
Constraint Based Automatic Construction and Manipulation of
Geometric Figures

Richard Allen Jeanne Idt Laurent Tr i l l ing
St. Olaf College IMAG-LGI, BP 53X IMAG-LGI, BP 53X

Northfield, MN 55057 38041 Grenoble cedex, 38041 Grenoble cedex,
USA FRANCE FRANCE

Abstract

An important component of an Inte l l igent Tu to r ing
System (ITS) for teaching geometry is its capacity to
transform a f igure in to as many different figures as
possible, yet all of which respect the same underlying
logical specification. Given a logical specification for a
figure, (i) a figure can be constructed automatically from
the objects and properties in the spepification; and (i i)
once constructed, one can transform a f igure through
displacement of any of its objects and st i l l obtain a
figure that respects the specification. For a student user,
this feature provides an invaluable tool for graphical
exploration and discovery of properties induced by the
logical specification. Our problem domain is automatic
construction of f igures; and we address this issue in
restricted cases using Constraint Logic Programming
We present solutions to cases in which figures can be
constructed automatical ly and in which there is also a
natural not ion of completeness for our system. For this
automatic f igure construction system, we describe an
implementation, wri t ten in Prolog I I I , which makes use
of both constraints and coroutines provided in the
language. Results of experimentation are also included,
as well as ways in which the system can be extended to
handle non restricted cases.

1 Introduction

Microwor lds and intel l igent tutors designed to help teach
secondary students how to solve problems in geometry make
tools available (1) to aid in the construction of geometric
figures that conform to a specification provided beforehand
by a teacher, (2) to s t imulate d iscovery of important
geometric properties represented in such figures, and (3) to
guide the organization of proofs. In previous work four
main components of such systems have been ident i f ied
[Allen et al, 1990]:

- Figure acquisit ion: The student first constructs a f igure
which conforms to a specification provided by the teacher.
The level of the geometric theory made available to students
for carrying out their constructions can be adjusted by the
teacher. The construction of a correct figure is considered as
conf i rmat ion of the comprehension by the student of the
hypotheses of the problem.

- Figure appropriat ion: The student can graphical ly
t ransform the f igure wh i l e i ts log ica l propert ies are
preserved. On the one hand, the student can thus detect
interesting invariants and, on the other hand, can observe
graphically the impact of suppressing a hypothesis.

- Property explorat ion: The student reacts to system-
proposed interesting properties by using theorems furnished
by the teacher.

- Proof organizat ion: The student, u t i l i z i ng facts
discovered during the previous steps and theorems furnished
by the teacher, constructs a proof which is veri f ied by the
system.

In this paper we are pr imar i ly interested in the f igure
appropriation component which can be approached f rom two
d i f ferent perspect ives, one " i m p e r a t i v e geome t r i c
p rogramming" and the second "declarat ive g e o m e t r i c
programming." The imperat ive geometric programming
approach asks the student to exh ib i t a (procedura l)
construction of a f igure wh ich conforms to a previously
given specif ication. Subsequent transformations of the
figure can then be obtained by mov ing objects found in the
construction. However, in some cases the same object can
or cannot be moved, depending on the order in which the
object was created during the construction. For example,
consider the construction: construct l ine D l , then l ine D2 ,
and thirdly the point P as the intersection of Dl and D2. D1
and D2 can be moved but not P since it is f ixed by Dl and
D 2 ; on the other hand, if P had been constructed before
either D1 or D 2 , then it could have been moved. As is not
surprising, imperative geometric programming is sensitive
to the order in which geometric objects are drawn. Cabri-
geometre [Baulac et a l . , 1992] is an important example of a
system using the imperative approach.

Declarative geometric programming dif fers natural ly
f rom imperative programming in that a user is asked to
provide only the logical specification of the figure, not the
order in which objects are to be constructed. The system
automatical ly constructs the f i gu re , i f possib le, f r o m
whatever geometric objects are given. The figure can then
be transformed by f i x i n g all of the objects except the one
that is used for doing the f igure displacement. Transformed
figures st i l l respect the specification. Using the declarative
mode for the example in the preceding paragraph, any of the
three objects could be chosen, independent ly of order
constructed, to be moved in order to provide a transformation
of the figure. This capabi l i ty has signif icant impl icat ions

Allen, Idt, and Trilling 453

for the design of teaching (didactic) situations which
stimulate learning. Being able to animate a figure in all
possible ways gives a student the possibility of guessing
more properties than if she were restricted to the animation
induced by a particular order of construction found in an
imperative geometric programming approach. Furthermore,
it becomes easier for a teacher to reinforce or to weaken a
hypothesis: one has only to modify the specification, not
the order, in order to obtain a new construction and
subsequent animation.

The first of the two goals of this paper concerns the
automatic construction of geometric figures from (logical)
specifications. Even for a relatively simple specification
language, one expressing merely the distance between two
points, long, unsolved, and diff icult problems have
remained: for example, the construction of a regular
pentagon. For our purposes, we adopt here a pragmatic
point of view. It consists in believing that augmenting
significantly the power of imperative geometric
programming by making possible more animation (than is
possible in an imperative approach) is an interesting
achievement. It also resides in not being so ambitious as to
want to provide a construction (even if one exists) for every
specification. We adopt a declarative approach and the issue,
from a computer science standpoint, is to define an adequate
completeness for our system. This means that its limits
must be precisely and clearly defined. To this end, we
express this completeness in terms of the classical geometric
tools (ruler, square, compass).

The second of our goals is to show that Constraint
Logic Programming (CLP) is an adequate AI tool for
supporting declarative geometric programming. We use the
following advantages of the CLP language Prolog I I I
[Colmerauer, 1990]: (i) modularity expressed through rules
permits easy extension or restriction of the system
functionalities; (ii) calculus of constraints as exact solutions
of linear constraints is provided by the language itself and
resolution of the non-linear constraints that we propose can
be expressed using this calculus; (ii i) non determinism and
suspended execution of goals (the freeze feature) permit a
straightforward implementation of the claimed completeness.
We wi l l also discuss performance, which appears to be at
least acceptable and able to be improved.

2 Linear case

Computer implemented Student Construction Languages
(SCLs) [Allen el al.,1987] provide the basis for imperative
geometric programming. Such languages provide an
interface with which the user, typically a school student, (1)
indicates on a menu what object (point, line, ray, segment,
circle) she wants to draw on the given graphics medium; (2)
draws the object; and (3) expresses the logical properties
(name, belonging to another object, parallel t o ,
perpendicular to, is the midpoint between, is the distance
from,...) of the drawn object with respect to already-drawn
objects. The most important characteristic of the interface is
that each operation must be realizable using drafting table
instruments (ruler with translation, square, compass).
Consequently, a user is limited in the constructions she can
carry out. For example, she cannot construct a line passing

through three points although she could create a line and
afterwards three points belonging to it. Such an interface
has been directly implemented in the s y s t e m
MENTONIEZH [Nicolas 1989] and similar interfaces are
implemented with the use of a mouse in the system Cabri-
geometre.

In the problem of constructing the intersection H of the
heights of a triangle ABC, a possible construction by a
student might be encoded using the following sequence of
steps:

create point A, create point B, create point C
create segment S1 with endpoints A and B
create segment S2 with endpoints A and C
create segment S3 with endpoints B and C
construct line D4 passing through A and

perpendicular to the support of S1
construct line D5 passing through B and

perpendicular to the support of S2
construct line D6 passing through C and

perpendicular to the support of S3
construct point H as intersection of lines D4 and D5

It is clear that this sequence gives a procedure for
constructing a geometric figure which often is displayed as
two-dimensional graphical output (see Figure 1). Cabri-
geometre menus provide a language for carrying out such a
procedure. The user of Cabri-geometre can relocate (drag)
any one of the vertices and the system wil l redraw the figure
while respecting the construction. However, any attempt to
move H, the intersection of the heights, wi l l be refused
since the construction of H depends on the vertices which,
according to the procedure, have to be created before the
intersection. Then a new construction has to be proposed to
move H. In a declarative programming mode, this need not
be so and we will discuss such a system below.

Our approach to declarative geometric programming is
motivated in part by languages called Classroom Description
Languages (CDLs) [Allen et al., 1987]. Such languages are
inspired from those found in geometry textbooks. As an
example of such a language, consider the following simple
one composed of the predicates: point(M), l ine(L),
segment(S, A, B), where A,
B, M are points, L and L' are lines, and S is a segment. A
specification for constructing a figure then becomes a
conjunction of atomic formulas composed from these
predicates. The specific ordering of the atomic formulas has
no effect on the figure constructed. In the case of the
intersection of the heights of the triangle problem, using our
declarative geometric programming system, the figure can be

454 Intelligent Tutoring Systems

A notable di f ference between this solut ion and the
imperative one is that the point H can be relocated. One has
to indicate what are base elements (for example A, B, and
and H) and which among the base elements is to be used for
dragging (say H) . Our system then w i l l automat ical ly
redraw the f igure as we drag on H, all the whi le respecting
the specification. It is clear that such a system can readily
be implemented in Prolog I I I since al l equations derived
f rom the above property specifications (wi th any three of the
points A, B, C, or H fixed) are linear (e.g., for A e D 4 , the
equation is y-ax-b=0, where x,y are the coordinates of A and
a,b are slope, and intercept of D4). Moreover, in Prolog I I I ,
any calculations carried out on the equations are exact. This
means—and this is extremely important —that (l inear)
o v e r c o n s t r a i n e d spec i f i ca t i ons can be accepted.
Overconstraints are those which are not necessary for the
construction of the figure, but which must nevertheless be
ver i f ied. Such specif ications arise very natural ly. For
example, the preceding specification, where A, B and C arc
f i xed , belongs to this category; the fact that H is the
intersection of three lines has to be verif ied

Cur ious ly , it is not easy to characterize the possible
constructions in terms of geometrical instruments. For
example, one might be tempted to conjecture that all "ruler
only*' constructions can be solved by linear algebra This is
not true, a s imple counter-example being the fo l l ow ing :
Given any three points and any three lines that intersect in a
common point , construct a tr iangle w i th vertices on the
l ines and sides passing through the points. This
construction is known to be feasible using a ruler alone
[Carrcga, 1989]; however the equations that underlie the
properties in the construction are not linear.

3 Non-linear case

Problems become a for t ior i non-linear if we add language
formulas of the type IABI - d to our specification. The
resolution of systems of such equations, namely equations
of lines (y=ax+b) and equations of circles
d2=), is described below. Their satisfiability is known to be
decidable, and it is known in that a construction using ruler
and compass can be found if it exists (whereas, in the
general case, construction has to be carried out numerically)
A l though these important theoretical results are di f f icul t to
exploit practically, our approach provides solutions in some
important and interesting cases.

Our ob jec t ive is essential ly to try to achieve a
signi f icant ly better result than that given by imperat ive
geometric programming. The crucial issue is g iv ing a clear
semantics to the tools we provide rather than attempting to
construct f rom every specif ication, regardless of the price.
From this point of v iew, a very simple idea comes to mind,
namely, g i v i n g a "closed w o r l d compass and ru ler"
completeness to our system. In other words, i f a

construction w i th ruler and compass exists using only the
elements occurring in the specification, then a construction
is provided; otherwise, nothing is guaranteed.

In order to provide such power of construct ion, the
system must have the capability of compuung intersections
of circles and lines and intersections of circles and circles
(intersections between lines are computed by solving linear
equations). In fact, compuung intersections of two circles
can be reduced to comput ing intersections of a l ine (the
common chord of the intersecting circles) and of either of the
circles. The requirements for attaining our desired power of
construction can therefore be stated in the fo l lowing terms:

(1) For all intersections of circles, add their common
chords. That is, i f the speci f icat ion contains the two
formulas and if M is not a
base point, then the common chord of circle of center M1
w i th radius r1 and of circle of center M2 w i t h radius r2 is
added to the specification. This means that a constraint
imply ing that M belongs to the common chord of the two
circles is added.

(2) The system of equations derived f rom two formulas
such as = r a n d , where O, r and D are known,
must be solvable. In fact, we adopt the more general
approach in which we check to sec whether every variable x,
xO, y, yO, r in an equation of a circle
is known or is a linear funct ion of the same variable u. In
such cases the second degree equation in u is solved very
simply. This approach permits the solution of problems not
solvable in a str ict , closed w o r l d , compass and ruler
perspective Note also that no more objects are introduced
than those present in the specification or those introduced
impl ic i t l y by adding the common chord of two possible
circles.

Allen, Idt, and Trilling 455

This last example suggests a simple way of overcoming
the lack of geometric informat ion available to our system:
ask the user's help in p rov id ing i t . Since the user is
supposedly wo rk i ng w i t h the system to obtain more
f lex ib i l i t y in animating her figures, this suggests that she
wou ld be w i l l i n g to help the system achieve the better
results. More exactly, we are asking the user to provide the
system w i th ovcrspccif ications. In our last example, if we
add the overspecifications I=midpoint (0,P) and IOII = I IMI,
men M can be constructed as the intersection of two circles
Such overspeci f icat ions are of course translated in to
overconstraints, wh ich leads us to the issue of solv ing
overconstraints in non-linear cases.

4 Overconstrained case

Overconstraints arise naturally and for important reasons;
they present obstacles which cannot be avoided. Not only do
they provide means whereby users can interact intel l igently
to help the system, but they also can be very naturally and
unconsciously introduced into a specification, as in the case
of the intersection H of the heights of a triangle. Th i r d l y ,
they might be introduced automatically by our system as it
creates new lines (common chords of intersecting circles)
when needed. To provide an example of the third point

above, let us consider the fo l l ow ing specif ication: Given
the points Ml and M2 and the distances r1 and r2 , let

Creating the
common chord D of the circle C1 w i th center Ml and radius
rl and of the circle C2 w i th center M2 and radius r2 means
add ing the ove rspec i f i ca t i on M D. Then M is
(over)constrained to be the intersection of three figures (the
two circles and D) which translates into three equations to be
satisfied.

Our current approach attempts to address the
overconstraint issue in what might at f i rst appear to be a
rather drastic way: all overconstraints associated w i th a
possible construction arc assumed always to be satisfied. In
other words, a construct ion is prov ided even if some
properties found among those in the specification and those
introduced automatically as overconstraints are not verif ied.
Our decision to satisfy all overconstraints is based on the
simple fact that, whereas the calculations in the linear case
are exact (Prolog I I I) , our calculations on the extension of
rationals are not exact. For example, if the solutions to two
quadratic equations are known to be the same, we cannot be
assured of always computing them equal numerical ly Of
course, this way to deal w i th overconstraints is correct if the
only ones to consider are those introduced automatically by
the system (none would be introduced by the user) since it is
a theorem that a point belonging to two circles belongs to
their common chord.

Technically, the problem resides in recognizing those
equations wh ich fo rm overconstraints for a computed
construction and in communicating them to the user. In the
preceding example, if M is computed as the intersection of
D and C1, the overconstraint to be communicated is then the
equation derived f rom IM2 Ml = r2 This problem can be
solved easily by determining those equations which do not
contain any unknown variable Such equations only
represent properties to be satisfied and arc not used to
compute any unknowns; thus, they are overconstraints.

The state of the art provides us w i th direction and hope
for resolving the problem of so lv ing overconstraints in
general: such problems require symbolic computation. The
method for proving geometric properties proposed by Wu
[1978] is the most promising to date. However, even wi th
this approach, there is a significant restrict ion, namely, that
the hypotheses be wri t ten in a constructive manner Ten
rules arc used to ensure that the hypotheses arc wri t ten in a
constructive maimer. The resulting equations must represent
properties of the type: an arbitrary point, an arbitrary l ine, a
l ine passing through a po in t , a po in t on a l ine , t h e
intersection of two l ines, or the intersection of two circles.
It is clear that the ind iv idua l using this method must
intervene to make sure that the hypotheses are in the correct
format. In the case where they are not, the answer is not
guaranteed. In Wu's method, a construction of the f igure
representing the hypotheses must be exhib i ted and the
equations descr ib ing this f igure der ived f r o m such a
construction. This is exactly what our approach does, since
the overconstraints are checked once the user has found a
const ruct ion o f a l l the geometr ic elements in t h e
specification. So, Wu's algor i thm could be applied in our
case. From a practical standpoint, Wu's method seems to be
the more effective and the least costly [Chou, 1988]. In any

456 Intelligent Tutoring Systems

More generally, we profit from a programming language
integrating very high level facilities like constraints and
permitting at the same time direct (or nearly direct)
expression of the problem environment (translation of CDL
formulas into Prolog terms, easy communication with the
user, graphical display of the figure...) in the language itself.

For a discussion of performance, we want to distinguish
two objectives. The first one is the rapidity of the whole
construction and the second one concerns the rapidity of the
animation (i.e., the case where n-1 of the base points are
already fixed and you then compute the rapidity of the
construcuon from the instant you fix the nth base point).
The rapidity of the animation is the crucial one since the
entire construction does not need to be computed Min real
time" in a typical educational context. Just the contrary is
true; a minimal rapidity is necessary for animation if, for
example, the student were supposed to guess the locus of
certain points by watching how the animation changes from
one relocation to another relocation of the nth base point
during dragging.

For problems that fall in our linear case, such as the
construction of the intersection H of the heights of a
triangle, it appears that our method gives very acceptable
performance, both for rapidity of the whole construcuon and
for rapidity of the animation. In the example cited there are

Allen, Idt, and Trilling 457

15 equations to be resolved to compute each reconstruction
of the figure after having relocated H; the time required to
compute each new figure by moving H is 0.11s on a
Macllci. In fact, the rapidity of the whole construction is
just 031s. Similar encouraging results are obtained on
constructions of other figures in the linear case and better
performances wil l be obtained on faster computers and with
the use of newer versions of Prolog I I I .

For non-linear cases, performances decline. For
example, for the specification (a trisector): Given A and O
fixed with AB= BC=CD= d and OA=OB=OC=OD =d' there
are seven second degree equations, eight common chords, and
moving B takes 3.25s on a Mac IIci (4.48s for the whole
construction). For a quadrisector (9 equations and 1 1
common chords), we get 4.88s and 6.51s. These results
come from a first, not optimized program, and they can be
improved. The main idea is to extract from the first
construction an optimized and "compiled" construction
which would be used for the animation. The search for the
right ordering for solving equations would be no longer
necessary. The search for linearity of variables in a second
degree equation in terms of a common variable could be
improved if Prolog I I I would provide a predicate giving the
linear relation between two unknowns if it exists. The way
we compute it now by using failure and backtrack is costly.

6 Related work and perspectives

A pioneering work in the field is ThingLab [Borning, 1981J
which introduced a way to define constraints for geometric
figures. Its aim was to provide a language to implement
(hand-made) constraints rather than to offer declarative
geometric programming by using a logical specification
language like CDL. Among the numerous recent works on
geometry, we distinguish among those devoted to proofs and
those to constructions. For proofs, apart from the work of
Wu fChou, 1988], the most successful approach uses
Grobner Bases [Kutzler, 1990]. This approach is very close
to the one of solving nonlinear algebraic constraints, a very
active domain [Hollman, 1992], As well, very encouraging
results using Partial Cylindrical Algebraic Decomposition in
conjunction with Grobner Bases are also reported in [Hong,
1992]. As for construction, symbolic methods for tackling
our problem are exemplified by the locus method used in
[Schreck, 1990], however, they do not provide a precise
notion of completeness. The CAD approach of dimensional
constraints, in which figures arc defined by given distances
and angles, is practically very: important There is abundant
literature on this approach [Roller et al, 1988]

Perspectives of future research and development
wil l focus (1) on improving performance of solving non­
linear equations (a first attempt shows a speedup of 7); (2)
on solving overconstraints in order to accept
overspecifications and help from the user; (3) on extending
of CDL to handle other geometric elements, such as half-
lines and angles; and (4) on augmenting the power of
automatic construction by introducing automatically extra
elements other than just the common chord, such as
perpendicular bisectors and arcs. As wel l , other
developments in Constraint Logic Programming interest us;
in particular, the approach developed in [Older and Vellino,

1992] may be useful to verify rapidly the falsity of
overconstraints and could provide good performances for our
purposes if coupled with a linear resolver. Finally, we
think that taking a specification from an initial construction
carried out using Cabri-geometre could be a good way to
proceed for two reasons: (1) it might be easier for the user
to do a simple construction first rather than directly provide
a specification for a given geometric figure; (2) such an
extracted specification would be both constructive and not
overspccified

References

Allen, R., Nicolas, P., Tri l l ing, L., "Figure Correctness in
an Expert System for Teaching Geometry," Proceedings of
the eight biennial conference of the Canadian society for
computational studies of intelligence, Ottawa, May 22-25,
1990, pp. 154-160.

Allen, R., Nicolas, P., Trill ing,. L., "Logical Specification
of Figures for Teaching Geometry," Proceedings
COGNITIVA 87 Conference, Paris, May 18-22, 1987.

Baulac, Y., Bellemain, F., Laborde, J.M., CABRI The
Interactive Geometry Notebook, Brooks/Cole Publishing
Company, Pacific Grove, CA, 1992.

Borning, A., "The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory,"
ACM TOPLAS, vol. 3, no. 4, 1981

Carrega, J.C., Theorie des corps, la regie el le compas,
reedition, Herman, Paris, 1989.

Chou, S.C., Mechanical Geometry Theorem Proving,
Reidel Publishing, Norwell, MA, 1988.

Colmerauer, A., "Prolog I I I , " Communications of the
A CM, vol. 33, no. 69, 1990.

Hollman, J , Langemyr, L., "Algorithms for Non-Linear
Algebraic Constraints,", Constraint Logic Programming:
Selected Research, Colmerauer, A., Benhamou, F., eds.,
MIT Press, (to appear).

Hong, H., "RlSC-CLP(Real): Logic Programming with
Nonlinear constraints over the Reals," Constraint Logic
Programming: Selected Research, Colmerauer, A.,
Benhamou, P., eds., MIT Press, (to appear).

Kutzler, B., "Deciding a Class of Euclidean Geometry
Theorems with Buchberger's A lgor i thm," Revue
d' Intelligence Artificielle,vol. 4, no. 3, Hermes, Pans,
1990.

Nicolas, P., Construction et verification de figures
geometrique dans le systeme MENTONIEZH, These de
l'Universite' de Rennes I, 1989

Older, W., Vellino, A., "Constraint Arithmetic on Real
Intervals," Constraint Logic Programming: Selected
Research, Colmerauer, A., Benhamou, F., eds., MIT Press,
(to appear).

Roller, D., Shonek, S., Verroust, A., "Dimension-driven
geometry in CAD: a survey," LIENS, ENS Paris, 1988.

Schreck, P., "Automat isat ion des constructions
geometriques sous constraintes," Actes des Deuxieme
Journe'es EIAO de Cachan, Baron, M., Nicaud, J.F., eds.,
ENS Cachan, 1991.

Wu, W., "On the decision problem and the mechanization of
theorem proving in elementary geometry," Scientia Sinica,
vol. 21, 1978.

458 Intelligent Tutoring Systems

