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Abstract 

An important component of an Inte l l igent Tu to r ing 
System ( ITS) for teaching geometry is its capacity to 
transform a f igure in to as many different figures as 
possible, yet all of which respect the same underlying 
logical specification. Given a logical specification for a 
figure, ( i) a figure can be constructed automatically from 
the objects and properties in the spepification; and ( i i ) 
once constructed, one can transform a f igure through 
displacement of any of its objects and st i l l obtain a 
figure that respects the specification. For a student user, 
this feature provides an invaluable tool for graphical 
exploration and discovery of properties induced by the 
logical specification. Our problem domain is automatic 
construction of f igures; and we address this issue in 
restricted cases using Constraint Logic Programming 
We present solutions to cases in which figures can be 
constructed automatical ly and in which there is also a 
natural not ion of completeness for our system. For this 
automatic f igure construction system, we describe an 
implementation, wri t ten in Prolog I I I , which makes use 
of both constraints and coroutines provided in the 
language. Results of experimentation are also included, 
as well as ways in which the system can be extended to 
handle non restricted cases. 

1 Introduction 

Microwor lds and intel l igent tutors designed to help teach 
secondary students how to solve problems in geometry make 
tools available (1) to aid in the construction of geometric 
figures that conform to a specification provided beforehand 
by a teacher, (2) to s t imulate d iscovery of important 
geometric properties represented in such figures, and (3) to 
guide the organization of proofs. In previous work four 
main components of such systems have been ident i f ied 
[Allen et al, 1990]: 

- Figure acquisit ion: The student first constructs a f igure 
which conforms to a specification provided by the teacher. 
The level of the geometric theory made available to students 
for carrying out their constructions can be adjusted by the 
teacher. The construction of a correct figure is considered as 
conf i rmat ion of the comprehension by the student of the 
hypotheses of the problem. 

- Figure appropriat ion: The student can graphical ly 
t ransform the f igure wh i l e i ts log ica l propert ies are 
preserved. On the one hand, the student can thus detect 
interesting invariants and, on the other hand, can observe 
graphically the impact of suppressing a hypothesis. 

- Property explorat ion: The student reacts to system-
proposed interesting properties by using theorems furnished 
by the teacher. 

- Proof organizat ion: The student, u t i l i z i ng facts 
discovered during the previous steps and theorems furnished 
by the teacher, constructs a proof which is veri f ied by the 
system. 

In this paper we are pr imar i ly interested in the f igure 
appropriation component which can be approached f rom two 
d i f ferent perspect ives, one " i m p e r a t i v e geome t r i c 
p rogramming" and the second "declarat ive g e o m e t r i c 
programming." The imperat ive geometric programming 
approach asks the student to exh ib i t a (procedura l ) 
construction of a f igure wh ich conforms to a previously 
given specif ication. Subsequent transformations of the 
figure can then be obtained by mov ing objects found in the 
construction. However, in some cases the same object can 
or cannot be moved, depending on the order in which the 
object was created during the construction. For example, 
consider the construction: construct l ine D l , then l ine D2 , 
and thirdly the point P as the intersection of Dl and D2. D1 
and D2 can be moved but not P since it is f ixed by Dl and 
D 2 ; on the other hand, if P had been constructed before 
either D1 or D 2 , then it could have been moved. As is not 
surprising, imperative geometric programming is sensitive 
to the order in which geometric objects are drawn. Cabri-
geometre [Baulac et a l . , 1992] is an important example of a 
system using the imperative approach. 

Declarative geometric programming dif fers natural ly 
f rom imperative programming in that a user is asked to 
provide only the logical specification of the figure, not the 
order in which objects are to be constructed. The system 
automatical ly constructs the f i gu re , i f possib le, f r o m 
whatever geometric objects are given. The figure can then 
be transformed by f i x i n g all of the objects except the one 
that is used for doing the f igure displacement. Transformed 
figures st i l l respect the specification. Using the declarative 
mode for the example in the preceding paragraph, any of the 
three objects could be chosen, independent ly of order 
constructed, to be moved in order to provide a transformation 
of the figure. This capabi l i ty has signif icant impl icat ions 
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for the design of teaching (didactic) situations which 
stimulate learning. Being able to animate a figure in all 
possible ways gives a student the possibility of guessing 
more properties than if she were restricted to the animation 
induced by a particular order of construction found in an 
imperative geometric programming approach. Furthermore, 
it becomes easier for a teacher to reinforce or to weaken a 
hypothesis: one has only to modify the specification, not 
the order, in order to obtain a new construction and 
subsequent animation. 

The first of the two goals of this paper concerns the 
automatic construction of geometric figures from (logical) 
specifications. Even for a relatively simple specification 
language, one expressing merely the distance between two 
points, long, unsolved, and diff icult problems have 
remained: for example, the construction of a regular 
pentagon. For our purposes, we adopt here a pragmatic 
point of view. It consists in believing that augmenting 
significantly the power of imperative geometric 
programming by making possible more animation (than is 
possible in an imperative approach) is an interesting 
achievement. It also resides in not being so ambitious as to 
want to provide a construction (even if one exists) for every 
specification. We adopt a declarative approach and the issue, 
from a computer science standpoint, is to define an adequate 
completeness for our system. This means that its limits 
must be precisely and clearly defined. To this end, we 
express this completeness in terms of the classical geometric 
tools (ruler, square, compass). 

The second of our goals is to show that Constraint 
Logic Programming (CLP) is an adequate AI tool for 
supporting declarative geometric programming. We use the 
following advantages of the CLP language Prolog I I I 
[Colmerauer, 1990]: (i) modularity expressed through rules 
permits easy extension or restriction of the system 
functionalities; (ii) calculus of constraints as exact solutions 
of linear constraints is provided by the language itself and 
resolution of the non-linear constraints that we propose can 
be expressed using this calculus; (ii i) non determinism and 
suspended execution of goals (the freeze feature) permit a 
straightforward implementation of the claimed completeness. 
We wi l l also discuss performance, which appears to be at 
least acceptable and able to be improved. 

2 Linear case 

Computer implemented Student Construction Languages 
(SCLs) [Allen el al.,1987] provide the basis for imperative 
geometric programming. Such languages provide an 
interface with which the user, typically a school student, (1) 
indicates on a menu what object (point, line, ray, segment, 
circle) she wants to draw on the given graphics medium; (2) 
draws the object; and (3) expresses the logical properties 
(name, belonging to another object, parallel t o , 
perpendicular to, is the midpoint between, is the distance 
from,...) of the drawn object with respect to already-drawn 
objects. The most important characteristic of the interface is 
that each operation must be realizable using drafting table 
instruments (ruler with translation, square, compass). 
Consequently, a user is limited in the constructions she can 
carry out. For example, she cannot construct a line passing 

through three points although she could create a line and 
afterwards three points belonging to it. Such an interface 
has been directly implemented in the s y s t e m 
MENTONIEZH [Nicolas 1989] and similar interfaces are 
implemented with the use of a mouse in the system Cabri-
geometre. 

In the problem of constructing the intersection H of the 
heights of a triangle ABC, a possible construction by a 
student might be encoded using the following sequence of 
steps: 

create point A, create point B, create point C 
create segment S1 with endpoints A and B 
create segment S2 with endpoints A and C 
create segment S3 with endpoints B and C 
construct line D4 passing through A and 

perpendicular to the support of S1 
construct line D5 passing through B and 

perpendicular to the support of S2 
construct line D6 passing through C and 

perpendicular to the support of S3 
construct point H as intersection of lines D4 and D5 

It is clear that this sequence gives a procedure for 
constructing a geometric figure which often is displayed as 
two-dimensional graphical output (see Figure 1). Cabri-
geometre menus provide a language for carrying out such a 
procedure. The user of Cabri-geometre can relocate (drag) 
any one of the vertices and the system wil l redraw the figure 
while respecting the construction. However, any attempt to 
move H, the intersection of the heights, wi l l be refused 
since the construction of H depends on the vertices which, 
according to the procedure, have to be created before the 
intersection. Then a new construction has to be proposed to 
move H. In a declarative programming mode, this need not 
be so and we will discuss such a system below. 

Our approach to declarative geometric programming is 
motivated in part by languages called Classroom Description 
Languages (CDLs) [Allen et al., 1987]. Such languages are 
inspired from those found in geometry textbooks. As an 
example of such a language, consider the following simple 
one composed of the predicates: point(M), l ine(L), 
segment(S, A, B), where A, 
B, M are points, L and L' are lines, and S is a segment. A 
specification for constructing a figure then becomes a 
conjunction of atomic formulas composed from these 
predicates. The specific ordering of the atomic formulas has 
no effect on the figure constructed. In the case of the 
intersection of the heights of the triangle problem, using our 
declarative geometric programming system, the figure can be 
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A notable di f ference between this solut ion and the 
imperative one is that the point H can be relocated. One has 
to indicate what are base elements (for example A, B, and 
and H) and which among the base elements is to be used for 
dragging (say H) . Our system then w i l l automat ical ly 
redraw the f igure as we drag on H, all the whi le respecting 
the specification. It is clear that such a system can readily 
be implemented in Prolog I I I since al l equations derived 
f rom the above property specifications (wi th any three of the 
points A, B, C, or H fixed) are linear (e.g., for A e D 4 , the 
equation is y-ax-b=0, where x,y are the coordinates of A and 
a,b are slope, and intercept of D4). Moreover, in Prolog I I I , 
any calculations carried out on the equations are exact. This 
means—and this is extremely important —that ( l inear) 
o v e r c o n s t r a i n e d spec i f i ca t i ons can be accepted. 
Overconstraints are those which are not necessary for the 
construction of the figure, but which must nevertheless be 
ver i f ied. Such specif ications arise very natural ly. For 
example, the preceding specification, where A, B and C arc 
f i xed , belongs to this category; the fact that H is the 
intersection of three lines has to be verif ied 

Cur ious ly , it is not easy to characterize the possible 
constructions in terms of geometrical instruments. For 
example, one might be tempted to conjecture that all "ruler 
only*' constructions can be solved by linear algebra This is 
not true, a s imple counter-example being the fo l l ow ing : 
Given any three points and any three lines that intersect in a 
common point , construct a tr iangle w i th vertices on the 
l ines and sides passing through the points. This 
construction is known to be feasible using a ruler alone 
[Carrcga, 1989]; however the equations that underlie the 
properties in the construction are not linear. 

3 Non-linear case 

Problems become a for t ior i non-linear if we add language 
formulas of the type IABI - d to our specification. The 
resolution of systems of such equations, namely equations 
of lines (y=ax+b) and equations of circles 
d2= ), is described below. Their satisfiability is known to be 
decidable, and it is known in that a construction using ruler 
and compass can be found if it exists (whereas, in the 
general case, construction has to be carried out numerically) 
A l though these important theoretical results are di f f icul t to 
exploit practically, our approach provides solutions in some 
important and interesting cases. 

Our ob jec t ive is essential ly to try to achieve a 
signi f icant ly better result than that given by imperat ive 
geometric programming. The crucial issue is g iv ing a clear 
semantics to the tools we provide rather than attempting to 
construct f rom every specif ication, regardless of the price. 
From this point of v iew, a very simple idea comes to mind, 
namely, g i v i n g a "closed w o r l d compass and ru ler" 
completeness to our system. In other words, i f a 

construction w i th ruler and compass exists using only the 
elements occurring in the specification, then a construction 
is provided; otherwise, nothing is guaranteed. 

In order to provide such power of construct ion, the 
system must have the capability of compuung intersections 
of circles and lines and intersections of circles and circles 
(intersections between lines are computed by solving linear 
equations). In fact, compuung intersections of two circles 
can be reduced to comput ing intersections of a l ine (the 
common chord of the intersecting circles) and of either of the 
circles. The requirements for attaining our desired power of 
construction can therefore be stated in the fo l lowing terms: 

(1) For all intersections of circles, add their common 
chords. That is, i f the speci f icat ion contains the two 
formulas and if M is not a 
base point, then the common chord of circle of center M1 
w i th radius r1 and of circle of center M2 w i t h radius r2 is 
added to the specification. This means that a constraint 
imply ing that M belongs to the common chord of the two 
circles is added. 

(2) The system of equations derived f rom two formulas 
such as = r a n d , where O, r and D are known, 
must be solvable. In fact, we adopt the more general 
approach in which we check to sec whether every variable x, 
xO, y, yO, r in an equation of a circle 
is known or is a linear funct ion of the same variable u. In 
such cases the second degree equation in u is solved very 
simply. This approach permits the solution of problems not 
solvable in a str ict , closed w o r l d , compass and ruler 
perspective Note also that no more objects are introduced 
than those present in the specification or those introduced 
impl ic i t l y by adding the common chord of two possible 
circles. 
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This last example suggests a simple way of overcoming 
the lack of geometric informat ion available to our system: 
ask the user's help in p rov id ing i t . Since the user is 
supposedly wo rk i ng w i t h the system to obtain more 
f lex ib i l i t y in animating her figures, this suggests that she 
wou ld be w i l l i n g to help the system achieve the better 
results. More exactly, we are asking the user to provide the 
system w i th ovcrspccif ications. In our last example, if we 
add the overspecifications I=midpoint (0,P) and IOII = I IMI, 
men M can be constructed as the intersection of two circles 
Such overspeci f icat ions are of course translated in to 
overconstraints, wh ich leads us to the issue of solv ing 
overconstraints in non-linear cases. 

4 Overconstrained case 

Overconstraints arise naturally and for important reasons; 
they present obstacles which cannot be avoided. Not only do 
they provide means whereby users can interact intel l igently 
to help the system, but they also can be very naturally and 
unconsciously introduced into a specification, as in the case 
of the intersection H of the heights of a triangle. Th i r d l y , 
they might be introduced automatically by our system as it 
creates new lines (common chords of intersecting circles) 
when needed. To provide an example of the third point 

above, let us consider the fo l l ow ing specif ication: Given 
the points Ml and M2 and the distances r1 and r2 , let 

Creating the 
common chord D of the circle C1 w i th center Ml and radius 
rl and of the circle C2 w i th center M2 and radius r2 means 
add ing the ove rspec i f i ca t i on M D. Then M is 
(over)constrained to be the intersection of three figures (the 
two circles and D) which translates into three equations to be 
satisfied. 

Our current approach attempts to address the 
overconstraint issue in what might at f i rst appear to be a 
rather drastic way: all overconstraints associated w i th a 
possible construction arc assumed always to be satisfied. In 
other words, a construct ion is prov ided even if some 
properties found among those in the specification and those 
introduced automatically as overconstraints are not verif ied. 
Our decision to satisfy all overconstraints is based on the 
simple fact that, whereas the calculations in the linear case 
are exact (Prolog I I I ) , our calculations on the extension of 
rationals are not exact. For example, if the solutions to two 
quadratic equations are known to be the same, we cannot be 
assured of always computing them equal numerical ly Of 
course, this way to deal w i th overconstraints is correct if the 
only ones to consider are those introduced automatically by 
the system (none would be introduced by the user) since it is 
a theorem that a point belonging to two circles belongs to 
their common chord. 

Technically, the problem resides in recognizing those 
equations wh ich fo rm overconstraints for a computed 
construction and in communicating them to the user. In the 
preceding example, if M is computed as the intersection of 
D and C1, the overconstraint to be communicated is then the 
equation derived f rom IM2 Ml = r2 This problem can be 
solved easily by determining those equations which do not 
contain any unknown variable Such equations only 
represent properties to be satisfied and arc not used to 
compute any unknowns; thus, they are overconstraints. 

The state of the art provides us w i th direction and hope 
for resolving the problem of so lv ing overconstraints in 
general: such problems require symbolic computation. The 
method for proving geometric properties proposed by Wu 
[1978] is the most promising to date. However, even wi th 
this approach, there is a significant restrict ion, namely, that 
the hypotheses be wri t ten in a constructive manner Ten 
rules arc used to ensure that the hypotheses arc wri t ten in a 
constructive maimer. The resulting equations must represent 
properties of the type: an arbitrary point, an arbitrary l ine, a 
l ine passing through a po in t , a po in t on a l ine , t h e 
intersection of two l ines, or the intersection of two circles. 
It is clear that the ind iv idua l using this method must 
intervene to make sure that the hypotheses are in the correct 
format. In the case where they are not, the answer is not 
guaranteed. In Wu's method, a construction of the f igure 
representing the hypotheses must be exhib i ted and the 
equations descr ib ing this f igure der ived f r o m such a 
construction. This is exactly what our approach does, since 
the overconstraints are checked once the user has found a 
const ruct ion o f a l l the geometr ic elements in t h e 
specification. So, Wu's algor i thm could be applied in our 
case. From a practical standpoint, Wu's method seems to be 
the more effective and the least costly [Chou, 1988]. In any 
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More generally, we profit from a programming language 
integrating very high level facilities like constraints and 
permitting at the same time direct (or nearly direct) 
expression of the problem environment (translation of CDL 
formulas into Prolog terms, easy communication with the 
user, graphical display of the figure...) in the language itself. 

For a discussion of performance, we want to distinguish 
two objectives. The first one is the rapidity of the whole 
construction and the second one concerns the rapidity of the 
animation (i.e., the case where n-1 of the base points are 
already fixed and you then compute the rapidity of the 
construcuon from the instant you fix the nth base point ). 
The rapidity of the animation is the crucial one since the 
entire construction does not need to be computed Min real 
time" in a typical educational context. Just the contrary is 
true; a minimal rapidity is necessary for animation if, for 
example, the student were supposed to guess the locus of 
certain points by watching how the animation changes from 
one relocation to another relocation of the nth base point 
during dragging. 

For problems that fall in our linear case, such as the 
construction of the intersection H of the heights of a 
triangle, it appears that our method gives very acceptable 
performance, both for rapidity of the whole construcuon and 
for rapidity of the animation. In the example cited there are 
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15 equations to be resolved to compute each reconstruction 
of the figure after having relocated H; the time required to 
compute each new figure by moving H is 0.11s on a 
Macllci. In fact, the rapidity of the whole construction is 
just 031s. Similar encouraging results are obtained on 
constructions of other figures in the linear case and better 
performances wil l be obtained on faster computers and with 
the use of newer versions of Prolog I I I . 

For non-linear cases, performances decline. For 
example, for the specification (a trisector): Given A and O 
fixed with AB= BC=CD= d and OA=OB=OC=OD =d' there 
are seven second degree equations, eight common chords, and 
moving B takes 3.25s on a Mac IIci (4.48s for the whole 
construction). For a quadrisector (9 equations and 1 1 
common chords), we get 4.88s and 6.51s. These results 
come from a first, not optimized program, and they can be 
improved. The main idea is to extract from the first 
construction an optimized and "compiled" construction 
which would be used for the animation. The search for the 
right ordering for solving equations would be no longer 
necessary. The search for linearity of variables in a second 
degree equation in terms of a common variable could be 
improved if Prolog I I I would provide a predicate giving the 
linear relation between two unknowns if it exists. The way 
we compute it now by using failure and backtrack is costly. 

6 Related work and perspectives 

A pioneering work in the field is ThingLab [Borning, 1981J 
which introduced a way to define constraints for geometric 
figures. Its aim was to provide a language to implement 
(hand-made) constraints rather than to offer declarative 
geometric programming by using a logical specification 
language like CDL. Among the numerous recent works on 
geometry, we distinguish among those devoted to proofs and 
those to constructions. For proofs, apart from the work of 
Wu fChou, 1988], the most successful approach uses 
Grobner Bases [Kutzler, 1990]. This approach is very close 
to the one of solving nonlinear algebraic constraints, a very 
active domain [Hollman, 1992], As well, very encouraging 
results using Partial Cylindrical Algebraic Decomposition in 
conjunction with Grobner Bases are also reported in [Hong, 
1992]. As for construction, symbolic methods for tackling 
our problem are exemplified by the locus method used in 
[Schreck, 1990], however, they do not provide a precise 
notion of completeness. The CAD approach of dimensional 
constraints, in which figures arc defined by given distances 
and angles, is practically very: important There is abundant 
literature on this approach [Roller et al, 1988] 

Perspectives of future research and development 
wil l focus (1) on improving performance of solving non­
linear equations (a first attempt shows a speedup of 7); (2) 
on solving overconstraints in order to accept 
overspecifications and help from the user; (3) on extending 
of CDL to handle other geometric elements, such as half-
lines and angles; and (4) on augmenting the power of 
automatic construction by introducing automatically extra 
elements other than just the common chord, such as 
perpendicular bisectors and arcs. As wel l , other 
developments in Constraint Logic Programming interest us; 
in particular, the approach developed in [Older and Vellino, 

1992] may be useful to verify rapidly the falsity of 
overconstraints and could provide good performances for our 
purposes if coupled with a linear resolver. Finally, we 
think that taking a specification from an initial construction 
carried out using Cabri-geometre could be a good way to 
proceed for two reasons: (1) it might be easier for the user 
to do a simple construction first rather than directly provide 
a specification for a given geometric figure; (2) such an 
extracted specification would be both constructive and not 
overspccified 
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