Constraint Based Automatic Construction and Manipulation of
Geometric Figures

Richard Allen
St. Olaf College
Northfield, MN 55057
USA

Abstract

An important component of an Intelligent Tutoring
System (ITS) for teaching geometry is its capacity to
transform a figure into as many different figures as
possible, yet all of which respect the same underlying
logical specification. Given a logical specification for a
figure, (i) a figure can be constructed automatically from
the objects and properties in the spepification; and (ii)
once constructed, one can transform a figure through
displacement of any of its objects and still obtain a
figure that respects the specification. For a student user,
this feature provides an invaluable tool for graphical
exploration and discovery of properties induced by the
logical specification. Our problem domain is automatic
construction of figures; and we address this issue in
restricted cases using Constraint Logic Programming
We present solutions to cases in which figures can be
constructed automatically and in which there is also a
natural notion of completeness for our system. For this
automatic figure construction system, we describe an
implementation, written in Prolog Ill, which makes use
of both constraints and coroutines provided in the
language. Results of experimentation are also included,
as well as ways in which the system can be extended to
handle non restricted cases.

1 Introduction

Microworlds and intelligent tutors designed to help teach
secondary students how to solve problems in geometry make
tools available (1) to aid in the construction of geometric
figures that conform to a specification provided beforehand
by a teacher, (2) to stimulate discovery of important
geometric properties represented in such figures, and (3) to
guide the organization of proofs. In previous work four
main components of such systems have been identified
[Allen et al, 1990]:

- Figure acquisition: The student first constructs a figure
which conforms to a specification provided by the teacher.
The level of the geometric theory made available to students
for carrying out their constructions can be adjusted by the
teacher. The construction of a correct figure is considered as
confirmation of the comprehension by the student of the
hypotheses of the problem.

Jeanne |dt
IMAG-LGI, BP 53X
38041 Grenoble cedex,
FRANCE

Laurent Trilling
IMAG-LGI, BP 53X
38041 Grenoble cedex,
FRANCE

- Figure appropriation: The student can graphically
transform the figure while its logical properties are
preserved. On the one hand, the student can thus detect
interesting invariants and, on the other hand, can observe
graphically the impact of suppressing a hypothesis.

- Property exploration: The student reacts to system-
proposed interesting properties by using theorems furnished
by the teacher.

- Proof organization: The student, utilizing facts
discovered during the previous steps and theorems furnished
by the teacher, constructs a proof which is verified by the
system.

In this paper we are primarily interested in the figure
appropriation component which can be approached from two
different perspectives, one "imperative geometric
programming" and the second "declarative geometric
programming." The imperative geometric programming
approach asks the student to exhibit a (procedural)
construction of a figure which conforms to a previously
given specification. Subsequent transformations of the
figure can then be obtained by moving objects found in the
construction. However, in some cases the same object can
or cannot be moved, depending on the order in which the
object was created during the construction. For example,
consider the construction: construct line D1, then line D2,
and thirdly the point P as the intersection of DI and D2. D1
and D2 can be moved but not P since it is fixed by DI and
D2; on the other hand, if P had been constructed before
either D1 or D2, then it could have been moved. As is not
surprising, imperative geometric programming is sensitive
to the order in which geometric objects are drawn. Cabri-
geometre [Baulac et al., 1992] is an important example of a
system using the imperative approach.

Declarative geometric programming differs naturally
from imperative programming in that a user is asked to
provide only the logical specification of the figure, not the
order in which objects are to be constructed. The system
automatically constructs the figure, if possible, from
whatever geometric objects are given. The figure can then
be transformed by fixing all of the objects except the one
that is used for doing the figure displacement. Transformed
figures still respect the specification. Using the declarative
mode for the example in the preceding paragraph, any of the
three objects could be chosen, independently of order
constructed, to be moved in order to provide a transformation
of the figure. This capability has significant implications

Allen, Idt, and Trilling 453

for the design of teaching (didactic) situations which
stimulate learning. Being able to animate a figure in all
possible ways gives a student the possibility of guessing
more properties than if she were restricted to the animation
induced by a particular order of construction found in an
imperative geometric programming approach. Furthermore,
it becomes easier for a teacher to reinforce or to weaken a
hypothesis: one has only to modify the specification, not
the order, in order to obtain a new construction and
subsequent animation.

The first of the two goals of this paper concerns the
automatic construction of geometric figures from (logical)
specifications. Even for a relatively simple specification
language, one expressing merely the distance between two
points, long, unsolved, and difficult problems have
remained: for example, the construction of a regular
pentagon. For our purposes, we adopt here a pragmatic
point of view. It consists in believing that augmenting
significantly the power of imperative geometric
programming by making possible more animation (than is
possible in an imperative approach) is an interesting
achievement. It also resides in not being so ambitious as to
want to provide a construction (even if one exists) for every
specification. We adopt a declarative approach and the issue,
from a computer science standpoint, is to define an adequate
completeness for our system. This means that its limits
must be precisely and clearly defined. To this end, we
express this completeness in terms of the classical geometric
tools (ruler, square, compass).

The second of our goals is to show that Constraint
Logic Programming (CLP) is an adequate Al tool for
supporting declarative geometric programming. We use the
following advantages of the CLP language Prolog Ill
[Colmerauer, 1990]: (i) modularity expressed through rules
permits easy extension or restriction of the system
functionalities; (ii) calculus of constraints as exact solutions
of linear constraints is provided by the language itself and
resolution of the non-linear constraints that we propose can
be expressed using this calculus; (iii) non determinism and
suspended execution of goals (the freeze feature) permit a
straightforward implementation of the claimed completeness.
We will also discuss performance, which appears to be at
least acceptable and able to be improved.

2 Linear case

Computer implemented Student Construction Languages
(SCLs) [Allen el al.,1987] provide the basis for imperative
geometric programming. Such languages provide an
interface with which the user, typically a school student, (1)
indicates on a menu what object (point, line, ray, segment,
circle) she wants to draw on the given graphics medium; (2)
draws the object; and (3) expresses the logical properties
(name, belonging to another object, parallel to,
perpendicular to, is the midpoint between, is the distance
from,...) of the drawn object with respect to already-drawn
objects. The most important characteristic of the interface is
that each operation must be realizable using drafting table
instruments (ruler with translation, square, compass).
Consequently, a user is limited in the constructions she can
carry out. For example, she cannot construct a line passing

454 Intelligent Tutoring Systems

through three points although she could create a line and
afterwards three points belonging to it. Such an interface
has been directly implemented in the system
MENTONIEZH [Nicolas 1989] and similar interfaces are
implemented with the use of a mouse in the system Cabri-
geometre.

In the problem of constructing the intersection H of the
heights of a triangle ABC, a possible construction by a
student might be encoded using the following sequence of
steps:

create point A, create point B, create point C
create segment S1 with endpoints A and B
create segment S2 with endpoints A and C
create segment S3 with endpoints B and C
construct line D4 passing through A and
perpendicular to the support of S1
construct line D5 passing through B and
perpendicular to the support of S2
construct line D6 passing through C and
perpendicular to the support of S3
construct point H as intersection of lines D4 and D5
It is clear that this sequence gives a procedure for
constructing a geometric figure which often is displayed as
two-dimensional graphical output (see Figure 1). Cabri-
geometre menus provide a language for carrying out such a
procedure. The user of Cabri-geometre can relocate (drag)
any one of the vertices and the system will redraw the figure
while respecting the construction. However, any attempt to
move H, the intersection of the heights, will be refused
since the construction of H depends on the vertices which,
according to the procedure, have to be created before the
intersection. Then a new construction has to be proposed to
move H. In a declarative programming mode, this need not
be so and we will discuss such a system below.

Figure 1
Our approach to declarative geometric programming is
motivated in part by languages called Classroom Description
Languages (CDLs) [Allen et al., 1987]. Such languages are

inspired from those found in geometry textbooks. As an
example of such a language, consider the following simple
one composed of the predicates: point(M), line(L),
segment(S, A,B), Me L Me S, L L L' ,L#L'where A,
B, M are points, L and L' are lines, and S is a segment. A
specification for constructing a figure then becomes a
conjunction of atomic formulas composed from these
predicates. The specific ordering of the atomic formulas has
no effect on the figure constructed. In the case of the
intersection of the heights of the triangle problem, using our
declarative geometric programming system, the figure can be

constructed automatically from any three of the poinis A, B,
C or H, given the following specification:

point(A). point(B), point(C), point(H),

line(D4), line(D5), line(D6),

segment(S1.A B), segment(S2,A,C), segment(S3 B.C),

AeD4,BeD5 CeD6,He D4, He D5, He D5,

D4 1 83,D51 82,D6 1 Sl

A notable difference between this solution and the
imperative one is that the point H can be relocated. One has
to indicate what are base elements (for example A, B, and
and H) and which among the base elements is to be used for
dragging (say H). Our system then will automatically
redraw the figure as we drag on H, all the while respecting
the specification. It is clear that such a system can readily
be implemented in Prolog Ill since all equations derived
from the above property specifications (with any three of the
points A, B, C, or H fixed) are linear (e.g., for A e D4, the
equation is y-ax-b=0, where x,y are the coordinates of A and
a,b are slope, and intercept of D4). Moreover, in Prolog Ill,
any calculations carried out on the equations are exact. This
means—and this is extremely important—that (linear)
overconstrained specifications can be accepted.
Overconstraints are those which are not necessary for the
construction of the figure, but which must nevertheless be
verified. Such specifications arise very naturally. For
example, the preceding specification, where A, B and C arc
fixed, belongs to this category; the fact that H is the
intersection of three lines has to be verified
Curiously, it is not easy to characterize the possible

constructions in terms of geometrical instruments. For
example, one might be tempted to conjecture that all "ruler
only*' constructions can be solved by linear algebra This is
not true, a simple counter-example being the following:
Given any three points and any three lines that intersect in a
common point, construct a triangle with vertices on the
lines and sides passing through the points. This
construction is known to be feasible using a ruler alone
[Carrcga, 1989]; however the equations that underlie the
properties in the construction are not linear.

3 Non-linear case

Problems become a fortiori non-linear if we add language
formulas of the type IABI - d to our specification. The
resolution of systems of such equations, namely equations
of lines (y=ax+b) and equations of circles { (x—x')2+(y-y')2—
d®*), is described below. Their satisfiability is known to be
decidable, and it is known in that a construction using ruler
and compass can be found if it exists (whereas, in the
general case, construction has to be carried out numerically)
Although these important theoretical results are difficult to
exploit practically, our approach provides solutions in some
important and interesting cases.

Our objective is essentially to try to achieve a
significantly better result than that given by imperative
geometric programming. The crucial issue is giving a clear
semantics to the tools we provide rather than attempting to
construct from every specification, regardless of the price.
From this point of view, a very simple idea comes to mind,
namely, giving a "closed world compass and ruler"
completeness to our system. In other words, if a

construction with ruler and compass exists using only the
elements occurring in the specification, then a construction
is provided; otherwise, nothing is guaranteed.

In order to provide such power of construction, the
system must have the capability of compuung intersections
of circles and lines and intersections of circles and circles
(intersections between lines are computed by solving linear
equations). In fact, compuung intersections of two circles
can be reduced to computing intersections of a line (the
common chord of the intersecting circles) and of either of the
circles. The requirements for attaining our desired power of
construction can therefore be stated in the following terms:

(1) For all intersections of circles, add their common
chords. That is, if the specification contains the two
formulas IM1 Mi =rl and IM2 Ml = r2 and if M is not a
base point, then the common chord of circle of center M1
with radius r1 and of circle of center M2 with radius r2 is
added to the specification. This means that a constraint
implying that M belongs to the common chord of the two
circles is added.

(2) The system of equations derived from two formulas
suchas IOMl=r a MeD, where O, r and D are known,
must be solvable. In fact, we adopt the more general
approach in which we check to sec whether everv variable x,
x0, y, yO, rin an equation (x-x0)2+ (y-yO)Z: of a circle
is known or is a linear function of the same variable u. In
such cases the second degree equation in u is solved very
simply. This approach permits the solution of problems not
solvable in a strict, closed world, compass and ruler
perspective Note also that no more objects are introduced
than those present in the specification or those introduced
implicitly by adding the common chord of two possible
circles.

An example of a non trivial problem (lypically asked of
13-14 year oids in French schoels) follows: Suppose that
the lines D, D1, and D2 along with the distance d be given,
construct points A and B such that IABl=d, AeD!, B¢
D2, AB /D let A=(xy),B=(x"y") and let the lines
D1, D2, AB and D be defined by (slope intercept) coefficient
pairs (a) . by}, (ap .), (a. b) and (&', b"), respectively.
From the propertics given we obtain the system of

equations;
from/ABI=d, (1) (x-xP+(y-y)2-d2=0
from A £ DI, (2) y-ax-bp =0
from B e D2, 3) y-ax'-bp=0
from AB, (4) y-ax-b=0
from AB,) y-ax'-b=0
from AB 4/ D, (6) a=4a'

with d, a, by, ay, by, a" and b' given. There arc six
unknowns x, y, x', ¥', a and b. Equations (2) and (3) provide
a linear relation between y and x, on the one hand, and a
lincar relation between x' and y', on the other. Similarly,
equations (4} and (5) provide other linear relations between x
and y and between x' and y'. These four equations, together
with equation (6), allow us to solve for y, x" and ¥ as linear
functions of x. This in tum allows equation (1) to be solved
for x. 1t is interesting 10 note thal an imperative solution to
this problem using compass and ruler requires introduction
of a new line: let B'e D2, B' e D, and M such that IB'MI

Allen, Idt, and Trilling 455

= . Then introduce the line D' {f D2 with M e ' and we
obtain A € D1.

Figure 2

Of course, our method cannot solve a very difficult
problem such as the construction of a regular pentagon
(typically asked of 17-18 year olds in French schools, with
numerous hints provided), which has a very simple
specification: 1A]A2l= IA2A3) = [A3AYl = [AgA 5 = IASA g,
I0A 1= I0A3] = I0A3] = DAY = IOAS!. On the other hand.
some problems that anse more commonly are not solvable
using our method, but would be if a little more geometric
information were provided in the specification. For
example, to construct a tangent from a given point P 1o a
given circle of center O and radius 1, the specification is
expressed: Given points O and P and distance «, IOM| = 1
and OM 1 PM. The reason our system is unable to do the
construction is that the system does not know that M
belongs to the circle whose diameter is OP.

Y

Figure 3
This last example suggests a simple way of overcoming
the lack of geometric information available to our system:
ask the user's help in providing it. Since the user is
supposedly working with the system to obtain more
flexibility in animating her figures, this suggests that she
would be willing to help the system achieve the better
results. More exactly, we are asking the user to provide the
system with ovcrspccifications. In our last example, if we
add the overspecifications I=midpoint(0,P) and IOIl = IIMI,
men M can be constructed as the intersection of two circles
Such overspecifications are of course translated into
overconstraints, which leads us to the issue of solving

overconstraints in non-linear cases.

4 Overconstrained case

Overconstraints arise naturally and for important reasons;
they present obstacles which cannot be avoided. Not only do
they provide means whereby users can interact intelligently
to help the system, but they also can be very naturally and
unconsciously introduced into a specification, as in the case
of the intersection H of the heights of a triangle. Thirdly,
they might be introduced automatically by our system as it
creates new lines (common chords of intersecting circles)
when needed. To provide an example of the third point

456 Intelligent Tutoring Systems

above, let us consider the following specification: Given
the points Ml and M2 and the distances r1 and r2, let IM]
Ml = rl and IM2 MI = 12 (M is not known). Creating the
common chord D of the circle C1 with center Ml and radius
rl and of the circle C2 with center M2 and radius r2 means
adding the overspecification M € D. Then M is
(over)constrained to be the intersection of three figures (the
two circles and D) which translates into three equations to be
satisfied.

Our current approach attempts to address the
overconstraint issue in what might at first appear to be a
rather drastic way: all overconstraints associated with a
possible construction arc assumed always to be satisfied. In
other words, a construction is provided even if some
properties found among those in the specification and those
introduced automatically as overconstraints are not verified.
Our decision to satisfy all overconstraints is based on the
simple fact that, whereas the calculations in the linear case
are exact (Prolog Ill), our calculations on the extension of
rationals are not exact. For example, if the solutions to two
quadratic equations are known to be the same, we cannot be
assured of always computing them equal numerically Of
course, this way to deal with overconstraints is correct if the
only ones to consider are those introduced automatically by
the system (none would be introduced by the user) since it is
a theorem that a point belonging to two circles belongs to
their common chord.

Technically, the problem resides in recognizing those
equations which form overconstraints for a computed
construction and in communicating them to the user. In the
preceding example, if M is computed as the intersection of
D and C1, the overconstraint to be communicated is then the
equation derived from IM2 MI = r2 This problem can be
solved easily by determining those equations which do not
contain any unknown variable Such equations only
represent properties to be satisfied and arc not used to
compute any unknowns; thus, they are overconstraints.

The state of the art provides us with direction and hope
for resolving the problem of solving overconstraints in
general: such problems require symbolic computation. The
method for proving geometric properties proposed by Wu
[1978] is the most promising to date. However, even with
this approach, there is a significant restriction, namely, that
the hypotheses be written in a constructive manner Ten
rules arc used to ensure that the hypotheses arc written in a
constructive maimer. The resulting equations must represent
properties of the type: an arbitrary point, an arbitrary line, a
line passing through a point, a point on a line, the
intersection of two lines, or the intersection of two circles.
It is clear that the individual using this method must
intervene to make sure that the hypotheses are in the correct
format. In the case where they are not, the answer is not
guaranteed. In Wu's method, a construction of the figure
representing the hypotheses must be exhibited and the
equations describing this figure derived from such a
construction. This is exactly what our approach does, since
the overconstraints are checked once the user has found a
construction of all the geometric elements in the
specification. So, Wu's algorithm could be applied in our
case. From a practical standpoint, Wu's method seems to be
the more effective and the least costly [Chou, 1988]. In any

case, since our goal is mainly animation, the checking of
overconstraints will be done once and for al} for a given type
of animation. and, consequently, cost may not be of primary
importance for us.

5 Implementation and experimentation

The interest in the use of Constraint Logic Programming for
implementing a system such as ours is a function of the
following factors: correctness, rapid protolyping,
maintenance, and performance. Correctness is insured
essentially due to the fact that the program representing a
specification i9 very close to the specification itself. The
essential predicate to be defined is Resolution(l, 1_eq) which
is truc if the equations contained in the list I_eq of equations
are satisfied. The equations usc the variables conlained in
the list | of variables and these vaniables must all be known.
As an example, let us consider the one given in the section
on the non-linear case: Construct A and B such that IABI =
dAeDI,Be D2, AB/ D LletA=(x y),B=(x'. y)and
let the lines D1, D2, AB and 1> be defined by (slope,
intercept) cocfficient pairs (a) , by), (3 .b),(a, b)and (a',
b), respectively. The construction is obtained by solving
the goal (written in Prolog I1I [PROLQOGIA 92]):
Resolution{<x,y,x'y'.d.al bl a2, b2.ab.a"b'">
<dp{<x,y><x"y">d), bl(<x,y><al bl>),
bl{<x'y'>.<a2,b2>), bl{<x,y><ab>),
bl(<x'y'> <ab>),par(<ab> <a' b'>)=),
{d=..,al=.,bi=., a2=.. b2=, a=., b=}
where dp denotes distance between points, bl denotes
belongs to line, and par denotes parallel ltnes. The terms
dp(pl. p2. d), bl{p, 1}, par(l. I} are the representanons of the
associated formulas. These terms translate into equations
and the equations between { and } are constraints which give
values 10 variables d, al, bl, a2, b2, a, b (x, y, X', ¥' being
the unknowns).
A first definition of the predicate Resolution can be
given by the rules:
Resolution(l, < =) > ;
Resolution(], <c_qg>.1_eq) >
Solve(e_q) Resolution(l, 1_eq) ,
where Solve(e _q) is true if the equation represented by ¢_g is
satisfied. For example, if ¢_q represeots an equation
meaning that a point belongs to a line, we have:
Solve(bl{<x.y><ab>)) > , {y-a*x-b=0};
The first probtem 1o note is that equations like y-a*x-b=0
ar¢ not always linear (4 and x may not be known); they are
said to be pscudo hinear. Presently, in such a case where a
and x are not known, our approach is Lo wait for anyone of
the two unknowns to become known before considering the
cquation. It 1s noteworthy that Prolog Il processes
automatically such constraints in this manner. The second
problem of concern is that equations like (x-x')2+(y-y")2-
d2=0 have to be resolved at the last possible moment so
that, if a linear construction exists, 11 is obtained as a first
construction. Or, if there be no linear construction, at least
the one requiring the fewest solutions of second degree
equations be obtained first. The third problem is simply to
recal] that equations which do not contain any unknowns are
considered to be satisfied. This third probiem is checked

very casily by using the built-in Prolog I predicate
known(x) which is true if x is known. So known (y-a*x-b}
is true if the expression y-a*x-b does not contain amy
unknown. Note that this prevents automatic processing of
pzeudo-linear equations.

To remedy these problems, the predicate Resolution is
refined into:

Resotution(l, < >} > ;

Resolution(l, <e_gq>.1_eq) >

Resolution'(l, 1_eq, 81, s2) Control{l, s1,s2) ;

Coatrol(l, s1, 82) is true if { does not contain any
unknowns. Moreover, it acts on lists s] and s2 so as to
insure a proper ordering in solving equations. The way
Control works will be sketched. By using the Prolog 111
built-in predicate freere(s, B (which triggers the evaluation
of goal B only when & is instanciated), pseudo-lincar
equations (resp. 2nd degree equations) are only considered for
solving if s1 (resp. s2) is instanciated. So, Control is in
charge to trigger sl (resp. s2) by posing s1=<pl>.s]’ (resp.,
$2=<p2>52"). If the awakened process is not able o solve
the associated equation, this process waits again on s!' (resp.
52"). Thus, it can be said that constraints, non-determinism
(necessary to explore all possible constructions, particularly
those derived {rom the two solutions of a 2nd degree
equaton) and coroutines are decisive Lo ensure correctness.

From the point of view of sofiware engineering, logic
programming is already well known for rapid prototyping:
The predicate Resolution is defined with only about 70
clawses and 30 predicates. To exhibit the ease of evolution,
consider introducing the new formula midpoini(P, A, B) (P
15 the midpoint between points A and B) in the language
CDL. One has simply to represent this formula in our
system by a term, say mid(<x, y>, <xl, v1>, «<x2, y2»),
and o add the new rule:

Solve(mid(<x, y>, <xl, y1>, <x2, y2>)) -> ,
{x=(x1 + x2)/2, y=(yl + y2)/2} ;
More generally, we profit from a programming language
integrating very high level facilities like constraints and
permitting at the same time direct (or nearly direct)
expression of the problem environment (translation of CDL
formulas into Prolog terms, easy communication with the
user, graphical display of the figure...) in the language itself.

For a discussion of performance, we want to distinguish
two objectives. The first one is the rapidity of the whole
construction and the second one concerns the rapidity of the
animation (i.e., the case where n-1 of the base points are
already fixed and you then compute the rapidity of the
construcuon from the instant you fix the nth base point).
The rapidity of the animation is the crucial one since the
entire construction does not need to be computed “in real
time" in a typical educational context. Just the contrary is
true; a minimal rapidity is necessary for animation if, for
example, the student were supposed to guess the locus of
certain points by watching how the animation changes from
one relocation to another relocation of the nth base point
during dragging.

For problems that fall in our linear case, such as the
construction of the intersection H of the heights of a
triangle, it appears that our method gives very acceptable
performance, both for rapidity of the whole construcuon and
for rapidity of the animation. In the example cited there are

Allen, Idt, and Trilling 457

15 equations to be resolved to compute each reconstruction
of the figure after having relocated H; the time required to
compute each new figure by moving H is 0.11s on a
Macllci. In fact, the rapidity of the whole construction is
just 031s. Similar encouraging results are obtained on
constructions of other figures in the linear case and better
performances will be obtained on faster computers and with
the use of newer versions of Prolog I11.

For non-linear cases, performances decline. For
example, for the specification (a trisector): Given A and O
fixed with AB= BC=CD=d and OA=0OB=0C=0D =d' there
are seven second degree equations, eight common chords, and
moving B takes 3.25s on a Mac llci (4.48s for the whole
construction). For a quadrisector (9 equations and 1 1
common chords), we get 4.88s and 6.51s. These results
come from a first, not optimized program, and they can be
improved. The main idea is to extract from the first
construction an optimized and "compiled" construction
which would be used for the animation. The search for the
right ordering for solving equations would be no longer
necessary. The search for linearity of variables in a second
degree equation in terms of a common variable could be
improved if Prolog 111 would provide a predicate giving the
linear relation between two unknowns if it exists. The way
we compute it now by using failure and backtrack is costly.

6 Related work and perspectives

A pioneering work in the field is ThingLab [Borning, 1981J
which introduced a way to define constraints for geometric
figures. Its aim was to provide a language to implement
(hand-made) constraints rather than to offer declarative
geometric programming by using a logical specification
language like CDL. Among the numerous recent works on
geometry, we distinguish among those devoted to proofs and
those to constructions. For proofs, apart from the work of
Wu fChou, 1988], the most successful approach uses
Grobner Bases [Kutzler, 1990]. This approach is very close
to the one of solving nonlinear algebraic constraints, a very
active domain [Hollman, 1992], As well, very encouraging
results using Partial Cylindrical Algebraic Decomposition in
conjunction with Grobner Bases are also reported in [Hong,
1992]. As for construction, symbolic methods for tackling
our problem are exemplified by the locus method used in
[Schreck, 1990], however, they do not provide a precise
notion of completeness. The CAD approach of dimensional
constraints, in which figures arc defined by given distances
and angles, is practically very: important There is abundant
literature on this approach [Roller et al, 1988]

Perspectives of future research and development
will focus (1) on improving performance of solving non-
linear equations (a first attempt shows a speedup of 7); (2)
on solving overconstraints in order to accept
overspecifications and help from the user; (3) on extending
of CDL to handle other geometric elements, such as half-
lines and angles; and (4) on augmenting the power of
automatic construction by introducing automatically extra
elements other than just the common chord, such as
perpendicular bisectors and arcs. As well, other
developments in Constraint Logic Programming interest us;
in particular, the approach developed in [Older and Vellino,

458 Intelligent Tutoring Systems

1992] may be useful to verify rapidly the falsity of
overconstraints and could provide good performances for our
purposes if coupled with a linear resolver. Finally, we
think that taking a specification from an initial construction
carried out using Cabri-geometre could be a good way to
proceed for two reasons: (1) it might be easier for the user
to do a simple construction first rather than directly provide
a specification for a given geometric figure; (2) such an
extracted specification would be both constructive and not
overspccified

References

Allen, R., Nicolas, P., Trilling, L., "Figure Correctness in
an Expert System for Teaching Geometry," Proceedings of
the eight biennial conference of the Canadian society for
computational studies of intelligence, Ottawa, May 22-25,
1990, pp. 154-160.

Allen, R., Nicolas, P., Trilling,. L., "Logical Specification
of Figures for Teaching Geometry," Proceedings
COGNITIVA 87 Conference, Paris, May 18-22, 1987.

Baulac, Y., Bellemain, F., Laborde, J.M., CABRI The
Interactive Geometry Notebook, Brooks/Cole Publishing
Company, Pacific Grove, CA, 1992.

Borning, A., "The programming language aspects of
ThinglLab, a constraint-oriented simulation laboratory,"
ACM TOPLAS, vol. 3, no. 4, 1981

Carrega, J.C., Theorie des corps, la regie el le compas,
reedition, Herman, Paris, 1989.

Chou, S.C., Mechanical Geometry Theorem Proving,
Reidel Publishing, Norwell, MA, 1988.

Colmerauer, A., "Prolog III," Communications of the
A CM, vol. 33, no. 69, 1990.

Hollman, J , Langemyr, L., "Algorithms for Non-Linear
Algebraic Constraints,", Constraint Logic Programming:
Selected Research, Colmerauer, A., Benhamou, F., eds.,
MIT Press, (to appear).

Hong, H., "RISC-CLP(Real): Logic Programming with
Nonlinear constraints over the Reals," Constraint Logic
Programming: Selected Research, Colmerauer, A.,
Benhamou, P., eds., MIT Press, (to appear).

Kutzler, B., "Deciding a Class of Euclidean Geometry
Theorems with Buchberger's Algorithm," Revue
d' Intelligence Atrtificielle,vol. 4, no. 3, Hermes, Pans,
1990.

Nicolas, P., Construction et verification de figures
geometrique dans le systeme MENTONIEZH, These de
'Universite' de Rennes |, 1989

Older, W., Vellino, A., "Constraint Arithmetic on Real
Intervals," Constraint Logic Programming: Selected
Research, Colmerauer, A., Benhamou, F., eds., MIT Press,
(to appear).

Roller, D., Shonek, S., Verroust, A., "Dimension-driven
geometry in CAD: a survey," LIENS, ENS Paris, 1988.

Schreck, P., "Automatisation des constructions
geometriques sous constraintes," Actes des Deuxieme
Journe'es EIAO de Cachan, Baron, M., Nicaud, J.F., eds.,
ENS Cachan, 1991.

Wu, W., "On the decision problem and the mechanization of
theorem proving in elementary geometry," Scientia Sinica,
vol. 21, 1978.

