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Abstract

Problem solvers fall along a wide spectrum
ranging from highly deliberative to highly re-
active. Highly deliberative systems are able
to design optimally efficient solutions to prob-
lems, but they require complete world mod-
els and consume inordinate computational re-
sources. Reactive systems move in real time
but cannot guarantee efficient solutions. They
are also subject to looping behavior. One way
to generate incrementally more efficient solu-
tions is to be incrementally more deliberative,
e.g., to increase the amount of mental search
between actions. This paper presents an al-
ternative method for generating more efficient
solutions: increasing the number of reactive
agents simultaneously attacking a given prob-
lem. This method provides a second, orthogo-
nal degree of freedom. We find that in many
domains, increasing agents is dramatically su-
perior to increasing single-agent deliberative-
ness. This is because solution quality improves
rapidly as more reactive agents are added, but
search time only increases linearly. This con-
trasts with adding more deliberativeness, which
incurs exponentially increasing time costs. Am-
ple empirical evidence is presented to support
our conclusions.

1 Introduction

This paper considers two aspects of computational prob-
lem solving:

(1) search time-how long it takes to come up with a
solution.

(2) solution quality—how good that solution is, in
terms of resources needed to execute it.

There is an intuitive trade-off between (1) and (2). The
longer we think about a problem, the better chance we
have of finding a good solution. While search algorithms
like A* [Hart et al., 1968] strive to limit (1) while opti-
mizing (2), time limitations often force us to settle for
suboptimal, or "satisficing" [Simon, 1957], solutions.
Different situations will place different emphases on
(1) and (2). Consider the problem of sending an inter-
planetary probe to Neptune. In this case, it may be
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worth spending days or weeks to plot an optimal trajec-
tory, since such calculations could save months of travel
time. On the other hand, consider the case of Hernan
Cortes, the Spanish conqueror of Mexico. While still a
teenager in Spain, finding himself on the wrong end of
a jealous husband's musket, Cortes immediately devised
a plan to travel to the New World. The efficiency of his
plan was not critical. What was important was that he
get started right away.

This paper studies search time versus solution quality
in the context of the Real-Time-A* (RTA*) algorithm
devised by [Korf, 1990]. The next section reviews how
RTA* interleaves planning and execution, and how this
leads to a flexible time/quality trade-off. Subsequent
sections introduce new algorithms and empirical results.

2 Real-Time Heuristic Search

Motivated by research on two-player games, [Korf, 1990]
investigated single-agent search under the constraints of
having to take action within a given time limit and/or
having limited information about the environment. Sam-
ple single-agent search tasks include robot navigation,
the blocks world, and the 8-puzzle (Figure 1). Korf's
algorithm, called Real-Time-A* (RTA™*), alternates be-
tween two phases: plan and execute. During each plan-
ning phase, RTA* makes a decision about which action
to take, based on the current situation. It then executes
the action in the world, and starts planning again. This
continues until it reaches its goal. RTA®* can vary the
amount of planning versus executing it does by changing
how deeply it looks into the future during the planning
phases. Here is the algorithm:

1. Set variable N to the start state.

2. Generate all of the successor states of N. If any of
the successors is the goal state, then move to the
goal and quit.

3. Estimate the heuristic value of each successor S by
performing a fixed-depth tree search rooted at S.

4. Let S1 be the successor with the best backed-up
value. Let V2 be the value of the second-best succes-
sor. Take whatever action corresponds in the world
to moving to state S1. Store state N in a hash table
as a key with value V2. If the state N is ever gen-
erated again in step 2, use the value stored in the
table instead of performing the search of step 3.
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Figure 1. The 8-Puzzle

5. Set N to SI, and go to step 2.

Although RTA* may enter the same state several
times, the values of previously visited states (stored in
the hash table) prevent RTA* from entering a fixed loop.
The depth of the tree search in step 3 determines how
much time RTA* spends planning instead of executing
actions.

RTA* is useful in both complete- and incomplete-
information domains. When information about the
world is incomplete, it is impossible to plan out an entire
solution ahead oftime. In such a case, interleaving plan-
ning and execution is necessary. The algorithm's utility
in complete-information domains comes because large
search spaces impose practical limitations to lookahead
search. While the optimal solution to a 24-puzzle prob-
lem may contain 100 moves, current computers would
take months or years to exhaustively search a tree to
that depth. RTA?™ solves such problems by making the
move that seems locally best, recording that move in
its hash table, and repeating until the goal is reached.
No current techniques based on heuristic search can find
optimal solutions to the 24-puzzle, yet RTA* returns a
solution in seconds. The catch is that the solution is not
optimal.

Korf demonstrated that by increasing the lookahead
horizon, he could induce RTA* to come up with shorter
solutions to the 8-puzzle (using the standard Manhat-
tan distance heuristic function). Figure 2 illustrates this
phenomenon. The top curve is the one reported by Korf:
it is the actual number of steps "executed" by RTA*.
The lower curve represents the number of steps left after
we have removed the cycles from the solution path.' Of
course, if we were using RTA* in a real-time application,
we would not be able to remove those cycles—the cost
would have already been incurred. For the remainder of
this paper, "solution quality" refers to the length of a
solution with cycles deleted.

Of course, high quality plans come at a cost. As we in-
crease the lookahead horizon, we produce better moves,
but individual moves require more time to contemplate.
Figure 3 shows the well-known exponential nature of tree
search.?

'We have found that a slight modification to the RTA*
algorithm allows it to delete cycles during the search.

2In this and subsequent figures, time means user time, in
seconds, of a C implementation of RTA* running on an IBM-
PC/RT. Due to the large number of runs, most experiments
in this paper were performed on the 8-puzzle rather than
larger puzzle sizes, but see Section 5 for results from the 15-
puzzle.
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Figure 2: Solution Quality as a Function of Lookahead
Horizon in the 8-puzzle. Plotted points are average val-
ues of RTA* running on 500 randomly generated prob-
lems. (Dotted line = optimal solution quality).

The next step is to compare solution quality and
search time, as shown in Figure 4. Each point along
the curve marks a particular choice of lookahead hori-
zon. This data confirms one of the surprising results of
[Korf, 1990]: if our goal is simply to find a solution—any
solution—to the 8-puzzle, the fastest way to do it is to
set the lookahead horizon to 1. That is: don't plan, just
move. Be reactive.

One way to interpret the data in Figure 4 is as follows:
if you have t seconds to spend looking for a solution,
expect to find a solution with quality g — f(t). Likewise,
if you desire a solution of quality q, expect to spend
t = f_l (q) seconds looking for it. Thus, Figure 4 gives
us a whole range of deliberativeness and reactivity to
choose from.

3 Multiple Agent Search

The problem with relying on Figure 4 is that RTA*'s be-
havior is highly erratic. The data points in Figure 4 are
averages of 500 trials each. Figure 5 shows a 5000-triai
histogram of solution quality for a reactive agent (looka-
head horizon of 1). Why the unpredictability? Since
RTA* makes decisions based on limited lookahead, var-
ious alternatives often look equally good. In that case
RTA* must make a random choice. Of course, it may end
up finding a terrible solution, and taking a long time to
boot.?

How can we fix this problem? Taking a clue from
Figure 4, we might run 500 independent agents to com-
pletion, then consult the agent that found an average-

3Actua|ly, there are two sources of variation: one is
RTA*'s random choice mechanism, and the other is the fact
that some instances of the 8-puzzle are harder that others.
The latter source of variation has a minimal effect, however:
no instances require 100-move solutions, but RTA* routinely
returns such solutions.
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Figure 3: Search Time per Move as a Function of Looka-
head Horizon in the 8-Puzzle
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Figure 5: Variance in Solution Quality over 5000 8-
Puzzle Problems (lookahead horizon h = 1).
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Figure 6: Solution Quality as a Function of the Number
of Reactive Agents Solving Instances of the 8-Puzzle.
Compare with Figure 2.

length solution. But then, we might as well take the best
solution instead of the average one. What kind of solu-
tion quality can we expect to see if we take the best of
n agents attacking a single problem?

Figure 6 shows how the number of agents affects so-
lution quality. The figure depicts maximally reactive
agents (lookahead horizon of 1). Note that solution qual-
ity improves with each additional agent, just as it im-
proved when we increased the lookahead horizon of a
single agent.

4 Increasing Deliberativeness versus
Increasing the Number of Agents

At this point, we have two distinct methods for improv-
ing solution quality. We already know the exponential
time costs associated with increasing the lookahead hori-
zon. The next step is to investigate the cost ofincreasing
the number of agents. Then we will be able to construct
a new time versus quality curve.

The cost depends crucially on how the multiple agents
are implemented. There are at least three possibilities:

(1) End to end—run several agents, one after another,
on a sequential machine.

(2) Parallel—run all agents simultaneously, each on its
own processor.

(3) Dovetail—simulate parallelism on a sequential ma-
chine by repeatedly giving each agent a time slice.

In case (1), search time increases linearly with the
number of agents {t = kyn). Here, k; is simply the av-
erage solution time of a single trial. In case (2), search
time decreases with number of agents. This is because
when one processor finds a solution, all processors can
halt. The more processors we have, the more likely it
is that one of them will find a very good solution very
quickly. In the limit, we will find optimal solutions. At
that point, adding more processors will cease to improve
either solution quality or search time.

Case (3) is a very practical method for sequential ma-
chines. Like parallel search, dovetailing terminates when
any one of the independent agents succeeds. In the case
of large n, time increases linearly with n (¢t = kan}. Ifnis
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Figure 7: Search Time as a Function of Number of
Agents in the 8-Puzzle. (Total steps taken is propor-
tional search time here, since h is fixed at 1). Compare
with Figure 3.

so large that near-optimal solutions are being generated,
then doubling n will simply double the search time. But
the slope constant is much smaller than case (1). Instead
of the average solution time, k; is the near-optimal solu-
tion time. At smaller values of n, there are two opposing
forces at work. Increasing n improves solution quality,
so fewer steps are needed. But since there are multiple
agents to dovetail among, search time will suffer. Ex-
perimental results are summarized in Figure 7. In this
figure, lookahead horizon (h) is held constant at 1. With
the horizon constant, search time is a (linear) function
of the number of steps taken by all agents. (Since steps
can be measured more accurately than search time, the
figure uses steps.)

Still holding the lookahead horizon constant at 1, we
can compute a search time versus solution quality curve
for dovetailed agents. Each data point in Figure 8 rep-
resents a different value of n.

Now we can compare the two methods of improving
solution quality: increasing h (Figure 4) and increasing
n (Figure 8). The following table includes average search
time and solution quality for three possible combinations
of h and n.

Lookahead | Number of | Solution Search
horizon (h) | agents (n) | Quality Time
} 1 1254 1.27 sec.

10 1 49.6 | 76.76 sec.

1 8 490 | 2.77 sec.
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Figure 8: Solution Quality versus Search Time for Re-
active Agents in the 8-Puzzle. Small numbers indicate
varying numbers of agents. Execution is dovetailed on a
sequential machine. Compare with Figure 4, especially
the x-axis.

The first two lines in the table represent single-agent
search, reactive and deliberative. The third line rep-
resents multiagent search. The dramatic result here is
that eight reactive agents—dovetailed on a sequential
machine—can match the solution quality of a single de-
liberative agent, and do so spending only a fraction of
the time. This demonstrates the superiority of adding
more reactive agents over increasing the deliberativeness
of a single agent.

The benefit of multiagent search derives from the wide
variation in solution quality for a single agent. The time
cost is only linear in the number of agents. On the other
hand, the benefit of deliberation derives from the knowl-
edge gained by looking ahead. But the time cost is expo-
nential in the lookahead horizon. The benefits are com-
parable, but the costs are not.

We can now state our results in terms of parallel
speedup, i.e., uniprocessor time divided by multiproces-
sor (multiagent) time. To make a fair comparison, it is
necessary to fix the desired solution quality, as has been
done in the above table. It shows 8 agents achieving the
same result as 1, but doing it faster by a factor of 27,
dovetailed on a sequential machine, and by a factor of
225 tn parallel. This is a superlinear speedup, and it
holds for all fixed values for solution quality. Superlin-
ear speedups offer tremendous savings and have been re-
ported most notably in [Mehrotra and Gehringer, 1985;
Janakiram et a/., 1988; Rao and Kumar, 1988]. Of
course, our speedup is relative to RTA*, not to the best
sequential algorithm for generating solutions of fixed
quality. Superlinear speedups are strictly impossible in
such cases, since the dovetailed algorithm can be run on
a sequential machine. By dovetailing agents, we have
created a new uniprocessor algorithm against which new
parallel algorithms must be measured.

The preceding discussion applies to the offline use of
RTA*. In real-time, incomplete-information domains,
theoretical superlinear speedups over the best single-
agent algorithm are possible.
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5 Other Domains

The following table shows some results for the 15-puzzle,
the 4x4 version of the 8-puzzle:

Lookahead | Number of | Solutien Search
horizon (h) | agents (n} [ Quality Time
1 1 1232.6 | 15.2 sec.
1 3 726.9 | 18.5 sec.
1 20 328.7 | 44.9 sec.
1 40 275.5 74.3 sec.
1 80 213.4 | 113.0 sec.

Here, the lookahead horizon (h) is held constant at 1,
while the number of agents (n) varies. Notice that mov-
ing from 1 to 3 agents yields a large improvement in
solution quality at virtually no cost in search time.

We have also obtained a full set of empirical results
for the (8-block) Blocks World domain. The results are
just as compelling as those for the N-puzzle. It is far
more advisable to tackle a blocks-world problem with
many reactive agents than a few deliberative ones. For
example:

Lookahead | Number of | Solution Search
horizon (h) | agents (n} | Quality Time
1 1 115.1 0.58 sec.
7 1 66.4 | 91.56 sec.
1 7 486 | (.79 sec.

Work on applying our ideas to planning systems is cur-
rently under way. Planners like PRODIGY [Minton et
al., 1989] solve hard problems, but do not guarantee good
quality solutions; other planners provide near-optimal
solutions but do not scale up. We are exploring ways to
bridge this gap by randomizing the arbitrary decisions
made by a planner and employing multiple agents.

6 Agent Communication and Dispersal

The results of the previous sections indicate that where
substantial variation in solution time and quality exists,
many reactive agents should be employed instead of a
few deliberative ones. In this section, we consider two
issues that naturally arise: (1) if the agents are allowed
to communicate and coordinate, can their performance
be improved, and (2) how can agents disperse themselves
in the absence of random tie-breaking?

We consider one rudimentary communication scheme-
Agents communicate by sharing a single hash table,
which records the states visited by all. Thus, one agent
can benefit from the experience of another, who may
have already mapped out a portion of the search space.
Empirical experiments show that communicating reac-
tive agents yielded solutions about 10% shorter than
non-communicating agents. Search time savings vary
with the number of agents: for 2 agents, there is a 2.6%
improvement; for 10 agents a 6.1% improvement; for
23 agents, a 7.7% improvement. This communication
scheme is easy to implement, and there is clearly room
for more intelligent schemes.
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The second issue is dispersal. Domains like the 8-
puzzle use a small set of effectively discrete heuristic es-
timators. This leads RTA* to perform a large number
of random tie-breaks, since alternative moves often look
equally good. Fortunately, these tie-breaks also serve to
disperse multiple agents. But domains like path planning
through obstacles [Russell and Wefald, 1991] involve an
infinite number of real-valued estimators. In such do-
mains, our reactive agents simply move about in a single
clump, since what looks best to one agent also looks best
to another.

We have investigated one algorithm for effectively dis-
persing agents. This algorithm treats heuristic estimates
as probabilities. We obtained probabilities by solving
100 sample problems using RTA*, and recording at each
action cycle: (1) what the backed-up estimates were for
various alternatives, and (2) what the best alternative
really was. Here, "best" means "on an optimal path to
the goal" (optimal paths were computed at each point
with IDA* [Korf, 1985]). We define Stochastic RTA* as
an algorithm that uses such probabilities to occasionally
make what RTA* would consider a bad move. Agents us-
ing Stochastic RTA™* disperse themselves automatically.
In our initial experiments, a single (reactive) stochastic
agent returned solutions of equal quality compared to
a normal RTA* agent, but consumed 12%) more time.
This slight decrease in single-agent performance washes
out when multiple agents are employed.

7 Related Work

[Korf, 1988] is the only other work to address multi-
ple agents in the context of real-time heuristic search.
It reports initial experimental results, but it does not
compare multiple agents with increased deliberation, nor
does it measure solution quality. Also, it does not ana-
lyze the results in terms of superlinear speedup.

Beam search is another closely related algorithm.
Roughly, multiple agent RTA™* is to beam search as sin-
gle agent RTA* is to beam search with a beam of width
one. RTA* is guaranteed to find a solution, by looping
back if necessary, while beam search may prune solu-
tions completely. RTA* can also be used in reactive or
deliberative mode, and in real-time or offline domains.
Furthermore, multiple agent RTA* can be implemented
straightforwardly on a general-purpose multiprocessor,
whereas beam search involves large overhead costs due
to synchronization [Bisiani, 1989].

Previous work in parallel processing has pioneered
the use of multiple processors for reliability and perfor-
mance enhancement. [Mehrotra and Gehringer, 1985]
report superlinear speedups when individual processors
have varying runtimes due to randomization. [Smith
and Maguire, 1989b] investigate using parallelism and
randomization to tackle OR-parallelism in PROLOG.
[Janakiram ei al., 1988] also tackle this blind search
problem and remark that it would be interesting to pur-
sue randomizing heuristic search. They also analyze the
expected speedup for various running time probability
distributions (but unfortunately not for the log-normal
distribution of the type seen in our experiments). [Smith
and Maguire, 1989a] and [Goldberg and Jefferson, 1987]



present similar work; none of these papers addresses
heuristic search or solution quality.

Al has seen work in parallel heuristic search. [Kumar
and Rao, 1987] and [Rao and Kumar, 1988] report su-
per linear speedups in depth-first IDA*. [Rao and Ku-
mar, 1992J study speedup under varying assumptions
about the the distribution of solution states. [Saletore
and Kale, 1990] investigate how to achieve a reliable,
consistent linear speedup. These algorithms concen-
trate on optimal or near optimal solutions, whereas we
are concerned a flexible tradeoff between solution qual-
ity and search time. Also, these algorithms do not in-
terleave planning and execution, which is necessary in
incomplete-information domains. Other parallel work
can be found in [Powley and Korf, 1991], [Huang and
Davis, 1989], and [Li and Wah, 1991].

8 Conclusions and Future Work

The RTA* algorithm yields a tradeoff between search
time and solution quality. Increasing RTA*'s lookahead
horizon yields better solutions, but the search time in-
creases exponentially. This paper has investigated an-
other method for improving solution quality. It uses n
agents, each of which is repeatedly given a time slice.
Search time only increases linearly with n, but solution
quality improves very rapidly. When solution quality is
held constant, employing n parallel agents yields super-
linear speedups.

There are several directions in which to expand this
work: (1) investigate new algorithms for agent dispersal
and communication, building on work described in Sec-
tion 6; (2) investigate the behavior of heterogeneous col-
lections of agents, e.g., agents that use different heuristic
evaluation functions, or agents with varying levels of de-
liberativeness; and (3) apply the method to a wide range
of search and planning domains, e.g., ones with different
solution densities, action costs, and heuristic value dis-
tributions.
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