
O z — A P r o g r a m m i n g Language for M u l t i - A g e n t Systems*
M a r t i n Henz, Ger t Smolka, Jorg W u r t z

German Research ('enter for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
D-6600 Saarbrucken

Germany
E-mail: {henz, smolka, wuertz}@dfki. uni-sh.de

Abst rac t
Oz is an experimental higher-order concurrent
constraint programming system under develop­
ment at DFKI . It combines ideas from logic and
concurrent programming in a simple yet expres­
sive language. From logic programming Oz in­
herits logic variables and logic data structures,
which provide for a programming style where
partial information about the values of vari­
ables is imposed concurrently and incremen­
tally. A novel feature of Oz is that it accommo­
dates higher-order programming without sacri­
ficing that denotation and equality of variables
are captured by first-order logic. Another new
feature of Oz is constraint communication, a
new form of asynchronous communication ex­
ploiting logic variables Constraint communi­
cation avoids the problems of stream communi­
cation, the conventional communication mech­
anism employed in concurrent logic program­
ming. Constraint, communication can be seen
as providing a minimal form of state fully com-
patible with logic data structures
Based on constraint communication and
higher-order programming, Oz readily supports
a variety of object-oriented programming styles
including multiple inheritance

1 In t roduc t i on
Oz is an attempt to create a high-level concurrent pro­
gramming language bringing together the merits of logic
and object-oriented programming m a unified language.

Our natural starting point was concurrent constraint
programming [Saraswat and Rinard, 1990], which brings
together ideas from constraint and concurrent logic pro­
gramming. Constraint logic programming [Jaffar and
Lassez, 1987, Colmerauer and Benhamou, 1993], on the
one hand, originated with Prolog II [Colmerauer tt al.,
1983] and was prompted by the need to integrate num­
bers and data structures in an operationally efficient,
yet logically sound manner Concurrent logic program­
ming [Shapiro, 1989], on the other hand, originated with

*This work has been supported by the Bundesminister fiir
Forschung und Technologic, contract ITW-9105.

the Relational Language [Clark and Gregory, 1981] and
was promoted by the Japanese Fifth Generation Project,
where logic programming was conceived as the basic sys­
tem programming language and thus had to account for
concurrency, synchronization and indeterminism. For
this purpose, the conventional SLD-resolution scheme
had to be replaced with a new computation model based
on the notion of committed choice. At first, the new
model developed as an ad hoc construction, but finally
Maher [Maher, 1987] realized that commitment of agents
can be captured logically as constraint entailment. A
major landmark in the new field of concurrent constraint
programming is AKL [janson and Haridi, 1991], the first
implemented concurrent constraint language accommo­
dating search and deep guards

Saraswat's concurrent constraint model [Saraswat and
Rmard, 1990] can accommodate object-oriented pro­
gramming along the lines of Shapiro's stream-based
model for Concurrent Prolog [Shapiro and Takenchi,
1983]. However, this model is intolerably low-level due
to the clumsiness of stream communication and the lack
of higher-order programming facilities. This becomes
fully apparent, when the model is extended to provide
for inheritance [Goldberg et al., 1992].

Thus the two essential innovations Oz has to provide
to be well-suited for object-oriented programming are
better communication and a facility for higher-order pro­
gramming Both innovations require stepping outside of
established semantical foundations. The semantics of Oz
is thus specified by a new mathematical model, called the
Oz Calculus, whose technical set-up was inspired by the

calculus [Milner, 1991], a recent foundationally moti­
vated model of concurrency.

The way Oz provides for higher-order programming is
unique in that denotation and equality of variables are
captured by first-order logic only. In fact, denotation
of variables and the facility for higher-order program­
ming are completely orthogonal concepts in Oz. This is
in contrast to existing approaches to higher-order logic
programming [Nadathur and Miller, 1988, Chen et a/.,
1998].

Constraint communication is asynchronous and inde-
terimnistic. A communication event replaces two com­
plementary communication tokens with an equation link­
ing the partners of the communication. Constraint com­
munication introduces a minimal form of state that

404 Distributed Al

is fully compatible with logic data structures. Effi­
cient implementation of fair constraint communication
is straightforward.

The paper is organized as follows. The next section
outlines a simplified version of the Oz Calculus. Sec­
tion 3 shows how Oz accommodates records as a logic
data structure. The remaining sections present one pos­
sible style of concurrent object-oriented programming
featuring multiple inheritance.

2 The Oz Calculus
The operational semantics of Oz is defined by a mathe­
matical model called the Oz Calculus [Smolka, 1993]. In
this section we outline a simplified version sufficing for
the purposes of this paper

The basic notion of Oz is that of a computation space.
A computation space consists of a number of agents con­
nected to a blackboard (see Fig 1) Each agent reads
the blackboard and reduces once the blackboard contains
the information it is waiting for. The information on the
blackboard increases monotonically When an agent re­
duces, it may put new information on the blackboard
and create new agents. Agents themselves may have one

variables in w i t h scope Free variables of an expres­
sion are defined accordingly.

Henz, Smolka, and Wurtz 405

406 Distributed Al

Henz, Smolka, and Wurtz 407

When a message is received by the object O, the method
associated with the method name is retrieved using the
method table of the object (i.e., late binding). Then the
state of the object is replaced by the state obtained by
applying the method.

The following procedure provides a generic scheme for
creating objects from a method table and an initial mes­
sage

Observe thai the notion of "self" is provided in a natu­
ral way by starting with the init ial state state(self : ()).
Object initialization is provided by applying an initial
message to that state. The resulting state is written
on the blackboard. Now, the object is ready to receive
messages. We abbreviate message sending of the form
{O M) by O M Note that quantification of the com­
munication link C hides the state and provides for data
encapsulation

6 Methods
Assume that we want to model a counter as an object.
First, we fix the methods to be stored in the method
table. To initialize the counter we use the method

Observe that Init wil l add the attribute val if it is not
present in the state InS (see the semantics of adjoinAt in
Section 3). To ease the treatment of the state and to get
a more elegant notation we abbreviate this abstraction
by

A counter is created by

7 Inher i tance

In our framework, inheritance amounts to using the
method tables of other objects to build the method table
of a new object We modify the procedure Create to
provide for inheritance.

The procedure Adjoin All (not shown) adjoins the
method tables of Ancestors and NewMethods from
left to right: For any method name, the rightmost
method definition is taken (cf. adjoin At in Section 3).

To make the methods of objects accessible, an ob­
ject is now represented as a record containing the meth­
ods and the send procedure. Therefore, message send­
ing changes slightly: (Counter *inc stands now for
{Counter.send inc)

A counter that is displayed in a window (the object
VisibleObject is defined in Section 9) and that can ad­
ditionally decrement its value can be created by

for which we introduce the following syntactic sugar

8 M e t h o d App l i ca t ion

Some languages providing for inheritance support the
concept of super to address methods overwritten due
to the inheritance priority. Oz provides a more general
scheme in that an object can apply to its state methods
of any other object (regardless of inheritance).

Assume an already defined object Rectangle. A square
can inherit from a rectangle but needs for initialization
only its length but not its width.

408 Distributed Al

where the method expands to

Note that differs from @self~in in
that the former tranforms the local state immediately,
whereas other messages can be taken before the latter is
eventually executed.

9 M e t a O b j e c t P r o t o c o l

Now, we mod i f y the object system such that the essen­
t ials of object creat ion and message sending can be in­
her i ted, p rov id ing the object-system w i t h a meta object
protocol l ike in [Kiczales et al . , 1991] for (' LOS. The new
def in i t ion of Create uses the meta -method create to
describe the object 's behavior.

The underscore V' denotes an anonymous variable oc­
cur r ing only once

Like an organ ism, an object can inherit the way it
and i ts heirs are created, and the basic s t ructure how it
communicates w i t h i ts env i ronment .

We can fur ther modular ize the object protocol such
tha t , e.g., each method call is per formed by a call to
the me ta -method m e t h o d C a l l . Assume tha t the meta-
methods create and m e t h o d C a l l are defined in the
object Me taOh jec t In th is case, a Vis ih leOhject
tha t sends a message conta in ing its current state to a
Display whenever it, executes a me thod , can be created
as fol lows:

References
[Chen et al., 1993] W. Chen, M. Kifer, and D. S. Warren.

Hilog: A foundation for higher-order logic programming.
Journal of Logic Programming, pages 187-230, 1993.

[Clark and Gregory, 198l] K.L. Clark and S. Gregory. A re­
lational language for parallel programming. In Proc. of the
A C M Conference on Functional Programming Languages
and Computer Architecture, pages 171-178, 1981.

[Colmerauer and Benhamou, 1993] A. Colmerauer and F.
Benhamou, editors. Constraint Logic Programming: Se­
lected Research. 1993 To appear.

[Colmerauer et al., 1983] A. Colmerauer, 11. Kanoui, and
M. Van Caneghem. Prolog, theoretical principles and
current trends. Technology and Science of Informatics,
2(4):255 292, 1983.

[Goldberg et al., 1992] Y. Goldberg, W. Silverman, and E
Shapiro Logic programs with inheritance. FGCS, pages
951-960, 1992.

[Jaffar and Lassez, 1987] .1. Jaffar and J-L. Lassez. Con­
straint logic programming. In Proceedings of the An­
nual A C M Symposmm on Principles of Programming Lan-
guages, pages 111 119, 1987.

[Janson and l lar id i , I99l] S. Janson and S. Haridi. Pro­
gramming paradigms of the Andorra kernel language. In
Logic Programming, Proceedings of the 1991 International
Sytnposium, pages 167 186, 1991

[Kiczales et al., 199]] G Kiczales, J. des Rivieres, and
I) Bobrow The Art of the Metaobject Protocol. 1991.

[Kahn, 1989] K M . Kahn. Objects: A fresh look. In Pro­
ceedings of the European Conference on Object Oriented
Programming, pages 207-223, 1989.

[Malier, 1987] M. J. Maher. Logic semantics for a class
of committed-choice programs In Logic Programming,
Proceedings of the Fourth Internat ional Conference, pages
858 876, 1987.

[Mihier, 199l] R. Milner. The polyadic 7r-calculus: A tuto­
rial. ECS-LFCS Report Series 91-180, University of Edin­
burgh, 1991.

[Nadathur and Miller, 1988] G. Nadathur and D. Miller An
overview of AProlog. In Logic Programming: Proceedings
of the Ftfth Internat ional Conference and Symposium, Vol­
ume 1, pages 810-827, 1988.

[Saraswat and Rinard, 1990] V.A. Saraswat and M Rinard.
Concurrent constraint programming. In Proceedings of the
7/7* Annual A C M Symposium on Principles of Program­
ming Languages, pages 232 245, 1990.

[Shapiro and Takeuchi, 1983] E. Shapiro and A. Takeuchi.
Object oriented programming in Concurrent Prolog. New
(ienerution Computing, 1:24-48, 1983.

[Shapiro, 1989] E. Shapiro. The family of concurrent
logic programming languages. A C M Computing Surveys,
21(3):413 510, 1989.

[Smolka and Treinen, 1992] G. Smoika and R Treinen.
Records for logic programming. In Proceedings of the 1992
Joint Internat ional Conference and Symposium on Logic
Programming, pages 240 254,1992

[Smolka, 1993] G. Smolka A calculus for higher-order con­
current constraint programming. Research report, DFK I ,
1993 Forthcoming.

Henz, Smolka, and Wurtz 409

Acknowledgements

We thank all members of the Programming Systems Lab
at DFK1 for countless fruitful discussions on all kinds
of subjects and objects; particularly many suggestions
came from Michael Mehl and Ralf Scheidhauer.

