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A b s t r a c t 

When autonomous agents a t tempt to coordi-
nate act ion, it is often necessary tha t they reach 
some k ind of consensus. Reaching consensus 
has t rad i t iona l l y been dealt w i t h in the Dis­
t r ibu ted Ar t i f i c ia l Intel l igence l i terature v ia ne­
go t ia t ion . Another a l ternat ive is to have agents 
use a vo t ing mechanism; each agent expresses 
its preferences, and a group choice mechanism 
is used to select the result. Some choice mech­
anisms are better than others, and ideally we 
would like one that cannot, be manipu la ted by 
un t ru th fu l agents. 

Coord ina t ion of actions by a group of agents 
corresponds to a group p lann ing process. We 
here introduce a new mul t i -agent p lann ing 
technique, tha t makes use of a dynamic , iter­
at ive search procedure. Through a process of 
group constraint aggregat ion, agents incremen­
ta l ly construct a plan tha t brings the group to 
a state max im iz ing social welfare. At each step, 
agents vote about the next j o i n t action in the 
group plan (i.e., what the next t rans i t ion state 
wi l l be in the emerging plan) Using this tech­
nique agents need not fu l ly reveal their pref­
erences, and the set of a l ternat ive f inal states 
need not be generated in advance of a vote. 
W i t h a minor var ia t ion , the entire procedure 
can be made resistant to un t ru th fu l agents. 

1 I n t r o d u c t i o n 

The field of D is t r ibu ted Ar t i f i c ia l Intel l igence ( D A I ) is 
concerned w i th coordinated, efficient act iv i ty by groups 
of autonomous agents. A c t i v i t y in mul t i -agent worlds 
often requires agreement by the agents as to how they 
wi l l act, and the reaching of consensus is a ma jo r con 
cern of D A I . The fo rmat ion of multi-agent plans has 
been approached in several different ways: through the 
use of synchronizat ion techniques [Ceorgeff, 1984J, such 
as those used in operat ing systems, through the d is t r i ­
but ion of single-agent planners [Cork i l l , 1979], such as 

N O A H , and through centralized planners tha t ensure co-
ord inat ion [Rosenschein, 1982]. 

In this paper, we present a new approach to der iv ing 
mul t i -agent plans. We consider how agents could reach 
consensus using a vo t ing procedure, w i thou t having to 
reveal fu l l goals and preferences (unless tha t is actual ly 
necessary for consensus to be reached). Our technique 
also does away w i t h the need to generate f inal alterna­
tives ahead of t ime ( instead, candidate states arise at 
each step as a na tura l consequence of the emerging p lan) . 
The agents i terat ively converge to a plan tha t brings the 
group to a state max im iz ing social welfare. 

2 T h e Scenar io 

Our scenario involves a group of n agents operat ing in a 
wor ld current ly in the state so. Each agent has its own 
pr ivate goal. Since all agents operate in the same en­
v i ronment and may share resources, it is desirable tha t 
they agree on a j o i n t plan for the group tha t w i l l trans­
fo rm the wor ld to an agreed-upon f inal state. 

Each agent is assumed to have a value, a worth, that 
i t associates w i t h states tha t satisfy its goal. Th is wor th 
can be used to assign a u t i l i t y to any state, goal or not, 
that is reached by a par t icu lar plan ( the techniques for 
doing this assignment are discussed below). 

Given the existence of such a wor th funct ion, we want 
to give the agents a method for choosing a group p lan. 
The agents w i l l al l par t ic ipate in the choice process, as 
well as in carry ing out the result ing mul t i -agent p lan. 
The group plan should then result in a compromise state 
that is in consensus.1 

2.1 A n E x a m p l e 

Consider a s imple scenario in the slotted blocks 
wor ld . There are four slots ( a , b , c , d ) , five blocks 
( 1 , 2 , 3 , 4 , 5 ) , and the wor ld is described by the 
relat ions: On(Obj1,ObJ2)---Obj\ is stacked onto 
ObJ2) Clear (Obj) there is no object on Obj; and 
At(Obj,Slot)--Obj is located at Slot. The funct ion 
loc(Obj) returns the locat ion (slot) of Obj. Slots them­
selves funct ion as (s ta t ionary) objects (e.g., block 1 in 
slot 6 could be described by On(1,b)). 

*This research was partially supported by the Israeli Min-
istry of Science and Technology (Grant 032-8284) 

l T h e decision procedure, to be presented below, may also 
serve in a single-agent planning scenario, where an agent is 
trying to integrate a group of disparate goals. 
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3 General Overview of the Process 

The algorithm enables a group of agents to find the state 
that maximizes their social welfare function fu. There 
are many possible global uti l i ty functions, such as tak-
ing the product, of individual agent utilities, or taking 
their median, or taking their sum. Our procedure here is 
not dependent on any particular function, and is equally 
suitable regardless of the one chosen. Given the set of 
individual uti l i ty functions of the agents in the decision 
group), we define the Social Welfare/Util ity U(E) (of any 
set of constraints E) to be that function fu of all the 
individual worth functions, minus the cost of achieving 
the set from S0 (that is, U(E) equals fu minus the cost 
of achieving E). 

The underlying idea is the dynamic generation of al­
ternatives that locates the most desirable state for the 
society. At each step, all agents reveal additional in­
formation about their private goals. The current set of 
candidate states is then expanded and (possibly) pruned 
to comprise the new set of candidate states. The process 
continues until all newly formed sets of constraints have 
lower social util ity than their ancestor sets. Note that 
our primary concern here is not with the complexity of 
the planning process but rather with the resulting state 
of the mult i- agen t plan. 

The search procedure needs an accurate value for the 
social uti l i ty of each candidate state in order to proceed 
correctly (i.e., the search space of alternatives is dynam­
ically pruned by the social welfare criterion). To provide 
this value, the agents vote over the set of candidates at 
each step. 

The search method combines aspects of hill-climbing 
with breadth-first search. For example, parallel searches 
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4 . 1 C o n s t r a i n t s 

There are several impo r tan t aspects of, and requirements 
for, the procedure above to succeed, which we discuss in 
this section. Figure 2 shows three s imple scenarios in the 
slotted blocks wor ld tha t w i l l help us explain the issues 
involved. In these examples, two agents can achieve a 
consensus state tha t fu l l y satisfies bo th agents' goals. 
There are three slots, and several blocks in each wor ld . 
Only the Move operator is avai lable, and it costs 2 under 
all circumstances. 

Figure 2: Three scenarios in the slotted blocks wor ld 

4.1.3 Aggrega t ion o f Func t iona l Const ra in ts 
The generation of consensus sets of constraints is 

based on the aggregation of the individual sets of con­
straints. As the third example in Figure 2 shows, this is 
not always tr ivial. Here, there is a ceiling that makes it 
impossible for more than two blocks to be stacked. This 
time a1's goal is ,4(1,6) while g2 — A(4, 6). We assume 
that the function h(b) returns the height (in number of 
blocks) at slot b. As in all our scenarios, S0 satisfies E] of 
both agents.6 Following the second step of his plan, each 
of the agents has as temporary constraints and 
C(x), where x is the block he wants to move onto slot b. 
These constraints enable each agent to move "his" block 
to slot b after removing block 2. 

The aggregation of these constraints requires careful 
analysis. First, it must be recognized when the aggre­
gated constraints of two identical terms such as 
will be , or even Had 
block 4 been located on block 1 in the initial state of 
our example, the third solution would be appropriate. 
Using it in the given scenario, however, would yield 
as the aggregated set of constraints in the second step 

The induced states of this set cost 
10 move operators, while the actual plan that achieves 
the mutual goal costs only 5. The problem here is that 
both constraints are temporary (each agent needs a free 
space for one block only momentarily). Thus, in this 
case, the aggregated height should stay 1, leading to a 
state that is only three Move steps distant from the ini­
tial state. Unfortunately, it not clear how in general this 
subtle analysis is to be done. 

4.1.4 Eva lua t ion of Sets of Cons t ra in ts 
Evaluation of sets of constraints plays an important 

role in the search procedure. One straightforward worth 
function for an arbitrary set A might be built by tak­
ing the worth of a goal state (assumed to be available), 
subtracting the cost of the single-agent plan from A to 
the goal, then subtracting the agent's share of the cost 
of the multi-agent plan to get from start state SQ to A. 

Note, however, that using the above equation the 
worth of .so for an agent would simply be the worth of 
his goal, minus the cost of his one-agent plan to reach 
that goal (in a one-agent scenario this would be true for 
every set). Thus, since the evaluation function does not 
capture the notion of progress in the plan, the agent has 
no motivation to carry out his plan at all. 

There are several ways to refine the worth function 
so as to solve this problem. One way is by making the 

1]. Note that by its nature, the height constraint is tem­
porary, since it always is a precondition of an action that 
violates it! 
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5 Manipu la t ive/ Ins incere Agents 
In choosing a state that maximizes social welfare, it is 
cr i t ical tha t agents, at each step, express their t rue wor th 
values. However, if our group consists of autonomous, 
sel f -mot ivated agents, each concerned w i th its own u t i l -
ity (and not the group's welfare), they migh t be tempted 
to express false wor th values, in an a t tempt to man ipu ­
late the group choice procedure. Th is is a classic problem 
in vo t ing theory: the expression of wor th values at each 
step can be seen as an ( i terat ive) cardinal vot ing proce­
dure, and we are interested in a non-manipulab le vo t ing 
scheme so tha t the agents wi l l be kept honest. We have 
investigated other aspects of this problem in previous 
work [Ephra t i and Rosenschein, 1992b]. 

Fortunately, there do exist solut ions to this prob lem, 
such tha t the above plan choice mechanism can be used 
even when the agents are not necessarily benevolent and 
honest. If the social welfare funct ion is taken to be the 
(weighted) sum fU

m (or average) of the ind iv idua l u t i l ­
ities, it is possible to ensure tha t al l agents w i l l vote 
honestly. Th is is done by m inor changes to the proce­
dure of Section 4, tha t al low it to use a var iant of the 
Clarke Tax mechanism ( C T m ) . 

In [Ephrat i and Rosenschein, 1991] we proposed the 
C T m as a plausible group decision procedure. The basic 
idea of the mechanism is to make sure that each voter 
has only one dominant strategy, te l l ing the t r u t h . Th is 
phenomenon is established by choosing the al ternat ive 
tha t scores the highest sum of b ids/votes and then tax­
ing some agents. The tax ( i f any) equals the por t ion of 
the agent's b id for the w inn ing a l ternat ive tha t made a 
difference to the outcome. Given this scheme, revealing 

t rue preferences is the dominant strategy. 
In our procedure, the agents are par t i c ipa t ing in many 

intermediate votes, and alternatives are generated dy­
namica l ly (as a consequence of the intermediate votes). 
Therefore, the or ig inal version of the C T m cannot be 
used efficiently. Instead we use an i terat ive var iat ion of 
the C T m ; at each step, the tax is defined w i th respect to 
al l previous steps, but is actual ly levied only at the f inal 
step. We use the fo l lowing definit ions for the stepwise 
Clarke tax mechanism: 
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At the and of the process, each agent is fined the 
Clarke Tax with respect to the final group choice. 

Theo rem 2 At any step k of the procedure, i's best 
strategy is to vote over the alternatives at that step (A ) 
according to his true preferences Vi. 

5.1 Us ing the Procedure on Ou r Example 

We now use the iterative procedure with its CTm to solve 
the first problem presented in Section 2.1. We assume 
that the cost of reaching a state is divided equally among 
the agents (by side-payments if necessary), and that 
each agent i uses the worth function W{(A) = wi(gi)-
c.i(s(A) ~> gi) (the goal's worth minus the cost of the 
work needed to transform a state induced by the set to 
the goal state). From the agents' individual goals, we 
get the following constraints: 

!© 
6 Related Work 
There are a number of artificial intelligence researchers 
whose work relates to the approach we have been dis­
cussing above. Some of this work follows in the foot­
steps of Korf [Korf, 1987], who showed that the plan­
ning search space can be reduced if the final goal can be 
decomposed into several sub-goals, and the plans that 
achieve these sub-goals can be combined to achieve the 
original goal. This result suggests that the multi-agent 
planning algorithm presented in this paper can also serve 
to reduce the search space in a single-agent planning sce­
nario if a non-optimal solution is acceptable. 

A similar approach is taken in [Nau et al., 1990] to find 
an optimal plan. It is shown there how planning for mul­
tiple goals can be done by first generating several plans 
for each subgoal and then merging these plans. Finding 
the solution is guaranteed (under several restrictions) 
only if a sufficient number of alternative plans is gener­
ated for each sub-goal. Our approach does away with 
the need for several plans for each subgoal by using con­
straints instead of grounded plans (a level of abstraction 
that represents all possible grounded plans). 

In [Foulser et al., 1992] it is shown how to merge 
grounded linear plans (as opposed to aggregating con­
straints) in a dynamic fashion. To achieve an optimal fi­
nal plan it takes that algorithm while 
the approximation algorithm that is presented there 
takes polynomial time. 

Our approach also resembles the GEMPLAN sys­
tem [Lansky, 1990]. There, the search space of the global 
plan is divided into "regions" of activity. Planning in 
each region is done separately, but an important part of 
the planning process within a region is the updating of its 
overlapping regions (in our terms, all individual plans are 
generated and aggregated simultaneously). This model 
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served as a basis for the D C O N S A system [Pope et aL, 
1992] where agents were not assumed to have complete 
in fo rmat ion about their local environments. The com­
b inat ion of local plans was done through " in teract ion 
constraints" tha t were pre-specified. 

The concept of so lut ion tha t our a lgo r i thm employs 
(max im iza t i on of social welfare) also resembles the ap­
proach taken in CONSENSUS [Clark et aL, 1992] where 
several expert systems "elect" a plan tha t scores the 
highest ra t ing w i th respect to the ind iv idua l points of 
view. There, however, the election refers to different 
complete global plans tha t each expert generates. 

Another advantage of our proposed process is tha t 
i t can easily be modi f ied to deal w i t h dynamic p r io r i ­
ties. Since the search is guided by the vote taken at 
each step, it is possible to allow the agents to change 
their "tastes" or pr ior i t ies over t ime (for example, due 
to env i ronmenta l changes). As an example, in the M u l t i -
Fireboss Phoenix system [Moehlman and Lesser, 1990] 
p lann ing (the actions needed to assess and contain fires) 
is performed by several spat ia l ly d is t r ibu ted agents. The 
system addresses, th rough a sophist icated negot iat ion 
protocol , the dynamic al locat ion of resources. Our al ­
go r i t hm would solve this problem in a direct manner, 
w i thou t negot ia t ion. At each t ime in terval , the agents 
would vote over the possible relevant d is t r ibut ions (one 
step of the a lgor i thm per t ime interval ) . Given the in­
d iv idua l u t i l i t ies, the accurate d is t r ibu t ion of resources 
would be chosen tha t maximizes the social u t i l i t y ( m i n i ­
mizes the damage according to the group's perspective). 
In add i t ion (as ment ioned in Section 5), there is no need 
to assume that the agents are benevolent. 

7 Conclusions 
We have introduced a new dynamic , i terat ive vot ing pro­
cedure. It enables a group of agents to construct a jo in t 
plan that results in a f inal state that maximizes social 
welfare for the group. The technique is more direct and 
formal ly specified than other consensus procedures that 
have been proposed, and main ta ins agent privacy more 
effectively. Techniques such as these provide a natu-
ral method for the coord inat ion of mul t i -agent act iv­
ity. Confl icts among agents are then not "negot ia ted" 
away, but are rather incremental ly dealt w i t h . Agents 
i terat ively search for a f inal state tha t maximizes the 
entire group's u t i l i t y , incremental ly construct ing a plan 
to achieve tha t state. The search can be constructed so 
tha t any man ipu la t i on by an un t ru th fu l agent w i l l ha rm 
the agent more than i t helps h i m . 
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