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A b s t r a c t 
Problem solvers fa l l along a wide spectrum 
ranging f r om highly del iberat ive to h igh ly re-
active. H igh ly del iberat ive systems are able 
to design op t ima l l y efficient solut ions to prob­
lems, bu t they require complete wor ld mod­
els and consume inord inate computa t iona l re­
sources. Reactive systems move in real t ime 
but cannot guarantee efficient solut ions. They 
are also subject to looping behavior. One way 
to generate incremental ly more efficient solu­
t ions is to be incremental ly more del iberat ive, 
e.g., to increase the amount of menta l search 
between actions. Th is paper presents an al­
ternat ive method for generat ing more efficient 
solut ions: increasing the number of reactive 
agents simultaneously a t tack ing a given prob­
lem. Th is method provides a second, orthogo­
nal degree of f reedom. We f ind tha t in many 
domains, increasing agents is dramat ica l ly su­
perior to increasing single-agent del iberat ive-
ness. Th is is because solut ion qual i ty improves 
rap id ly as more reactive agents are added, but 
search t ime only increases l inearly. Th is con­
trasts w i t h add ing more deliberativeness, which 
incurs exponent ia l ly increasing t ime costs. A m ­
ple empir ical evidence is presented to support 
our conclusions. 

1 I n t r o d u c t i o n 
Th is paper considers two aspects of computa t iona l prob­
lem solv ing: 

(1) search t i m e - h o w long i t takes to come up w i t h a 
so lut ion. 

(2) solut ion qua l i t y—how good tha t solut ion is, in 
terms of resources needed to execute i t . 

There is an in tu i t i ve trade-off between (1) and (2) . The 
longer we th ink about a prob lem, the better chance we 
have of f ind ing a good so lut ion. Wh i le search a lgor i thms 
like A* [Har t et al . , 1968] str ive to l i m i t (1) whi le op t i ­
miz ing (2) , t ime l im i ta t ions often force us to settle for 
subopt ima l , or "sat isf ic ing" [Simon, 1957], solut ions. 

Different s i tuat ions w i l l place different emphases on 
(1) and (2). Consider the problem of sending an inter­
planetary probe to Neptune. In this case, i t may be 

wo r th spending days or weeks to p lo t an op t ima l trajec­
tory, since such calculat ions could save months of travel 
t ime. On the other hand, consider the case of Hernan 
Cortes, the Spanish conqueror of Mexico. Wh i l e s t i l l a 
teenager in Spain, f inding himself on the wrong end of 
a jealous husband's musket, Cortes immedia te ly devised 
a plan to travel to the New W o r l d . The efficiency of his 
p lan was not c r i t i ca l . W h a t was impo r tan t was tha t he 
get started r ight away. 

Th is paper studies search t ime versus solut ion qual i ty 
in the context o f the Rea l -T ime-A* ( R T A * ) a lgo r i thm 
devised by [Korf , 1990]. The next section reviews how 
R T A * interleaves p lann ing and execut ion, and how this 
leads to a flexible t i m e / q u a l i t y trade-off. Subsequent 
sections introduce new a lgor i thms and empir ica l results. 

2 R e a l - T i m e H e u r i s t i c Search 

Mot iva ted by research on two-player games, [Korf , 1990] 
investigated single-agent search under the constraints of 
having to take act ion w i t h i n a given t ime l i m i t and /o r 
having l im i ted in fo rmat ion about the envi ronment . Sam­
ple single-agent search tasks include robot nav igat ion, 
the blocks wor ld , and the 8-puzzle (F igure 1). Kor f ' s 
a lgo r i thm, called Rea l -T ime-A* ( R T A * ) , alternates be­
tween two phases: p lan and execute. Du r i ng each plan­
n ing phase, R T A * makes a decision about which act ion 
to take, based on the current s i tua t ion . I t then executes 
the act ion in the wor ld , and starts p lann ing again. Th is 
continues un t i l i t reaches i ts goal. R T A * can vary the 
amount of p lann ing versus execut ing it does by changing 
how deeply i t looks in to the fu ture dur ing the p lanning 
phases. Here is the a lgo r i t hm: 

1. Set variable N to the star t state. 

2. Generate al l of the successor states of N. If any of 
the successors is the goal state, then move to the 
goal and qu i t . 

3. Est imate the heurist ic value of each successor S by 
per forming a fixed-depth tree search rooted at S. 

4. Let S1 be the successor w i t h the best backed-up 
value. Let V2 be the value of the second-best succes­
sor. Take whatever act ion corresponds in the wor ld 
to mov ing to state S1. Store state N in a hash table 
as a key w i t h value V 2 . If the state N is ever gen­
erated again in step 2, use the value stored in the 
table instead of per fo rming the search of step 3. 
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5. Set N to S I , and go to step 2. 

A l t h o u g h R T A * may enter the same state several 
t imes, the values of previously vis i ted states (stored in 
the hash table) prevent R T A * f r o m enter ing a f ixed loop. 
The dep th of the tree search in step 3 determines how 
much t ime R T A * spends p lann ing instead of execut ing 
actions. 

R T A * is useful in bo th complete- and incomplete-
i n fo rma t ion domains. When in fo rmat ion about the 
wor ld is incomplete, i t is impossible to plan out an entire 
so lu t ion ahead of t ime . In such a case, inter leaving p lan­
n ing and execut ion is necessary. The a lgor i thm's u t i l i t y 
in comple te- in format ion domains comes because large 
search spaces impose practical l im i ta t ions to lookahead 
search. W h i l e the op t ima l so lut ion to a 24-puzzle prob­
lem may contain 100 moves, current computers would 
take months or years to exhaustively search a tree to 
tha t dep th . R T A * solves such problems by mak ing the 
move tha t seems local ly best, recording tha t move in 
i ts hash table, and repeat ing un t i l the goal is reached. 
No current techniques based on heuristic search can find 
op t ima l solut ions to the 24-puzzle, yet R T A * returns a 
so lu t ion in seconds. T h e catch is tha t the solut ion is not 
o p t i m a l . 

K o r f demonstrated tha t by increasing the lookahead 
hor izon, he could induce R T A * to come up w i t h shorter 
solut ions to the 8-puzzle (using the standard Manhat ­
tan distance heurist ic func t ion) . Figure 2 i l lustrates th is 
phenomenon. The top curve is the one reported by Kor f : 
i t is the actual number of steps "executed" by R T A * . 
The lower curve represents the number of steps left after 
we have removed the cycles f r om the solut ion pa th . 1 Of 
course, i f we were using R T A * in a real- t ime app l ica t ion , 
we would not be able to remove those cycles—the cost 
would have already been incurred. For the remainder of 
th is paper, "so lu t ion qua l i t y " refers to the length of a 
so lut ion w i t h cycles deleted. 

Of course, h igh qua l i t y plans come at a cost. As we i n ­
crease the lookahead hor izon, we produce better moves, 
bu t i nd i v i dua l moves require more t ime to contemplate. 
Figure 3 shows the wel l -known exponent ia l nature of tree 
search.2 

1We have found that a slight modification to the RTA* 
algorithm allows it to delete cycles during the search. 

2 In this and subsequent figures, time means user time, in 
seconds, of a C implementation of RTA* running on an I B M -
PC/RT. Due to the large number of runs, most experiments 
in this paper were performed on the 8-puzzle rather than 
larger puzzle sizes, but see Section 5 for results from the 15-
puzzle. 

Lookahead horizon (h) 

Figure 2: Solut ion Qua l i t y as a Funct ion of Lookahead 
Hor izon in the 8-puzzle. P lo t ted points are average val­
ues of R T A * runn ing on 500 randomly generated prob­
lems. (Do t ted l ine = op t ima l solut ion qua l i t y ) . 

The next step is to compare solut ion qual i ty and 
search t ime , as shown in Figure 4. Each po in t along 
the curve marks a par t icu lar choice of lookahead hor i ­
zon. Th i s data conf irms one of the surpr is ing results of 
[Korf , 1990]: i f our goal is s imply to f ind a so lu t ion—any 
so lu t ion—to the 8-puzzle, the fastest way to do it is to 
set the lookahead hor izon to 1. T h a t is: don ' t p lan, j us t 
move. Be reactive. 

One way to in terpret the data in Figure 4 is as fol lows: 
if you have t seconds to spend look ing for a so lu t ion, 
expect to f ind a so lu t ion w i t h qua l i ty q — f(t). Likewise, 
if you desire a so lu t ion of qua l i ty q, expect to spend 

(q) seconds look ing for i t . Thus , Figure 4 gives 
us a whole range of deliberativeness and react iv i ty to 
choose f rom. 

3 M u l t i p l e Agent Search 
The prob lem w i t h re ly ing on Figure 4 is tha t R T A * ' s be-
havior is h igh ly errat ic . The data points in Figure 4 are 
averages of 500 t r ia ls each. Figure 5 shows a 5000-tr ia i 
h is togram of so lut ion qua l i t y for a reactive agent ( looka­
head horizon of 1). W h y the unpred ic tab i l i t y? Since 
R T A * makes decisions based on l im i ted lookahead, var­
ious al ternat ives often look equal ly good. In tha t case 
R T A * must make a random choice. Of course, i t may end 
up f ind ing a ter r ib le so lu t ion , and tak ing a long t ime to 
boo t . 3 

How can we fix th is problem? Tak ing a clue f r om 
Figure 4, we m i g h t r un 500 independent agents to com­
p le t ion , then consult the agent tha t found an average-

3Actual ly, there are two sources of variation: one is 
RTA*'s random choice mechanism, and the other is the fact 
that some instances of the 8-puzzle are harder that others. 
The latter source of variation has a minimal effect, however: 
no instances require 100-move solutions, but RTA* routinely 
returns such solutions. 
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Figure 4: So lu t ion Qua l i t y vs. Search T i m e in the 8-
Puzzle. O p t i m a l Solu t ion qual i ty is represented by 
dashed l ine. Smal l numbers indicate different values of 
the lookahead hor izon (h). Points p lo t ted are averages 
of 500 t r ia ls each. 

F igure 5: Variance in Solu t ion Qua l i t y over 5000 8-
Puzzle Problems ( lookahead hor izon h = 1). 

F igure 6: Solut ion Qua l i t y as a Funct ion of the Number 
of Reactive Agents Solv ing Instances of the 8-Puzzle. 
Compare w i t h F igure 2 . 

length so lu t ion. B u t then, we m i g h t as well take the best 
solu t ion instead of the average one. W h a t k ind of solu­
t ion qua l i ty can we expect to see if we take the best of 
n agents a t tack ing a single problem? 

Figure 6 shows how the number of agents affects so­
lu t i on qual i ty . T h e f igure depicts max ima l l y reactive 
agents ( lookahead hor izon of 1). Note t ha t solut ion qual­
i t y improves w i t h each add i t iona l agent, j us t as i t i m ­
proved when we increased the lookahead horizon of a 
single agent. 

4 Increasing Deliberativeness versus 
Increasing the Number of Agents 

At th is po in t , we have two d is t inc t methods for improv­
ing so lut ion qual i ty . We already know the exponent ia l 
t ime costs associated w i t h increasing the lookahead hor i ­
zon. The next step is to investigate the cost of increasing 
the number of agents. T h e n we w i l l be able to construct 
a new t ime versus qua l i t y curve. 

T h e cost depends cruc ia l ly on how the mu l t i p le agents 
are implemented. There are at least three possibi l i t ies: 

(1) End to end—run several agents, one after another, 
on a sequential machine. 

(2) Para l le l—run a l l agents simultaneously, each on i ts 
own processor. 

(3) Doveta i l—simula te para l le l ism on a sequential ma­
chine by repeatedly g i v ing each agent a t ime slice. 

In case (1) , search t ime increases l inear ly w i t h the 
number of agents Here, k1 is s imply the av­
erage so lut ion t ime of a single t r i a l . In case (2) , search 
t ime decreases w i t h number of agents. T h i s is because 
when one processor f inds a so lu t ion , a l l processors can 
ha l t . The more processors we have, the more l ikely i t 
is tha t one of them w i l l f ind a very good solut ion very 
quickly. In the l i m i t , we w i l l f ind o p t i m a l solut ions. A t 
tha t po in t , add ing more processors w i l l cease to improve 
either so lu t ion qua l i t y or search t ime . 

Case (3) is a very pract ica l method for sequential ma­
chines. L ike paral le l search, doveta i l ing terminates when 
any one of the independent agents succeeds. In the case 
of large n, t ime increases l inear ly w i t h n . If n is 
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Figure 7: Search Time as a Function of Number of 
Agents in the 8-Puzzle. (Total steps taken is propor­
tional search time here, since h is fixed at 1). Compare 
with Figure 3. 

so large tha t near -opt imal solut ions are being generated, 
then doub l ing n w i l l s imp ly double the search t ime. B u t 
the slope constant is much smaller than case (1) . Instead 
of the average so lu t ion t ime , k3 is the near-opt imal solu­
t ion t ime . At smaller values of n, there are two opposing 
forces at work. Increasing n improves solut ion qua l i ty , 
so fewer steps are needed. B u t since there are mu l t i p l e 
agents to dovetai l among, search t ime w i l l suffer. Ex­
per imenta l results are summarized in Figure 7. In th is 
f igure, lookahead hor izon (h) is held constant at 1. W i t h 
the hor izon constant, search t ime is a ( l inear) func t ion 
of the number of steps taken by al l agents. (Since steps 
can be measured more accurately than search t ime, the 
figure uses steps.) 

St i l l ho ld ing the lookahead hor izon constant at 1, we 
can compute a search t ime versus so lut ion qual i ty curve 
for dovetai led agents. Each da ta po in t in Figure 8 rep­
resents a different value of n. 

Now we can compare the two methods of improv ing 
solut ion qua l i t y : increasing h (F igure 4) and increasing 
n (F igure 8) . T h e fo l low ing table includes average search 
t ime and solut ion qua l i t y for three possible combinat ions 
of h and n. 

Figure 8: Solution Quality versus Search Time for Re­
active Agents in the 8-Puzzle. Small numbers indicate 
varying numbers of agents. Execution is dovetailed on a 
sequential machine. Compare with Figure 4, especially 
the x-axis. 

The f i rst two lines in the table represent single-agent 
search, reactive and del iberat ive. T h e t h i r d l ine rep­
resents mul t iagent search. T h e dramat ic result here is 
t ha t eight reactive agents—dovetai led on a sequential 
machine—can match the so lu t ion qua l i t y of a single de­
l iberat ive agent, and do so spending only a f ract ion of 
the t ime . Th i s demonstrates the super ior i ty of adding 
more reactive agents over increasing the deliberativeness 
of a single agent. 

T h e benefit of mu l t iagent search derives f r o m the wide 
var ia t ion in so lu t ion qua l i t y for a single agent. The t ime 
cost is only linear in the number of agents. On the other 
hand , the benefit o f de l iberat ion derives f r om the knowl ­
edge gained by look ing ahead. Bu t the t ime cost is expo­
nential in the lookahead hor izon. The benefits are com­
parable, bu t the costs are not . 

We can now state our results in terms of paral lel 
speedup, i.e., uniprocessor t ime d iv ided by mult iproces­
sor (mu l t iagent ) t ime . To make a fair comparison, i t is 
necessary to fix the desired so lut ion qual i ty , as has been 
done in the above table. It shows 8 agents achieving the 
same result as 1, bu t do ing it faster by a factor of 27, 
dovetai led on a sequential machine, and by a factor of 
225 tn parallel. Th i s is a superl inear speedup, and it 
holds for a l l f ixed values for so lu t ion qual i ty . Super l in­
ear speedups offer t remendous savings and have been re-
por ted most notab ly in [Mehro t ra and Gehringer, 1985; 
Janak i ram et a/., 1988; Rao and K u m a r , 1988]. Of 
course, our speedup is re lat ive to R T A * , not to the best 
sequential a l go r i t hm for generat ing solut ions of f ixed 
qual i ty . Superl inear speedups are s t r i c t l y impossible in 
such cases, since the dovetai led a lgo r i t hm can be run on 
a sequential machine. By doveta i l ing agents, we have 
created a new uniprocessor a lgo r i t hm against which new 
paral le l a lgor i thms must be measured. 

T h e preceding discussion applies to the offl ine use of 
R T A * . In rea l - t ime, incomple te- in format ion domains, 
theoret ical superl inear speedups over the best single-
agent a lgo r i t hm are possible. 
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5 Other Domains 
The fo l lowing table shows some results for the 15-puzzle, 
the 4x4 version of the 8-puzzle: 

Here, the lookahead hor izon (h) is held constant at 1, 
whi le the number of agents (n ) varies. Notice tha t mov­
ing f r o m 1 to 3 agents yields a large improvement in 
solut ion qua l i ty at v i r tua l l y no cost in search t ime. 

We have also obta ined a fu l l set of empir ica l results 
for the (8-block) Blocks Wor ld domain . The results are 
j us t as compel l ing as those for the N-puzzle. It is far 
more advisable to tackle a blocks-world problem w i t h 
many reactive agents than a few del iberat ive ones. For 
example: 

Work on app ly ing our ideas to p lann ing systems is cur­
rent ly under way. Planners l ike P R O D I G Y [M in ton e t 
a/., 1989] solve hard problems, but do not guarantee good 
qua l i ty solut ions; other planners provide near-opt imal 
solut ions bu t do not scale up. We are explor ing ways to 
bridge th is gap by randomiz ing the arb i t ra ry decisions 
made by a planner and employ ing mu l t ip le agents. 

6 Agent Communicat ion and Dispersal 
The results of the previous sections indicate that where 
substant ia l var ia t ion in solut ion t ime and qual i ty exists, 
many reactive agents should be employed instead of a 
few del iberat ive ones. In th is section, we consider two 
issues tha t na tura l ly arise: (1) if the agents are allowed 
to communicate and coordinate, can their performance 
be improved, and (2) how can agents disperse themselves 
in the absence of random t ie-breaking? 

We consider one rud imentary communicat ion scheme-
Agents communicate by sharing a single hash table, 
which records the states visi ted by a l l . Thus , one agent 
can benefit f r om the experience of another, who may 
have already mapped out a por t ion of the search space. 
Empi r i ca l experiments show tha t communicat ing reac­
t ive agents yielded solut ions about 10% shorter than 
non-communica t ing agents. Search t ime savings vary 
w i t h the number of agents: for 2 agents, there is a 2.6% 
improvement ; for 10 agents a 6 . 1 % improvement ; for 
23 agents, a 7.7% improvement . Th is communicat ion 
scheme is easy to imp lement , and there is clearly room 
for more inte l l igent schemes. 

The second issue is dispersal. Domains l ike the 8-
puzzle use a smal l set of effectively discrete heurist ic es­
t imators . Th is leads R T A * to per fo rm a large number 
of random tie-breaks, since a l ternat ive moves often look 
equal ly good. For tunate ly , these t ie-breaks also serve to 
disperse mu l t i p le agents. B u t domains l ike pa th p lann ing 
th rough obstacles [Russell and Wefa ld , 1991] involve an 
in f in i te number of real-valued est imators. In such do­
mains, our reactive agents s imp ly move about in a single 
c lump, since what looks best to one agent also looks best 
to another. 

We have investigated one a lgo r i t hm for effectively dis­
persing agents. Th is a lgo r i t hm treats heurist ic estimates 
as probabi l i t ies. We obta ined probabi l i t ies by solving 
100 sample problems using R T A * , and recording at each 
act ion cycle: (1) what the backed-up estimates were for 
various al ternat ives, and (2) wha t the best a l ternat ive 
real ly was. Here, "best" means "on an op t ima l pa th to 
the goa l " (op t ima l paths were computed at each po in t 
w i t h I D A * [Kor f , 1985]). We define Stochastic R T A * as 
an a lgor i thm tha t uses such probabi l i t ies to occasionally 
make what R T A * would consider a bad move. Agents us­
ing Stochastic R T A * disperse themselves automat ica l ly . 
In our in i t i a l experiments, a single (reactive) stochastic 
agent returned solut ions of equal qua l i ty compared to 
a normal R T A * agent, bu t consumed 12%) more t ime. 
Th is sl ight decrease in single-agent performance washes 
out when mu l t ip le agents are employed. 

7 Related Work 
[Korf , 1988] is the only other work to address m u l t i ­
ple agents in the context of real - t ime heurist ic search. 
I t reports in i t i a l exper imental results, but i t does not 
compare mu l t i p le agents w i t h increased del iberat ion, nor 
does it measure solut ion qual i ty . A lso, i t does not ana­
lyze the results in terms of superl inear speedup. 

Beam search is another closely related a lgor i thm. 
Roughly, mu l t i p le agent R T A * is to beam search as sin­
gle agent R T A * is to beam search w i t h a beam of w id th 
one. R T A * is guaranteed to f ind a so lu t ion , by looping 
back if necessary, whi le beam search may prune solu­
t ions completely. R T A * can also be used in reactive or 
del iberat ive mode, and in real - t ime or offl ine domains. 
Fur thermore, mu l t i p le agent R T A * can be implemented 
s t ra ight forward ly on a general-purpose mult iprocessor, 
whereas beam search involves large overhead costs due 
to synchronizat ion [Bis iani , 1989]. 

Previous work in paral le l processing has pioneered 
the use of mu l t i p le processors for re l iab i l i t y and perfor­
mance enhancement. [Mehro t ra and Gehringer, 1985] 
report superl inear speedups when ind iv idua l processors 
have vary ing runt imes due to randomiza t ion . [Smith 
and Magui re , 1989b] investigate using paral le l ism and 
randomizat ion to tackle OR-para l le l i sm in P R O L O G . 
[Janaki ram ei a/., 1988] also tackle th is b l i nd search 
prob lem and remark tha t i t wou ld be interest ing to pur­
sue randomiz ing heurist ic search. They also analyze the 
expected speedup for various runn ing t ime probab i l i t y 
d is t r ibu t ions (bu t un for tunate ly not for the log-normal 
d i s t r ibu t ion of the type seen in our exper iments) . [Smi th 
and Magui re , 1989a] and [Goldberg and Jefferson, 1987] 
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present s imi lar work ; none of these papers addresses 
heurist ic search or so lut ion qual i ty . 

AI has seen work in paral le l heurist ic search. [Kumar 
and Rao, 1987] and [Rao and K u m a r , 1988] report su­
per l inear speedups in depth-f i rst I D A * . [Rao and K u ­
mar, 1992J s tudy speedup under vary ing assumptions 
about the the d i s t r i bu t ion of so lut ion states. [Saletore 
and Kale, 1990] investigate how to achieve a rel iable, 
consistent l inear speedup. These a lgor i thms concen­
trate on op t ima l or near op t ima l solut ions, whereas we 
are concerned a flexible tradeoff between so lut ion qual­
i ty and search t ime. Also, these a lgor i thms do not i n ­
terleave p lann ing and execut ion, which is necessary in 
incomplete- in format ion domains. Other paral le l work 
can be found in [Powley and Kor f , 1991], [Huang and 
Davis, 1989], and [L i and W a h , 1991]. 

8 Conclusions and Future Work 
The R T A * a lgo r i t hm yields a tradeoff between search 
t ime and solut ion qual i ty . Increasing R T A * ' s lookahead 
horizon yields better solut ions, but the search t ime in ­
creases exponent ia l ly . Th is paper has investigated an­
other method for improv ing solut ion qual i ty . It uses n 
agents, each of which is repeatedly given a t ime slice. 
Search t ime only increases l inear ly w i t h n, but solut ion 
qual i ty improves very rapid ly . When solut ion qual i ty is 
held constant, employ ing n paral lel agents yields super-
linear speedups. 

There are several direct ions in which to expand this 
work: (1) investigate new a lgor i thms for agent dispersal 
and communica t ion , bu i ld ing on work described in Sec­
t ion 6; (2) investigate the behavior of heterogeneous col­
lections of agents, e.g., agents tha t use different heurist ic 
evaluat ion funct ions, or agents w i t h vary ing levels of de-
liberativeness; and (3) apply the method to a wide range 
of search and p lann ing domains, e.g., ones w i t h different 
solut ion densities, act ion costs, and heurist ic value dis­
t r ibu t ions . 
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