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Abstract

When autonomous agents attempt to coordi-
nate action, it is often necessary that they reach
some kind of consensus. Reaching consensus
has traditionally been dealt with in the Dis-
tributed Artificial Intelligence literature via ne-
gotiation. Another alternative is to have agents
use a voting mechanism; each agent expresses
its preferences, and a group choice mechanism
is used to select the result. Some choice mech-
anisms are better than others, and ideally we
would like one that cannot, be manipulated by
untruthful agents.

Coordination of actions by a group of agents
corresponds to a group planning process. We
here introduce a new multi-agent planning
technique, that makes use of a dynamic, iter-
ative search procedure. Through a process of
group constraint aggregation, agents incremen-
tally construct a plan that brings the group to
a state maximizing social welfare. At each step,
agents vote about the next joint action in the
group plan (i.e., what the next transition state
will be in the emerging plan) Using this tech-
nique agents need not fully reveal their pref-
erences, and the set of alternative final states
need not be generated in advance of a vote.
With a minor variation, the entire procedure
can be made resistant to untruthful agents.

1 Introduction

The field of Distributed Artificial Intelligence (DAI) is
concerned with coordinated, efficient activity by groups
of autonomous agents. Activity in multi-agent worlds
often requires agreement by the agents as to how they
will act, and the reaching of consensus is a major con
cern of DAI. The formation of multi-agent plans has
been approached in several different ways: through the
use of synchronization techniques [Ceorgeff, 1984J, such
as those used in operating systems, through the distri-
bution of single-agent planners [Corkill, 1979], such as

*This research was partially supported by the Israeli Min-
istry of Science and Technology (Grant 032-8284)

NOAH, and through centralized planners that ensure co-
ordination [Rosenschein, 1982].

In this paper, we present a new approach to deriving
multi-agent plans. We consider how agents could reach
consensus using a voting procedure, without having to
reveal full goals and preferences (unless that is actually
necessary for consensus to be reached). Our technique
also does away with the need to generate final alterna-
tives ahead of time (instead, candidate states arise at
each step as a natural consequence of the emerging plan).
The agents iteratively converge to a plan that brings the
group to a state maximizing social welfare.

2 The Scenario

Our scenario involves a group of n agents operating in a
world currently in the state s,. Each agent has its own
private goal. Since all agents operate in the same en-
vironment and may share resources, it is desirable that
they agree on ajoint plan for the group that will trans-
form the world to an agreed-upon final state.

Each agent is assumed to have a value, a worth, that
it associates with states that satisfy its goal. This worth
can be used to assign a utility to any state, goal or not,
that is reached by a particular plan (the techniques for
doing this assignment are discussed below).

Given the existence of such a worth function, we want
to give the agents a method for choosing a group plan.
The agents will all participate in the choice process, as
well as in carrying out the resulting multi-agent plan.
The group plan should then result in a compromise state
that is in consensus.’

2.1 An Example

Consider a simple scenario in the slotted blocks
world. There are four slots (a,b,c,d), five blocks
(1,2,3,4,5), and the world is described by the
relations: On(Obj;,0bd)---Obj\ is stacked onto
ObJ;) Clear (Obj) there is no object on Obj; and
At(Obj, Slot)--Obj is located at Slof. The function
loc(Obj) returns the location (slot) of Obj. Slots them-
selves function as (stationary) objects (e.g., block 1 in
slot 6 could be described by On(1,b)).

'"The decision procedure, to be presented below, may also

serve in a single-agent planning scenario, where an agent is
trying to integrate a group of disparate goals.
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Figure 1. A Blocks World Example

There are three agents operating in the world. The
starl state s shown at the far left of Figure |. As fur-
ther represented in that figure, these agents have (re-
spectively) the Tollowing goals: g, ={At{4,¢). A£(2,8)},
gz ={0n{2,4).0n(5.2)}, g5 ={0n(3,2), AL(2, )}, with
respectively the the individual worths: 8, 12 and 16.

There 18 only one available operator: Move(Obj;,
(}bjs) place Objy onto (bjy. This operator can be char-
acterized by the following STRIPS-like lists:
[Pree : Clear(Obj ), Clear{Objz), On(0bj,, Obj. )],
[Del: On(Objy, Qbj:), Clear(Qbja},

At{Objy loc(Obj1))].

[Add: On{Obj;, Objy), Al(Obj, Joc{Obj2)))].
Assume that when a single agent performs the AMove
operation there is a cost of 4, while if two agents Move
an object together the operation costs a total of 3 (1.5
each).

We want the agents to jointly choose a plan that re-
sults 1n a compromise state.

3 General Overview of the Process

The algorithm enables a group of agents to find the state
that maximizes their social welfare function f. There
are many possible global utility functions, such as tak-
ing the product, of individual agent utilities, or taking
their median, or taking their sum. Our procedure here is
not dependent on any particular function, and is equally
suitable regardless of the one chosen. Given the set of
individual utility functions of the agents in the decision
group), we define the Social Welfare/Utility U(E) (of any
set of constraints E) to be that function f of all the
individual worth functions, minus the cost of achieving
the set from S, (that is, U(E) equals  minus the cost
of achieving E).

The underlying idea is the dynamic generation of al-
ternatives that locates the most desirable state for the
society. At each step, all agents reveal additional in-
formation about their private goals. The current set of
candidate states is then expanded and (possibly) pruned
to comprise the new set of candidate states. The process
continues until all newly formed sets of constraints have
lower social utility than their ancestor sets. Note that
our primary concern here is not with the complexity of
the planning process but rather with the resulting state
of the multi- agen t plan.

The search procedure needs an accurate value for the
social utility of each candidate state in order to proceed
correctly (i.e., the search space of alternatives is dynam-
ically pruned by the social welfare criterion). To provide
this value, the agents vote over the set of candidates at
each step.

The search method combines aspects of hill-climbing
with breadth-first search. For example, parallel searches
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are carried out in each promising directlon {where so-
cial utility 1s growing or constant within the gap bound
Vi 2}, When the search encounters a direction where
social utility decreases beyond this limit, however, the
search is terminated (reminiscent of hill-clirbing).

The procedure has the following advantages: (a} al-
ternatives are generated by the entire group dynami-
cally (allowing the procedure to be distributed {Ephrati
and Rosenschein, 1993]); (b) utilities will be calculated
and submitted only for “feasible” alternatives {utilities
of infeasible alternatives need not be revealed, reducing
the choice procedure’s computational complexity, and
also respecting agent privacy when possible {Ephrati and
Rosenschein, 1992b]); (¢) agents are required to sub-
mit only the minimally “conflict-sufficient™ information
about their goals (described below), further maintaining
their privacy.

3.1 Decfinitions

® ¢(gi) 15 the set of absolutely pecessary coustraints
needed for any optimal plan to achieve the goal g,
starting at the initial statc sp. In accordance with
the partial order over these constraints,? we divide
e(g) inte subsets of constraints. Bach such subsei.
within e{ g} comprises all the constraints that can he
satisfied within j {optimal) steps, and are necessary
at some subsequent. step after j. The total number
of operators (the length of the plan) that satisfies
the set of constraints e{g) i1s denoted by l{e(q)).

We denote #{g)'s components hy UJ. Ei. such that

E7 includes all the constraints that can be satisfied
within j steps, and are necessary at some step >
j. For any j > He(g)), we define £V to be the
desceription of the goal g.

Example: In the blocks world scenario from Sec-
tion 2.1, r(g1) for Agent 1 would be: £ =
(). Cln)(= ED) U [C@). AZbli=  ER) U
[A(4, ¢), At{2,0))(= EP)

e A constraint { € F7 s said to be temporary if later
in the plan there is a constraint [ € F¥ (where
k > j) that denies it (I AT | Fapae). We say that a
sct of apparently conflicting constraints £ 1s sem-
consistent (E Eimp Fane) 1f the removal of tempo-
rary constraints makes it consistent (see Section 4.1
for an example). Given a semi-consistent £ we de-
fine 7( £} to he the set of all maximal consistent
subsets of the predicates in £

e P(E) denotes the sel of the cheapest “grounded” {or
“complete” [Chapman, 1987]) plans that achieve the
final subset of E. We denote these states by s(F) (=

{s | (s E E"®) Ac(sp ~ s} = ming pie) {50 ~

£)}).

2Given fY and the agents’ utility functions, we define the
gap hound Vi te be the maximal gap hetween any local
maximum of f¥ and any local minimum that follows it.

3Consiraints are temporally (partially) ordered sets of the
domain’s predicates associated with the appropriate limita-
tions on their codesignation.



® Forow (E) is defined to be the set of constraints that
can be satisfied by invoking at most one operator,
given the initial set of constraints E {Foyow(E) =

{1} 30p3Pjop( P(E)) = 1}}).
4 The Algorithm

This section describes the algorithm in more detail, along
with a running example. At each step of the procedure,
agents try to impose more of their private constraints on
the group's aggregated set of sets of constraints. Since
agents want to maximize their own utility, they will im-
pose as many constraints as they can at each step. The
set of all non-pruned aggregaled sets of constraints at
step k is denoted by 4* (its constituent sets will be de-
noted by A;‘, where j is simply an index over those sets).
A¥* denotes the set A* before it is pruned (similarly, its
non-pruned components are denoted by A7),

As an example, assume a simple scenarie of the slotted blocks
world (we use the same operators and predicates as described in
Section 2.1). There are 3 blocks (1,2,3) and two agents (a1, a2).
The initial state is {On(], ), On(3,1). On(2,c}}. The agent's
goals are (respectively) g1 = {On(i,2)} and g» = {On(2,3)}.*
The exact procedure is defined as follows:

1. At step 0 each agent i finds e(g;)—the individual
temporally ordered set of constraints that achieves
the goal g,, starting frotn the initial state. The vir-
tual sel of alternatives is initialized to be the empty
set (A" = @),

In our example, we have:” e{g;) = {[c(2}]w(C(2),C"(1)]
U[() (1,2)]} (this ordered set induces the plan (M (3, 2],

(1,2)}) and e{gz) = {{C(3}, C(2)JL{O(2. 3]} (inducing
the plan {M (2, 3))). Note that C(2) and €(3} are tempo-
rary since they are depied later in the plan.

k
2. At step k, each agent may declare E:l‘ < E:-'H only
if any k < { E¥ was already declared and acrepted
by the group, a.nd the declaration s “feasible,” i
it can be reached by invoking one operator on some
sel of constraints that was reached by the proce-
dure during the previou-aa step: 3;4’-‘[{441’F € ANA

({_Jﬂ_1 El C 4 A [F C !uuou. A M. 7 can try
to impose elements of his “next” pnmt( subset of
constraints on the group decision only if they are
still relevant and his previous eonustraints were ac-
cepted by the group.

At the first step, each agent 1 may declare El . Inaur
example, this will be £ = [c(2)] and = [¢(3), (2}

At the second step, a declares E1 ‘. whlch in this example
equals £7 = [€(2),C(1)}. Similarly, a» declares £, =
[0{2,3)). (Both are in Fotow(A'}, which contains only

*This is reminiscent of Sussman's Anomaly in the single-
agent planning scenario—where the plan to achieve one sub-
gual obstructs the plan that achieves the other. The exam-
ple assumes that although the final state that satisfies both
agents’ goals costs 9 to reach, it is the stale thal meets the
sacial wellare criterion.

®*We will use the first letier to denote the full operator
predicate, and ¥ Lo denote any location excluding y's. We
also use a typewriter font to denole temporary constraints.

one subset.) At the third step, e, declares [O(],2)] and
o, declares [({2, 3}] (his final goal, which is already in A%).

3. For each set of constraints A" € A* we gencrate
all the maximal consistent or serni consmt.entfxten—

sions {A(H'IH} with elements of | J, B, 7 {i.e.,
each element in A; 1+ i defined as {A;’U {1|{le

(r4+1)4

U B OMUIUASY) Koamp Fane)})).

At the first step, the aggregated set of constraints
is {C(3),C(2)}. At the second step, both declara-
tions may coexist consistently, and there is therefore
only one successor to the previous set of constraints:
{c(2),C(1),0{2,3)}. At the third step, the aggregated
setis {1, 2),0(2, 3)}, and it satisfied both agents’ goals.

4. At this stage, all extensions are evaluated so as to
cnable the pruning of sets that reduce social utility.
Each agent declares the utility it associates with
each newly-formed set of aggregated constraints.

The first set of aggregated constraints is satisfied by the
initial state, and thus induces the null plan {with cost of
zero). The value given to that first set is the value that
agents assign to the initial state. The second set can be
achieved by the plan {M(3,e)), with cost of 3. In order
for the set not to be pruned, it must be the case that the
agents value the set by at least 3 + Vi more than the
initial set. The third set is the set that satisfies the social
welfare criterion (by our assumption above), and therefore
{by definition} will have higher value than previous steps
{and not be pruned).

5. The next set of sets of constraints is pruned so that
1. contains only sets that do not decrease the social
utility {with respect to their ancestor set) by more
than the gap bound . Formally, A¥+! = {A¥+!
AR e AP AVE< KU (ASTY) > V(4D + o)
In this simple example, all the individual extensions are mu-
tually consistent. Therefore, there is anly one aggregated
extensioh at each step. Since this set brings the agent
closer ta the set that satisfies the social welfare criterion,
it is not pruned.

6. The process ends when AF+7 = A% The values
assigned by cach agent to each state in A4* are then
comparcd to find the consistent sets that maximize
social utility (A* = {A ]| A € A* AVA"[A* € A* =
{/(A*) < U(A)]}). Among these equivalent sets,
one is randomly chosen.

In the example there is only one such set—the final set
which is determined in the fourth step.

Theorem 1 Given any social welfare function fU and
an appropriale gap bound Viu . this mechemsm finds all
sels that mazimize the Soctal Welfare. Consensus unll
be reached after at most O{max{( P{A)) steps such that
P{A) resulls tn a state that mazimizes the group’s socral
welfare.

Proof. The proof of this theorem, and the one below,
appear in {Ephrati and Rosenschein, 1992a) with slightly
different notations. D
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4.1 Constraints

There are several important aspects of, and requirements
for, the procedure above to succeed, which we discuss in
this section. Figure 2 shows three simple scenarios in the
slotted blocks world that will help us explain the issues
involved. In these examples, two agents can achieve a
consensus state that fully satisfies both agents' goals.
There are three slots, and several blocks in each world.
Only the Move operator is available, and it costs 2 under
all circumstances.

n ‘l .f£|I .t'

=y ==

e, Tl el @E.

-0- -3=
Figure 2: Three scenarios in the slotted blocks world

4.1.1

An important requirement for the success of the pro-
cedure is that each agent identify and declare only
the absolutely necessary constraints nceded for its in-
dividual plan to succeed. As an example, consider
the first scemativ in Figure 2. Two agents want to
achieve the following goals: ¢, = {A(l,2),C’(1}} and
g2 = {0(3,2),A(2,b)}. These two goals can co-exist, as
shown in the final goal state. To achieve his goal, a; need
not. take any action. ay, on the other hand. has to carry
out (M (2,7}, M(3,2),M(2,6),M{(3,8)). The only way for
the second step of this plan to be completed is by stack-
ing etther block 3 or block 2 onto block 1. By including
either of these into his set of constraints, as would en-
counter ap's opposition, thus (perhaps) preventing his
own goal from being achieved.

However, the purpose of the secand M ore operator 1s
just to achieve 4(3,b). 1 ay declares his set of constraints
to be [("(2)U[C(2), CRYUIC (2}, C(3} A3, B)U[C(2),
C'(3),A(2. B} U[A(2,8), O[3, 2)]. the conflict is avoided.

Specification of Constraints

4,1.2  Aggregation of Temporary Constraints

In the second scenario, ¢;’s goal is the same, but s
goal s now {(HH, 4),0{3,2),4(2.6),A{4, 1)}, As in the
previous example, there is no way for hits to achieve his
goal without trying 1o temporarily violate ¢ s goal. But
in contrast Lo that example, there is ne way to specify
ay's coustraints in a way thal would avoid the conflictl,
Here, for example, A(2, h), although temporary, is crucial
for ag's plan’s success. Were the process to consider
sels of constraints to be relevant only as long as they
were consistent, the process might stop after two steps,
avoiding the goal stale from even being considered.

. is therefore necessary that the femporary conflicts
between the agents' plans nol cause deadlocks (that is,
if there is a tempeoral order that can later resolve them).
This phenomena is achieved by allowing the existence of
semi-consistent sets of constraints, and having agents ex-
press preferences over these sets. For that reason, agents
should recognize what their temporary constraints are
{(terms that will be violated by their own future ac-
tions). Identifying the temmporary constraints of his own
plan, as's set of constraints (£3) would then become:
[C(2)] U [¢(2), (2, 8)] U [4(2, 5),C(4), A(3, T6)} U [A(2, B),
C(4), A(3.36),(5), A4, B)] U [A(2,B),C(4),A(2, 3B).C{5),
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4(5,3b)] U [a(2,B), c{4), A(3, 2B),C(5),A(E,3B), C(2),A(4,
b)JU[A(3, 3B),C(2), A(4, H),0(5, 4}, C(DU[C(2), A4,

b), O(5, 4),C(3), A2, D)]U[A(4,0),0(5,4),0(3,2),A(2,b)]
As can be seen in this specification, all the constraints
thal contradict a;’s goal are temporary. Therefore, even
though au’s plan actually violates a;’s goal, the mutual
goal state 1s reachable.

4.1.3

The generation of consensus sets of constraints is
based on the aggregation of the individual sets of con-
straints. As the third example in Figure 2 shows, this is
not always trivial. Here, there is a ceiling that makes it
impossible for more than two blocks to be stacked. This
time aq's goal is ,4(1,6) while g2 — A(4, 6). We assume
that the function h(b) returns the height (in number of
blocks) at slot b. As in all our scenarios, Sy satisfies E] of
both agents.® Following the second step of his plan, each
of the agents has as temporary constraints h{b) < 1 and
C(x), where x is the block he wants to move onto slot b.
These constraints enable each agent to move "his" block
to slot b after removing block 2.

The aggregation of these constraints requires careful
analysis. First, it must be recognized when the aggre-
gated constraints of two identical terms such as A{z) < |
will be &(z) < 2, or A{z} < 1, oreven A(x) < 0. Had
block 4 been located on block 1 in the initial state of
our example, the third solution would be appropriate.
Using it in the given scenario, however, would yield
as the aggregated set of constraints in the second step
[C’(1), €'(4), () < 0]. The induced states of this set cost
10 move operators, while the actual plan that achieves
the mutual goal costs only 5. The problem here is that
both constraints are temporary (each agent needs a free
space for one block only momentarily). Thus, in this
case, the aggregated height should stay 1, leading to a
state that is only three Move steps distant from the ini-
tial state. Unfortunately, it not clear how in general this
subtle analysis is to be done.

4.1.4

Evaluation of sets of constraints plays an important
role in the search procedure. One straightforward worth
function for an arbitrary set A might be built by tak-
ing the worth of a goal state (assumed to be available),
subtracting the cost of the single-agent plan from A to
the goal, then subtracting the agent's share of the cost
of the multi-agent plan to get from start state SQ to A.

Note, however, that using the above equation the
worth of so for an agent would simply be the worth of
his goal, minus the cost of his one-agent plan to reach
that goal (in a one-agent scenario this would be true for
every set). Thus, since the evaluation function does not
capture the notion of progress in the plan, the agent has
no motivation to carry out his plan at all.

There are several ways to refine the worth function
so as to solve this problem. One way is by making the

Aggregation of Functional Constraints

Evaluation of Sets of Constraints

CEl =[C(1),C(2),h(c) 2 1] and E; =[C(4),C(2),h(a) 2
1]. Note that by its nature, the height constraint is tem-
porary, since it always is a precondition of an action that
violates it!



“future-cost” (i.e., wi{gi) — ¢;{(A ~+ g;)) more sensitive
10 the progress of the plan. A simple approach is to
take into consideration only that {raction of the goal’s
worth which reflects the amount of work already done to
achieve it (= w;i(g;) x [{P(s0 ~ AN/IP(A ~ g))},
which 1s meaningful only if w;(g;) > ci(sp ~ @)
Another way is to give greater weight to the cost of
opetators that are located further along in the plan
(== wilgi)— ZT k x C{ope}). Or, assuming that each op-
erator has a probability (pr(opy)) associated with its suc-
cess, we could use = (prr(op;,) X wi(gi}) — i A~ gi).
These evaluations may be further refined by having
weighted costs and/or probability of success associated
with each of the constraints that needs to be achieved
in order to transform the given set into the goal set
(see [Haddawy and Hanks, 1990) and [Kanazawa and
Dean, 1989] for richer probabilistic approaches).

Note that instead of assigning worth to sets of con-
straints, il may sometitnes be more natural to evaluate
their induced states {s{A) instead of A). In any case, the
worth associated with all states induced from a single set
of constraints will be equivalent. In addition, note that
for many varialions of the above worth functions, it will
be sufficient to take the gap bound Vi to be zero (what
was called a progressive worth function in [Ephrati and
Rosenscheits, 1992a]). For example, it would be sufficient
to assume above that Vie{A) ~ A3) < ¢i(s) ~ 52)).

5 Manipulative/lnsincere Agents

In choosing a state that maximizes social welfare, it is
critical that agents, at each step, express their true worth
values. However, if our group consists of autonomous,
self-motivated agents, each concerned with its own util-
ity (and not the group's welfare), they might be tempted
to express false worth values, in an attempt to manipu-
late the group choice procedure. This is a classic problem
in voting theory: the expression of worth values at each
step can be seen as an (iterative) cardinal voting proce-
dure, and we are interested in a non-manipulable voting
scheme so that the agents will be kept honest. We have
investigated other aspects of this problem in previous
work [Ephrati and Rosenschein, 1992b].

Fortunately, there do exist solutions to this problem,
such that the above plan choice mechanism can be used
even when the agents are not necessarily benevolent and
honest. If the social welfare function is taken to be the
(weighted) sum f,, (or average) of the individual util-
ities, it is possible to ensure that all agents will vote
honestly. This is done by minor changes to the proce-
dure of Section 4, that allow it to use a variant of the
Clarke Tax mechanism (CTm).

In [Ephrati and Rosenschein, 1991] we proposed the
CTm as a plausible group decision procedure. The basic
idea of the mechanism is to make sure that each voter
has only one dominant strategy, telling the truth. This
phenomenon is established by choosing the alternative
that scores the highest sum of bids/votes and then tax-
ing some agents. The tax (if any) equals the portion of
the agent's bid for the winning alternative that made a
difference to the outcome. Given this scheme, revealing

true preferences is the dominant strategy.

In our procedure, the agents are participating in many
intermediate votes, and alternatives are generated dy-
namically (as a consequence of the intermediate votes).
Therefore, the original version of the CTm cannot be
used efficiently. Instead we use an iterative variation of
the CTm; at each step, the tax is defined with respect to
all previous steps, but is actually levied only at the final
step. We use the following definitions for the stepwise
Clarke tax mechanism:

e The function v : A — R, returns the tree worlh
(to a;) of each aggregated set A. Similarly, the
function d¥(j) returns the declared worth of the set

A; by agent a; at step k. d* denotes the vector
{d¥(1),...,d¥(m)), the agent’s declared worth over
all alternatives and vf denotes the true value.

s The profile of preferences declared by all agenis at
step k is denoted by DX, where DX, denotes this set
excluding ©'s preferences, such that DE = (DX, d¥).

o The choice function f : Df x A — A returns the
siate that is the mezmizer of Z“ d5(A);

=1
o The tax imposed on 7 at step & is 5(f(D5)) =
Top BUDE) - T, dbU(DY dE), i this
value is positive. Otherwise, t¥ will be zero. There-
fore, the utility uf(f(D%)) of agent i with respect
to the chosen alternative is wy (f(DE)) — t5(f(DX)).

The planning algorithm itsell should also be updated
in two ways. First, since each intermediate vote is only
over o subset of candidates, there is the possibility that
an agent will “shift” his vote by a constant, keeping a
single round’s preferences accurate while undermining
tnter-vote comparisons. To maintain truth telling as a
dominant strategy, it 1s necessary that artificial shifting
does not occur. Therefore, we will require that all votes
be relative to some “benchmark”™: we include A% (the
empty set) in the set of alternatives at every step. If
rach agent is motivated to give his true preferences over
Lhe other states relative to A® (v,-(AR), then the score of
cach state & in the vole is exactly f5,. (A).

Second, the tax is calcutated with respect to the final
rhoice. Knowing that a semi-ronstsient set cannol be
chosen, an agent might give it an artificial value in order
o change the final outcome. We therefore allow agents
ta vote anly over consistent scts. Step 4 of the algorithm
is thercfore changed as follows:

o For each A € AETI+\ A% find r(A), its maxi-
mal consistent subsets. Each agent gives its vote
regarding each state in r(A)U AY. The worth of a
consistent set is siply the sum of individual worths
given to that state (note that for any consistent set
A, r(A} = A). The worth of each semi-consistent
set tn AFHH §s computed as follows: for each
agent and semi-consistent set A, there is a consis-
tent set with maximal worth in r{A). The worth
of a semi-consistent set is taken to be the sum of
these maximal worth sets in r{A4), over all agents

(3 maxpeecay wi( £))-
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At the and of the process, each agent is fined the
Clarke Tax with respect to the final group choice.

Theorem 2 At any step k of the procedure, i's best
strategy is to vote over the alternatives at that step (A )
according to his true preferences Vi.

5.1 Using the Procedure on Our Example

We now use the iterative procedure with its CTm to solve
the first problem presented in Section 2.1. We assume
that the cost of reaching a state is divided equally among
the agents (by side-payments if necessary), and that
each agent i uses the worth function W{(A) = wi(gi)-
c.i(s(A) ~> gi) (the goal's worth minus the cost of the
work needed to transform a state induced by the set to
the goal state). From the agents' individual goals, we
get the following constraints:

E, = [C(2),C(0i(= E;) U [C*(4) A(2,b))(=
EY) U [A{4,c), AL(2,8)](= EY) [c(2),C(4)] U
[c(4),¢(2), CENUIC(), C(5), 0(2, 4)]U[O(2 4), 0(5,2)]
Ey = [c(2)] U [c(2).C(N] U [C[2),C(3),4(3,8)] L
[c(2).C (3) A(2, r)]LJ[A(2 c), O3, 2)]

At the third step, the new added constraints
generate 3 possible maximally consist.ent extensions:

3 =[A(2,5), A(4,¢), C(2),C(5),C(3), A(3,?)] inducing
52, A =[0(2,4), A{2,b),C(2),C(5), C(3) A(3 &)] induc-
ing 53, and A3 =[0(2,4), A(4, ¢), C(2), C(5),C(3), A(3,
¢)] inducing 54 and s5. These induced states respectively
score 11, 3, 12, and 12; Ag, which decreases the social
utility, is therefore pruned.

At the fourth step, the two remaining extensions are
extended further; a; hands in {A(2,8), A(4,¢)} (which
is in Fonow (A3)), a2 hands in {O(2,4), 0(5 2)} and a3
{C(3),C(2), A(2,c)} (both in Fotiow(A3)). These con-
straints yield six different extensions that again induce
the states sy, 53, sq, $5 and the new states s; and s7
(that score respectively —5 and 5). Therefore, only the
sets Lthal induce 5; and ss can be further extended (by
a3) to induce sg. Although sz fully satisfies ay’s goal, it
scores only b and the process ends.

All intermediate votes are now gathered for the final
vole. Both s4 and s, maximize the social welfare utility
(both are one operation distant from each of the agents’
goals). Both g2 and aj are taxed 2. @, improves its
utility by 2 and as by 6 (a;’s utility is not improved

HG) T TG ' wGh
—i= j . h | @ ” wilh respect to sp). The group’s social utility 1s therefore
W E E Ei E & EJ ‘ El B E] EJ' Ei improved by 8.
. F"""."rf T T
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whose work relates to the approach we have been dis-

Figure 3: Induced States of the Five Steps

Figure 3 presents the induced states at each step {in
this example, all the generated sets are consistent). At
the first step, each agent declares E}. A, the set that
includes all possible consensus sets of constrainis, has
only one member: = {[C(2),C(4)]}. s(Al) also
has only one member, s5. Agents then vote on this
state, and it receives a score of 0 (for example, a; goal's
worth is 12, and to achieve it the agent would perform
{M{4,8),M(2,4),M(5,2)) at a cost of 12; therefore, he
values sy as 0).

At the socond step, each agent hands in E? (which
is in Po;;,,w(A ) for each i). Since all these mnstramts
coexist consistently, A? =[C(2),C'(4),C(5},C(3),A(2,b)].
This sel induces the single state s; (= s(A4})) as de-
scribed in Figure 3. Note that there are many other
states that could satisfy this set of constraints, but s,
has the mintmal cost. This state can be achieved by
(Move(4,a),Move(2,1)); therefore, the state costs 6.
Subtracting this cost from the worth values given by cach
agent (4 in this case by all three agents), the state scores
6. Since this score is greater than that of the preceding
state sy, the process conlinues.

Ta,’s plan might be (Move(2,1), Move(4,3)}. The first
operation is enabled since the constraint C(2) is satisfied.
Th €(2) constraint is satisfied by s, which is incladed in £].
C(4) is needed for a future operator, but it is also satisfied
by 3¢, and therefore it too is included in E}. A(2,b) can be
satisfied within one move, and is necessary at all future times
for the plar to succeed, so it is included in any future set of
constraints.
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cussing above. Some of this work follows in the foot-
steps of Korf [Korf, 1987], who showed that the plan-
ning search space can be reduced if the final goal can be
decomposed into several sub-goals, and the plans that
achieve these sub-goals can be combined to achieve the
original goal. This result suggests that the multi-agent
planning algorithm presented in this paper can also serve
to reduce the search space in a single-agent planning sce-
nario if a non-optimal solution is acceptable.

A similar approach is taken in [Nau et al., 1990] to find
an optimal plan. It is shown there how planning for mul-
tiple goals can be done by first generating several plans
for each subgoal and then merging these plans. Finding
the solution is guaranteed (under several restrictions)
only if a sufficient number of alternative plans is gener-
ated for each sub-goal. Our approach does away with
the need for several plans for each subgoal by using con-
straints instead of grounded plans (a level of abstraction
that represents all possible grounded plans).

In [Foulser et al., 1992] it is shown how to merge
grounded linear plans (as opposed to aggregating con-
straints) in a dynamic fashion. To achieve an optimal fi-
nal plan it takes that algorithm O(JTi=, {(P(g:))), while
the approximation algorithm that is presented there
takes polynomial time.

Our approach also resembles the GEMPLAN sys-
tem [Lansky, 1990]. There, the search space of the global
plan is divided into "regions" of activity. Planning in
each region is done separately, but an important part of
the planning process within a region is the updating of its
overlapping regions (in our terms, all individual plans are
generated and aggregated simultaneously). This model



served as a basis for the DCONSA system [Pope et aL,
1992] where agents were not assumed to have complete
information about their local environments. The com-
bination of local plans was done through "interaction
constraints" that were pre-specified.

The concept of solution that our algorithm employs
(maximization of social welfare) also resembles the ap-
proach taken in CONSENSUS [Clark et alL, 1992] where
several expert systems "elect" a plan that scores the
highest rating with respect to the individual points of
view. There, however, the election refers to different
complete global plans that each expert generates.

Another advantage of our proposed process is that
it can easily be modified to deal with dynamic priori-
ties. Since the search is guided by the vote taken at
each step, it is possible to allow the agents to change
their "tastes" or priorities over time (for example, due
to environmental changes). As an example, in the Multi-
Fireboss Phoenix system [Moehlman and Lesser, 1990]
planning (the actions needed to assess and contain fires)
is performed by several spatially distributed agents. The
system addresses, through a sophisticated negotiation
protocol, the dynamic allocation of resources. Our al-
gorithm would solve this problem in a direct manner,
without negotiation. At each time interval, the agents
would vote over the possible relevant distributions (one
step of the algorithm per time interval). Given the in-
dividual utilities, the accurate distribution of resources
would be chosen that maximizes the social utility (mini-
mizes the damage according to the group's perspective).
In addition (as mentioned in Section 5), there is no need
to assume that the agents are benevolent.

7 Conclusions

We have introduced a new dynamic, iterative voting pro-
cedure. It enables a group of agents to construct ajoint
plan that results in a final state that maximizes social
welfare for the group. The technique is more direct and
formally specified than other consensus procedures that
have been proposed, and maintains agent privacy more
effectively. Techniques such as these provide a natu-
ral method for the coordination of multi-agent activ-
ity. Conflicts among agents are then not "negotiated"
away, but are rather incrementally dealt with. Agents
iteratively search for a final state that maximizes the
entire group's utility, incrementally constructing a plan
to achieve that state. The search can be constructed so
that any manipulation by an untruthful agent will harm
the agent more than it helps him.
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