are different.

Operationally, the constraint simplification and prop-
agation laws can be realized with a so-called relative sim-
plification procedure. Relative simplification for the con-
straint. system underlying Oz is investigated in [Smolka
and Treinen, 1992)].

There are two distinguished forms a guard of a clause
may eventually reduce to, called satisfied and failed. If a
guatd of a clause is satisfied, the conditional can reduce
by committing to this clause:

f 3F (v then 1) welsey — IT(aAT) fdFe=T.
Reduction puts the guard on the global blackboard and
releases the body of the clause.

A guard is failed if the constraints on its blackboard
are unsatisfiable. If the guard of a clause 15 failed, the
clause is simply discarded:

if IF (L Ao then 1) & else g — If & else u.

Thus a conditional may end up with no clauses at all, in
which case 1t reduces to tls else part:

ifelse p — p.
The redietion
r=] A if{z=1] theno) (r=2then r)else u
— r=1l Aga
is an example for the application of the first rule, and
=3 Aif(r=1thens)(r=2thenr)elsep
—* =3 A pn

is an example employing the other two reduction rules.

2.5 Logical Semantics

The subcalculus obtained by disallowing communication
tokens and conditionals with more than one clause en-
Joys a logical semantics by translating expressions into
formulas of first-order predicale logic as follows (compo-
sition 1s interpreted as conjunction, and quantification is
interpreted as existential quantification):

r:gle => Yy(apply(r¥) « o)
apply(<%)
AT (o A7) Vv (3T A p).

if 37 (¢ then) else ¢ =%

Under this translation, reduction is an equivalence trans-
formation, that is, ife —w rore = 7, then A a — 1.
Moreover, negation can be expressed since = s equiva-
lent to if # then 1 else T.

2.6 Unique Names

A problem closely refated Lo equality and of great impor-
tance for concurrent programming is the dynamic cre-
ation of new and umqyne names. Roughly, one would like
a construct gensym(x) such that

gensym{x} A gensym(y)

is congruent o a constraint entailing —~(r =y). For this
purpose we assumne that there are infinitely many dis-
tinguished constant symbols called names such that the
constraint theory A satisfies:

1. A k= ~(a=b) for every two Jistinct names o, b

2. A S e S[afb] for every logical sentence § and
every two names «, b (5[a/b] is obtained from &
by replacing every occurrence of & with a).

Now gensym (x) 15 modeled as a generalized quantification
Ju{s = a), where the quantified name ¢ is subject to n-
renaming. With that and the quantifier mobility stated
abhove we in fact obtain a constraint in which = and ¥
are different:
Ja(r=za)AJa{y=a) = Ja(r=a)AIb(y=H)

adbir=a A y=b}.

n

3 Records

The ronstramt systemn underlying Oz provides a donsain
that is closed under record construction [Simolka and
Treinen, 1992] We now outline its constraint theory
as [ar as ix needed for the rest of this paper. We will
be very liberal as it comes to syntax. The reader may
consult [Smolka and Treinen, 1992] for details.

Records are obtained with respect ta an alphabet of
constant symbols, called atoms, and denoted by a, b, f 4.
Records are constructed and decomposed by constraints
of the form

= flayry . dy)

where [is the fabel, ay, .. 4, are the field names, and
Ty, ..., &, are the corresponding values of record r. The
otder of the fields a;: r; is not signsficant. The semanties
of Lhe alove constraint. is fixed by two axion schemes

flaT)= flag) — T=7
flam) =gy — L if f# aor{a# D)

where [a} is the set of elaments of the seguence .
Field selection x.y is a partial function on records de-
fined by the axiom schetnes
fl@mThy) b = g
f@T) b=y - L if b ¢ [d].

The function Jabel{r} is defined on records hy the scheme

label(f(--) = f.

Finally, record adjunction “adjoinAt(z,y,z)" is defined
by the scheines:

adjeinAt(f(T:Fhoy), b, 2) = f(@Fb)
adjoinAt(f(:F), b, 2) = f(a:¥Fb:2) if b¢la].
We write f(e).. .2,) as a short hand for

J{l:ry . o nixy). Thns we obtain Prolog terms as a spe-
cial case of records.

4 Synchronous Communication

Constraint communication is asynchronous. The follow-
ing program shows how synchronous comunication can
be expressed using constraint commumcation. Com-
putation only proceeds after communication has taken
place (signaled by an acknowledgement).

proc { Producer}
exists Ack in
item(“yellow brick! Ack 1) ! Channel
if Ack = I then {Producer) i

end

proc {Consumner)
exists X Ack in
itern{X 1 Ack) ? Channel
if Ack = |
then {AddToRoad X} {Consumer} fi

end

We have now switched to the conerete syntax of Qu:
pred {7 5} @ end stands for #:§/c A Juf{z =a), {z ¥}
for %, and juxtaposition for composition. Moreover,
nesting is allowed and is elirinated by conjunction and
quantification; e.g. iterm{X 1 Ack)" Channel expands to
exists Y m Y=item(X ! Ack} Y7 Channel. Finally,
the defanlt for a missing else part of a conditional is
elsc true.

5 Objects

An object has a static aspect, its method table, and a
dynamic aspect, its state. Methods are functions

methad : state x tessage — state.

A method table s a mapping from method names to
methods, represented as a record whose field names act.
as method names. A message is a record, whose label is
the name of the method and whose fields are arguments.
It. turns out that we can represent an object O
by the procedure that sends the message. This rep-
resentation gives a unique identity to the object since
proc {r §} ¢ end stands for r:§/o A Ja(r=a).

proc {OQ Message}
if MethodName Method in
MethodName={ label Message}
Method=MethodTable. Method Name
then exists State i
State 7 (!
if { fabel State}=state
then {Method State Message} ! Cfi

enl

Henz, Smolka, and Wurtz 407

Observe that nested appheahon makes programs more

concise: {Method State Message) ' (7 stands lor

exists NState in
{Method State Message NState) NState ! ¢

When a message is received by the object O, the method
associated with the method name is retrieved using the
method table of the object (i.e., late binding). Then the
state of the object is replaced by the state obtained by
applying the method.

The following procedure provides a generic scheme for
creating objects from a method table and an initial mes-
sage

proc {Create IMessage MethadTahle (3}
exists IMethod (7 in
IMethod= MethodTable { Labiel [Message)
{IMethorl state{self:0) IMessage} ! (!
proc { O Message} ... end

end

Observe thai the notion of "self" is provided in a natu-
ral way by starting with the initial state state(self : ()).
Object initialization is provided by applying an initial
message to that state. The resulting state is written
on the blackboard. Now, the object is ready to receive
messages. We abbreviate message sending of the form
{O M) by O "M Note that quantification of the com-
munication link C hides the state and provides for data
encapsulation

6 Methods

Assume that we want to model a counter as an object.
First, we fix the methods to be stored in the method
table. To initialize the counter we use the method

proc {Init In8§ X Outs)

if Yin X = ant(Y)

then OwtS = { adjoinAt InS val Y} fi
end
Observe that /nit will add the attribute val if it is not
present in the state InS (see the semantics of adjoinAt in
Section 3). To ease the treatment of the state and to get
a more elegant notation we abbreviate this abstraction

by
[meth (Init init(Y)) val — Y end |

Incrementing and retrievipg s achieved by

proc {Inc [n§ X Outs)

if X = inc

then OutS = { adjeinAt InS val Ins.val+ 1} fi
end

proc {Get InS X OutS}
fYinX = get(Y)
then Outs = InS
end

"= InS.val fi

which is abbreviated to

meth {Inc 1nc)) val — @val + | end
meth {Get grt(Y))} Y = @val end

408 Distributed Al

A counter is created by

MT = mi(imit:Init inc:Inc g;"f,:(-'et)
{Create init () MT Counter)

7 Inheritance

In our framework, inheritance amounts to using the
method tables of other objects to build the method table
of a new object We modify the procedure Create to
provide for inheritance.

proc {Creale Ancestors [Message
NewMethads O}
extsts IMethodNae IMethod (7
AllMethods Send in

AllMethods =
{AdjoinAll Ancestors NewMethods}
O = object(methods: AllMethods
semd:Send)
proc {Send Messagr} .. end
cud

The procedure AdjoinAll (not shown) adjoins the
method tables of Ancestors and NewMethods from
left to right: For any method name, the rightmost
method definition is taken (cf. adjoin At in Section 3).

To make the methods of objects accessible, an ob-
ject is now represented as a record containing the meth-
ods and the send procedure. Therefore, message send-
ing changes slightly: (Counter *inc stands now for
{Counter.send inc)

A counter that is displayed in a window (the object
VisibleObject is defined in Section 9) and that can ad-
ditionally decrement its value can be created by

meth {Nec dec)) val — @vaf— | end
DecCounter =
{ Create Counter| VisibleOhject|mil
mit{0) mt{dec:Dec})

for which we introduce the following syntactic sugar
create DecClounter

from Connter VisibleOfhject

with jart

meth dec vad — wvad — | end
end

8 Method Application

Some languages providing for inheritance support the
concept of super to address methods overwritten due
to the inheritance priority. Oz provides a more general
scheme in that an object can apply to its state methods
of any other object (regardless of inheritance).

Assume an already defined object Rectangle. A square
can inherit from a rectangle but needs for initialization
only its length but not its width.

create Square from Rectangle with init{ 10)
meth init(X)
{{ (Rectangle.methods) . init init(X X))
end

enci“

where the method expands to

proc {Imt In§ X OutS}
if Yin X = init(Y)
then OntS = {Rectangle. methods.init
InS inii (YY)} fi

end

Note that {@self .methods m)) differs from @self~in in
that the former tranforms the local state immediately,
whereas other messages can be taken before the latter is
eventually executed.

9 Meta Object Protocol

Now, we modify the object system such that the essen-
tials of object creation and message sending can be in-
herited, providing the object-system with a meta object
protocol like in [Kiczales et al., 1991] for ('LOS. The new
definition of Create uses the meta-method create to
describe the object's behavior.

proc {Create Ancestors IMessage NewMethods O}
exists AllMethods in
AllMethods =
{AdjoinAll Ancestars NewMethods)
{AlMethods. create
. create{ AllMethods IMessage () _}
end

The underscore V' denotes an anonymous variable oc-
curring only once

Like an organism, an object can inherit the way it
and its heirs are created, and the basic structure how it
communicates with its environment.

We can further modularize the object protocol such
that, e.g., each method call is performed by a call to
the meta-method methodCall. Assume that the meta-
methods create and methodCall are defined in the
object MetaOhject In this case, a VisihleOhject
that sends a message containing its current state to a
Display whenever it, executes a method, can be created
as follows:

create VisithleObject from MetaObject
meth methodCall{ InS Meth Mess OutS)
{Meth InS Mess OutS)
Display © show{OhnS)
end
end

Acknowledgements

We thank all members of the Programming Systems Lab
at DFK1 for countless fruitful discussions on all kinds
of subjects and objects; particularly many suggestions
came from Michael Mehl and Ralf Scheidhauer.

References

[Chen et al., 1993] W. Chen, M. Kifer, and D. S. Warren.
Hilog: A foundation for higher-order logic programming.
Journal of Logic Programming, pages 187-230, 1993.

[Clark and Gregory, 198I] K.L. Clark and S. Gregory. A re-
lational language for parallel programming. In Proc. of the
ACM Conference on Functional Programming Languages
and Computer Architecture, pages 171-178, 1981.

[Colmerauer and Benhamou, 1993] A. Colmerauer and F.
Benhamou, editors. Constraint Logic Programming: Se-
lected Research. 1993 To appear.

[Colmerauer et al., 1983] A. Colmerauer, 11. Kanoui, and
M. Van Caneghem. Prolog, theoretical principles and
current trends. Technology and Science of Informatics,
2(4):255 292, 1983.

[Goldberg et al., 1992] Y. Goldberg, W. Silverman, and E
Shapiro Logic programs with inheritance. FGCS, pages
951-960, 1992.

[Jaffar and Lassez, 1987] .1. Jaffar and J-L. Lassez. Con-
straint logic programming. In Proceedings of the An-
nual ACM Symposmm on Principles of Programming Lan-
guages, pages 111 119, 1987.

[Janson and llaridi, 1991] S. Janson and S. Haridi. Pro-
gramming paradigms of the Andorra kernel language. In
Logic Programming, Proceedings of the 1991 International
Sytnposium, pages 167 186, 1991

[Kiczales et al., 199]] G Kiczales, J. des Rivieres, and
1) Bobrow The Art of the Metaobject Protocol. 1991.

[Kahn, 1989] KM. Kahn. Objects: A fresh look. In Pro-
ceedings of the European Conference on Object Oriented
Programming, pages 207-223, 1989.

[Malier, 1987] M. J. Maher. Logic semantics for a class
of committed-choice programs In Logic Programming,
Proceedings of the Fourth International Conference, pages
858 876, 1987.

[Mihier, 1991] R. Milner. The polyadic 7r-calculus: A tuto-
rial. ECS-LFCS Report Series 91-180, University of Edin-
burgh, 1991.

[Nadathur and Miller, 1988] G. Nadathur and D. Miller An
overview of AProlog. In Logic Programming: Proceedings
of the Ftfth International Conference and Symposium, Vol-
ume 1, pages 810-827, 1988.

[Saraswat and Rinard, 1990] V.A. Saraswat and M Rinard.
Concurrent constraint programming. In Proceedings of the
77 Annual ACM Symposium on Principles of Program-
ming Languages, pages 232 245, 1990.

[Shapiro and Takeuchi, 1983] E. Shapiro and A. Takeuchi.
Object oriented programming in Concurrent Prolog. New
(ienerution Computing, 1:24-48, 1983.

[Shapiro, 1989] E. Shapiro.
logic programming languages.
21(3):413 510, 1989.

[Smolka and Treinen, 1992] G. Smoika and R Treinen.
Records for logic programming. In Proceedings of the 1992
Joint International Conference and Symposium on Logic
Programming, pages 240 254,1992

[Smolka, 1993] G. Smolka A calculus for higher-order con-
current constraint programming. Research report, DFKI,
1993 Forthcoming.

The family of concurrent
ACM Computing Surveys,

Henz, Smolka, and Wurtz 409

