
O z — A P r o g r a m m i n g Language for M u l t i - A g e n t Systems* 
M a r t i n Henz, Ger t Smolka, Jorg W u r t z 

German Research ('enter for Artificial Intelligence (DFKI) 
Stuhlsatzenhausweg 3 
D-6600 Saarbrucken 

Germany 
E-mail: {henz, smolka, wuertz}@dfki. uni-sh.de 

Abst rac t 
Oz is an experimental higher-order concurrent 
constraint programming system under develop­
ment at DFKI . It combines ideas from logic and 
concurrent programming in a simple yet expres­
sive language. From logic programming Oz in­
herits logic variables and logic data structures, 
which provide for a programming style where 
partial information about the values of vari­
ables is imposed concurrently and incremen­
tally. A novel feature of Oz is that it accommo­
dates higher-order programming without sacri­
ficing that denotation and equality of variables 
are captured by first-order logic. Another new 
feature of Oz is constraint communication, a 
new form of asynchronous communication ex­
ploiting logic variables Constraint communi­
cation avoids the problems of stream communi­
cation, the conventional communication mech­
anism employed in concurrent logic program­
ming. Constraint, communication can be seen 
as providing a minimal form of state fully com-
patible with logic data structures 
Based on constraint communication and 
higher-order programming, Oz readily supports 
a variety of object-oriented programming styles 
including multiple inheritance 

1 In t roduc t i on 
Oz is an attempt to create a high-level concurrent pro­
gramming language bringing together the merits of logic 
and object-oriented programming m a unified language. 

Our natural starting point was concurrent constraint 
programming [Saraswat and Rinard, 1990], which brings 
together ideas from constraint and concurrent logic pro­
gramming. Constraint logic programming [Jaffar and 
Lassez, 1987, Colmerauer and Benhamou, 1993], on the 
one hand, originated with Prolog II [Colmerauer tt al., 
1983] and was prompted by the need to integrate num­
bers and data structures in an operationally efficient, 
yet logically sound manner Concurrent logic program­
ming [Shapiro, 1989], on the other hand, originated with 
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the Relational Language [Clark and Gregory, 1981] and 
was promoted by the Japanese Fifth Generation Project, 
where logic programming was conceived as the basic sys­
tem programming language and thus had to account for 
concurrency, synchronization and indeterminism. For 
this purpose, the conventional SLD-resolution scheme 
had to be replaced with a new computation model based 
on the notion of committed choice. At first, the new 
model developed as an ad hoc construction, but finally 
Maher [Maher, 1987] realized that commitment of agents 
can be captured logically as constraint entailment. A 
major landmark in the new field of concurrent constraint 
programming is AKL [janson and Haridi, 1991], the first 
implemented concurrent constraint language accommo­
dating search and deep guards 

Saraswat's concurrent constraint model [Saraswat and 
Rmard, 1990] can accommodate object-oriented pro­
gramming along the lines of Shapiro's stream-based 
model for Concurrent Prolog [Shapiro and Takenchi, 
1983]. However, this model is intolerably low-level due 
to the clumsiness of stream communication and the lack 
of higher-order programming facilities. This becomes 
fully apparent, when the model is extended to provide 
for inheritance [Goldberg et al., 1992]. 

Thus the two essential innovations Oz has to provide 
to be well-suited for object-oriented programming are 
better communication and a facility for higher-order pro­
gramming Both innovations require stepping outside of 
established semantical foundations. The semantics of Oz 
is thus specified by a new mathematical model, called the 
Oz Calculus, whose technical set-up was inspired by the 

calculus [Milner, 1991], a recent foundationally moti­
vated model of concurrency. 

The way Oz provides for higher-order programming is 
unique in that denotation and equality of variables are 
captured by first-order logic only. In fact, denotation 
of variables and the facility for higher-order program­
ming are completely orthogonal concepts in Oz. This is 
in contrast to existing approaches to higher-order logic 
programming [Nadathur and Miller, 1988, Chen et a/., 
1998]. 

Constraint communication is asynchronous and inde-
terimnistic. A communication event replaces two com­
plementary communication tokens with an equation link­
ing the partners of the communication. Constraint com­
munication introduces a minimal form of state that 
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is fully compatible with logic data structures. Effi­
cient implementation of fair constraint communication 
is straightforward. 

The paper is organized as follows. The next section 
outlines a simplified version of the Oz Calculus. Sec­
tion 3 shows how Oz accommodates records as a logic 
data structure. The remaining sections present one pos­
sible style of concurrent object-oriented programming 
featuring multiple inheritance. 

2 The Oz Calculus 
The operational semantics of Oz is defined by a mathe­
matical model called the Oz Calculus [Smolka, 1993]. In 
this section we outline a simplified version sufficing for 
the purposes of this paper 

The basic notion of Oz is that of a computation space. 
A computation space consists of a number of agents con­
nected to a blackboard (see Fig 1) Each agent reads 
the blackboard and reduces once the blackboard contains 
the information it is waiting for. The information on the 
blackboard increases monotonically When an agent re­
duces, it may put new information on the blackboard 
and create new agents. Agents themselves may have one 

variables in w i t h scope Free variables of an expres­
sion are defined accordingly. 
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When a message is received by the object O, the method 
associated with the method name is retrieved using the 
method table of the object (i.e., late binding). Then the 
state of the object is replaced by the state obtained by 
applying the method. 

The following procedure provides a generic scheme for 
creating objects from a method table and an initial mes­
sage 

Observe thai the notion of "self" is provided in a natu­
ral way by starting with the init ial state state(self : ()). 
Object initialization is provided by applying an initial 
message to that state. The resulting state is written 
on the blackboard. Now, the object is ready to receive 
messages. We abbreviate message sending of the form 
{O M) by O M Note that quantification of the com­
munication link C hides the state and provides for data 
encapsulation 

6 Methods 
Assume that we want to model a counter as an object. 
First, we fix the methods to be stored in the method 
table. To initialize the counter we use the method 

Observe that Init wil l add the attribute val if it is not 
present in the state InS (see the semantics of adjoinAt in 
Section 3). To ease the treatment of the state and to get 
a more elegant notation we abbreviate this abstraction 
by 

A counter is created by 

7 Inher i tance 

In our framework, inheritance amounts to using the 
method tables of other objects to build the method table 
of a new object We modify the procedure Create to 
provide for inheritance. 

The procedure Adjoin All (not shown) adjoins the 
method tables of Ancestors and NewMethods from 
left to right: For any method name, the rightmost 
method definition is taken (cf. adjoin At in Section 3). 

To make the methods of objects accessible, an ob­
ject is now represented as a record containing the meth­
ods and the send procedure. Therefore, message send­
ing changes slightly: (Counter *inc stands now for 
{Counter.send inc) 

A counter that is displayed in a window (the object 
VisibleObject is defined in Section 9) and that can ad­
ditionally decrement its value can be created by 

for which we introduce the following syntactic sugar 

8 M e t h o d App l i ca t ion 

Some languages providing for inheritance support the 
concept of super to address methods overwritten due 
to the inheritance priority. Oz provides a more general 
scheme in that an object can apply to its state methods 
of any other object (regardless of inheritance). 

Assume an already defined object Rectangle. A square 
can inherit from a rectangle but needs for initialization 
only its length but not its width. 
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where the method expands to 

Note that differs from @self~in in 
that the former tranforms the local state immediately, 
whereas other messages can be taken before the latter is 
eventually executed. 

9 M e t a O b j e c t P r o t o c o l 

Now, we mod i f y the object system such that the essen­
t ials of object creat ion and message sending can be in­
her i ted, p rov id ing the object-system w i t h a meta object 
protocol l ike in [Kiczales et al . , 1991] for ( ' LOS. The new 
def in i t ion of Create uses the meta -method create to 
describe the object 's behavior. 

The underscore V' denotes an anonymous variable oc­
cur r ing only once 

Like an organ ism, an object can inherit the way it 
and i ts heirs are created, and the basic s t ructure how it 
communicates w i t h i ts env i ronment . 

We can fur ther modular ize the object protocol such 
tha t , e.g., each method call is per formed by a call to 
the me ta -method m e t h o d C a l l . Assume tha t the meta-
methods create and m e t h o d C a l l are defined in the 
object Me taOh jec t In th is case, a Vis ih leOhject 
tha t sends a message conta in ing its current state to a 
Display whenever it, executes a me thod , can be created 
as fol lows: 
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