
Expert System Validation through Knowledge Base Refinement 

Pedro Meseguer + 
Institut d'Investigaci6 en Intel.ligencia Artificial, C.S.I.C. 

Cami Sta Barbara s/n, 17300 Blanes (Girona) 
SPAIN 

Abstract 

Knowledge base (KB) refinement is a suitable 
technique to support expert system (ES) validation. 
When used for validation, KB refinement should be 
guided not only by the number of errors to solve but 
also by the importance of those errors. Most serious 
errors should be solved first, even causing other errors 
of lower importance but assuring a neat validity gain. 
These are the bases for IMPROVER, a KB refinement 
tool designed to support ES validation. IMPROVER 
refines ES for medical diagnosis with this 
classification of error importance: false negative > 
false positive > ordering mismatch. IMPROVER is 
being used to validate a real ES and some empirical 
results are given. 

1 Introduction 

Software validation aims at assuring the compliance of a 
program with its requirements, which capture the needs of 
the final user. This concept remains fully applicable when 
the target software is an expert system (ES), although ES 
peculiarities demand specific validation methods. A main 
difficulty in E)S validation is the lack of detailed and testable 
requirements [Rushby 88]. Aldiough some work has been 
developed in tins sense, it becomes increasingly apparent 
that achieving a complete set of testable requirements for 
some ES tasks (i.e., medical diagnosis) is currently 
unfeasible [Krause et al, 91]. An important part of the 
validation process relies on manual testing using known 
cases and matching ES outputs against experts' opinions. 
When discrepancies exist, the ES is updated until a 
satisfactory performance is achieved. 

Theory refinement considers the improvement of an 
approximate domain theory from a set of cases widi known 
solution. A refinement problem exists when some of these 
cases are treated incorrectly in the theory. Using machine 
learning techniques, the theory can be modified to achieve a 
correct treatment on all cases. It is assumed that the theory 
is close to a satisfactory state. The set of cases should be a 
representative sample of the problem domain. 

+ Current address: Departament de Llenguatges i Sistemes 
Informatics, Universitat Politecnica de Catalunya, Pau Gargallo 
5, 08028 Barcelona, SPAIN. 

The manual testing-update cycle in ES validation can be 
automated using theory refinement techniques. The theory is 
the knowledge base (KB) and the process is known as KB 
refinement. This approach has been considered by several 
authors, which have developed automatic KB refinement 
tools. These works have been mainly focused on developing 
learning strategies to improve the KB, but the validity of the 
refined ES has not been considered in detail. 

In this paper, we propose KB refinement as a suitable 
technique to support ES validation. This work shares 
concepts with previous refinement approaches, although the 
emphasis is put on the validity of the final ES instead on 
the learning capabilities of the refinement process. Since the 
main concern is to improve ES validity, performance errors 
are no longer considered of equal importance but they are 
weighted by their relative impact on the ES task. This 
impact depends on the type of error and on the elements 
involved in this error, aspects that are application-dependent. 
Based on these ideas we have developed IMPROVER, a KB 
refinement tool for ES validation, that is guided by error 
importance. When solving an error, IMPROVER may 
generate new errors of lower importance, but always 
assuring a neat validity gain. We have used IMPROVER to 
refine ES for medical diagnosis, where the solution for a 
case is a ranked list of elements. This has caused to consider 
a new type of refinement error, ordering mismatches. 

This paper is organized as follows. Section 2 
summarizes previous work. Section 3 analyzes KB 
refinement in ES validation. Section 4 details the ES model, 
and the refinement criteria and operators. Section 5 describes 
how IMPROVER works, while section 6 contains empirical 
results. Finally, section 7 encloses some conclusions. 

2 Related Work 

Verification is the most developed subfield in ES validation. 
Available verifiers give response to many structural 
problems (inconsistency, redundancy, circularity, 
unreachable goals, unfireable rules, etc.). However, the 
absence of structural problems is a necessary but not 
sufficient condition to get a valid system. Traditionally, 
validity has been assessed by testing (see MYCIN [Buchanan 
& Shortliffe 841 and Rl [McDermont 81]). Manual testing 
against human experts is very expensive, resulting in a short 
number of test cases (10 in MYCIN, 50 in Rl). Nevertheless, 
the problem is not the number of test cases but their 

Meseguer 477 



coverage [O'Keefe et al, 87]. 
KB refinement systems by empirical learning over a 

library of known cases follow a common pattern composed 
of four phases: identification, localization, generation and 
selection. At the identification phase errors are detected by 
matching, for each case Ci, the set of hypothesis Hi, that the 
ES assigns to Ci against the correct set of hypothesis 
An hypothesis h is classified in: (i) true positive, 

positives and false negatives are the errors to solve by KB 
refinement. A false positive indicates that the KB is too 
general and it should be specialized. Conversely, a false 
negative indicates that the KB is too specific and it should 
be generalized. The localization phase identifies the KB part 
responsible for these errors. The generation phase builds 
several refinements on this KB part. The selection phase 
determines those refinements to be implemented. 

Early refinement systems like SEEK [Politakis & Weiss 
84] and SEEK2 [Ginsberg et al, 85] refine propositional rule 
bases with a restricted form of uncertainty. Rule usage 
statistics are used in the localization phase. Refinements arc 
generated using heuristics. The Antidote Algorithm [Wilkins 
& Buchanan 86], solves misdiagnoses on rule bases under 
(probability based) uncertainty. Rules are ranked by 
responsibility on the identified errors. The only refinement 
operator is rule deletion. The KRUST system [Craw & 
Sleeman, 90] refines rule bases considering rule priority. Al l 
possible refinements are generated and filtered by heuristics. 
Refined KB are ranked using SEEK-like statistics. The RTLS 
system [Ginsberg 88] refines an operationalized 
propositional rule base by modifying label hypotheses. 
Refinements consist on label generalization/specialization. 
EITHER [Ourston & Mooney, 90] and DUCTOR [Cain 91] 
refine propositional theories. The localization phase is based 
on explanation analysis and the generation phase uses 
inductive learning techniques. Selection is made by testing 
theory performance. These refinement systems consider a 
simple knowledge representation, namely rules in 
propositional logic with some kind of uncertainty and, only 
KRUST, analyzes the role of control. The ES output consists 
on a single element, which can cause a false positive or a 
false negative. False positives and false negatives are 
considered equally important. 

3 Validation and Refinement 

In machine learning the goal of KB refinement is to improve 
ES performance by empirical learning. ES performance is 
measured as the number of errors detected executing the ES 
on the case library. When KB refinement is used for 
validation purposes, the goal is to improve ES validity, that 
is to say, the ES should be more valid after implementing 
each single refinement in the KB. This goal slightly differs 
from former one, since more valid is not equivalent to 
performing a lower number of errors. Different errors can 
have a different impact on the overall ES validity, so 
decreasing the number of errors does not always mean 
producing a better ES. To increase ES validity, KB 
refinement should be guided by error importance with respect 
to the ES task. Most serious errors should be solved first, 

even causing some errors of lower importance, but always 
assuring a neat validity gain. A classification of error 
importance with respect to the ES task is needed. This 
classification is application-dependent and may be based on 
the error type and on the elements involved in an error. 

For instance, in the medical diagnosis domain a false 
negative (a diagnosis that does not appear in the ES output 
but it should) is a more serious error than a false positive (a 
diagnosis that appears in the ES output but it should not). A 
false negative may cause the actual origin of an illness to be 
ignored. A false positive introduces an extra diagnosis (what 
can be seen as noise in the ES output) but does not cause 
missing the right one. Difference in error importance comes 
from the impact of each error on the ES task. 

The usage of KB refinement for validation also differs 
from KB refinement in machine learning. Every suggested 
modification by automatic refinement should be evaluated by 
the human expert responsible for the ES prior any update. 
Detailed justification of the proposed modifications should 
be provided, detailing the solved errors as well as the 
potential new errors introduced. After expert's evaluation, 
the modification can be accepted, rejected or modified. 
Refinement failures should also be reported to the expert, 
since they leave unsolved errors that wil l be treated by hand. 

A KB refinement system and its two main functions, the 
automatic testing facility and the learning capability, can be 
of great help in the validation process during the ES life-
cycle. At the development stage, the automatic testing 
facility can evaluate the achieved performance as the subset 
of cases correctly solved in the case library, while the 
learning capability can improve the current prototype. At the 
maintenance stage, automatic testing can evaluate the impact 
of KB updates on the ES performance, activating the 
learning capability if needed. When new cases are added to 
the library, these processes can be easily repeated. In this 
way, an accurate measure of the ES performance is always 
available. Obviously, a KB refinement system does not 
release human developers from their responsibilities. They 
should control all the steps in the refinement process and 
they should solve the remaining unsolved issues. A KB 
refinement system automatizes a set of activities that would 
require lots of effort if they were performed manually, 
providing modifications that objectively improve the ES 
validity according with the classification of error importance 
considered for the specific ES task. 

4 R e f i n e m e n t on an ES M o d e l 

In order to carry out these ideas in practice, we selected for 
refinement the medical application PNEUMON-IA [Verdaguer 
89], developed on the shell MILORD [Sierra 89]. This choice 
fixed the kind of ES model to be refined, that is to say, the 
specific task and the knowledge representation. This has 
influenced clearly the criteria and operators used in the 
refinement process, although the basic ideas remain fully 
applicable for any ES. The ES task is pneumoniae 
diagnosis, so this work may be applicable to other ES for 
medical diagnosis. The knowledge representation used is 
based on rules, including metarules and uncertainty 
management. In the following, we detail this ES model and 
the refinement criteria and operators we apply on it. 

478 Knowledge Base Technology 



4.1 The ES Model 

The ES model is based on rules, underlying 
propositional logic, with uncertainty management, including 
implicit and explicit control, and monotonia 

KB structure. The KB is denoted by a 
MR> where F is a set of facts, R is a set of rules, M is a set 
of modules and MR is a set of metarules. 
represents an attribute in the problem domain and has both a 
value and a certainty value (cv) associated. Special facts 
called goals drive the deduction process. Two kind of rules 
exist, concluding rules and up-down rules, forming the 
disjoint sets and R u d , such that 
concluding rule is formed by a conjunction of 
conditions on facts in its left-hand side (Ihs), an assertion 
about the value of one fact in its right-hand side (rhs) and a 
cv. When r is fired, the concluding fact is asserted with a cv 
computed from the cvs of and r. An up-down rule 
rERud is formed by a conjunction of conditions on facts in 
lhs(r) and an action to increase or decrease the cv of a fact / 
in rhs(r). Up-down rules on / are always fired after 
concluding rules on / . Rules are fired backwards. A module 
contains a collection of rules and one or several goals. Each 
rule belongs to one module. A metarule is formed 
by a conjunction of conditions on facts in Ihs(mr), and an 
action in There are two types of actions: on 
modules and on the ES. Metarules acting on modules have a 
cv associated, as a measure of their strength. Metarules are 
fired forward as soon as their conditions are fulfilled. 

Concerning uncertainty management, a cv is assigned to 
each fact representing positive evidence. Uncertainty is 
propagated through rule firing, using the functions cv-
conjunction and cv-modus-ponens. The function cv-
disjunction computes the cv of a fact independently deduced 
by different rules. The certainty threshold x cuts all 
deductions with a cv less than x. 

Control is divided in implicit and explicit. Implicit 
control is coded as the conflict-set resolution criteria. Three 
criteria of decreasing importance have been considered: (i) 
select the most specific rule, (ii) select the rule with highest 
cv, and (iii) select the first rule. These criteria establish a 
total order in R. Explicit control is coded in metarules acting 
on modules or on the whole ES. Metarules on modules can 
perform two actions, add m or remove m, meaning that 
module m wi l l be activated or inhibited for deduction. A 
module can be activated several times, but once it has been 
inhibited it cannot be activated again. Active modules are 
kept in the active module list (ACL). Modules in the ACL 
are ordered by the cv of their adding metarule. On the whole 
ES only the stop action can be performed. 

ES function. The ES model works as follows: when it 
starts, a metarule builds up an initial ACL. Then the 
following cycle starts. The first module in the ACL is 
selected as the current module. Its goals are pursued using 
the rules contained in it. As soon as new facts are deduced, 
metarules are tested for firing, and the ACL is eventually 
updated. When every goal in the current module has been 
tried, a new current module is selected and the cycle restarts. 
The ES stops when no more modules are available in the 
ACL or a metarule stopping the ES is fired. After 

termination, the ES output is the set of deduced goals 
ordered by their cv. To test performance, the ES output in a 
case C,, the ordered set Hi, is matched against the correct 
ordered set obtaining the following errors: (i) false 
negative, 
and (iii) ordering mismatch, position 
position Ordering mismatch is a new type of error 
caused by the structure of ES output. 

ES task. The ES task is medical diagnosis, specifically 
diagnosis of extrahospitalary pneumoniae in adults in the 
first days of infection [Verdaguer 89]. The ES goal is to 
obtain, from the patient's data, the subset of 
microorganisms that are more likely to cause the infection. 
In very few cases this subset is formed by a single element, 
because usual symptoms do not discriminate enough to 
isolate a single cause. The classification of error importance 
is as follows: false negative > false positive > ordering 
mismatch. Clearly a false negative is a more important error 
than a false positive in medical diagnosis (at least for 
pneumoniae diagnosis), and both are more important than 
ordering mismatch, which simply indicates discrepancy in 
diagnostic ranking. 

4.2 Refinement Cr i ter ia and Operators 

First of all, KB refinement in ES validation should be 
guided by error importance with respect to the ES task, 
solving most important errors first. According to the 
classification of error importance for pneumoniae diagnosis, 
refinement should try to solve false negatives first, followed 
by false positives and finally ordering mismatches. The 
classification of error importance is application-dependent, 
so this one is only valid for the considered ES. 

Second, every type of knowledge in the KB is subject to 
potential refinement. This applies to domain and control 
knowledge, since both types of knowledge may be 
responsible for false negatives and false positives, while 
domain knowledge is the only responsible for ordering 
mismatches. Refinement of certainty degrees of rules and 
metarules is obviously included. 

Third, the number of generated refinements must be 
controlled. This is needed to prevent combinatorial 
explosion, since the set of modifications that can potentially 
solve an error is very large. If every potential refinement was 
tried, the process would be computationally intractable. For 
this reason, all the implemented systems include some 
heuristics to control refinement generation. They are based 
on the following assumption: the KB state is close to a 
correct state. Based on this assumption, we made two 
choices: (i) minimal changes are preferred, and (ii) 
refinements cannot delete KB objects. This second choice 
supposes that every KB object has some prior justification, 
what is quite reasonable for ES built with the support of 
knowledge engineers and following some development 
methodology. In other words, we assume that single 
erroneous rules as totally wrong associations of conditions 
and conclusion do not exist1. Errors are caused by KB 

1 If they exists, they are easily detected by the human expert 
using pure KB inspection. Diff icult problems always involve 
several rules (and/or metarules) forming a deductive chain. 

Meseguer 479 



incompleteness or by small rule defects, that can affect both 
control and domain knowledge. The KB is assumed 
consistent, since consistency and other structural properties 
can be achieved using verifiers (see [Meseguer 91] and 
[Meseguer 92] for an incremental verifier on this ES model). 
Based on these assumptions, the legal refinements operators 
are the following: 
OP1. Generalize/specialize conditions in the left-hand side of 
rules/metarules. 
OP2. Modify the certainty degree of rules/metarules. 
OP3. Modify the certainty degree in conclusions of up-down 
rules. 
OP4. Modify the right-hand side of a metarule. 
OPS. Add conditions to the left-hand side of rules/metarules. 
OP6. Add new rules/metarules to the KB. 

Proposed modifications may cause new errors. The 
following criteria establish when a modification is 
acceptable to guarantee a neat validity gain: 
AC1. A modification solving n false negatives but causing 
p false positives is acceptable when 
AC2. A modification solving p false positives but causing n 
false negatives is acceptable when We have 
determined empirically for PNEUMON-1 A. 
AC3. A modification solving o ordering mismatches is 
acceptable when (i) it does not generates any new false 
negative nor positive, and (ii) when it causes o' new ordering 
mismatches, 

5 I M P R O V E R : A T o o l f o r KB R e f i n e m e n t 

IMPROVER is a KB refinement tool to enhance ES validity. 
It is composed of three stages: solving-false-negatives. 
solving-false-posiiives and solving-ordering-mismatches. 
Each stage tries to solve an specific type of error. Stages are 
invoked in this order, because solving an error may generate 
other errors of lower importance. Stage ordering can be 
altered, to adapt IMPROVER to other classifications of error 
importance. IMPROVER has limited the generated 
refinements to one elementary change on a single KB object. 
This choice has been quite effective, preventing an 
exaggerated use of computational resources. In the 
following, we explain how IMPROVER works in every stage 
and in every refinement phase. The error identification phase 
is common to all the stages and is explained separately. 

5.1 E r ro r Ident i f icat ion 

The first issue in error identification is the definition of 
the right solution for a case, the gold standard. [Gasching et 
al, 83) provides two definitions of gold standard for a case: 
(i) the objective correct answer, or (ii) what a human expert 
considers as the correct answer, using the same information 
that is available to the ES. They take the second definition 
because the first one is often inapplicable. This is also our 
approach, since in medical diagnosis the exact illness cause 
is often unknown, and in occasions can only be obtained by 
aggressive tests or by autopsy. 

To compute a gold standard the opinion of a group of 
independent experts is required for each case. Experts usually 
disagree, so a consensus function is needed. Experts' 
opinions are ranked lists of diagnoses, and the consensus 

function generates another ranked list in the following form. 
Each diagnosis is assigned to the position obtained by 
computing the position mean value of the diagnosis in the 
experts opinions. Diagnoses with very close positions are 
grouped into a class, assigned to the mean value of their 
corresponding positions. The last class in the consensus is 
eliminated, because it corresponds to diagnoses only 
mentioned by one expert in a low position. 

Errors are identified by matching the ES output against 
the gold standard for every case. IMPROVER obtains the ES 
output simulating ES execution. Thus, data coming from 
ES execution simulation and from KB refinement are treated 
homogeneously. IMPROVER performs independent analyses 
of domain and control knowledge, detecting defects that 
would be occluded by odier defects in actual ES execution. 
Specifically, domain knowledge is represented by an and/or 
tree, where and nodes represent rules and or nodes represent 
facts in rule conclusions. Rule priority is also recorded. 
Control knowledge is represented in a separated and/or tree, 
where and nodes represent metarules and or nodes represent 
modules. Domain and control knowledge can be refined 
independently. Deduction details for all die deduced facts in 
all cases are recorded in a table indexed by cases/diagnoses. It 
allows refinement to focus on specific KB parts, always 
considering the whole case library. 

5.2 Solving False Negatives 

Local izat ion When a false negative diagnosis d is 
detected, both control and domain knowledge are analyzed. 
Control knowledge is responsible for the false negative 
when the module m containing d has not been visited when 
it should. This can happen by one of the following causes: 
FN 1. No metarule adding m has been fired. 
FN2. A metarule removing m has been fired. 
EN3. A metarule adding m has been fired but execution has 
terminated before m has been visited. 

Domain knowledge is responsible for the false negative 
when, assuming that m has been visited, d has not been 
deduced. This can happen by one of the following causes: 
FN4. A rule required to deduce d has not been satisfied. 
FN5. Threshold T has cut the deduction for d. 
FN6. An up-down rule has decreased d certainty below T. 

Causes related to control or domain knowledge can 
coexist. For causes requiring generalization, FN1 and FN4, 
the partial proof trees for the unsatisfied rules/metarules are 
computed and passed to the next phases. For the rest of 
cause types, the responsible rules/metarules are located and 
passed to the next phases. 

Generation/Selection. Each cause type is treated as 
follows. Selected modifications satisfy AC1. 
FN1. Unsatisfied conditions in the partial proof trees are 
tentatively generalized (OP1). One or several metarules 
adding m are inductively learned (OP6), taking as positive 
examples the set of false negatives that is being solved and 
as negative examples the set of false positives caused by the 
previous unsuccessful generalization. 
FN2. Condidons in metarule mr removing m are specialized 
(OP1). Conditions are added to mr (OPS), taking as positive 
examples the true negatives in which mr has been fired, and 

480 Knowledge Base Technology 



as negative examples the false negatives that are being 
solved. 
FN3. The certainty degree of a metarule adding m is 
increased (OP2). Module m it is located at the beginning of 
the add part of the fired metarule (OP4). 
FN4. Analogous to FN1 substituting metarules by rules. 
FN5. The certainty value of the fact / responsible for 
threshold action is increased. This can be made by cither 
increasing the cv of rules concluding / (OP2) or increasing 
the cv of facts supporting / (OP2 or OP3). Fact / is 
identified as the deducible fact with lowest cv in lhs(r), being 
r the rule where the deduction has been cut. 
FN6. The up-down rule r is smoothed making smaller the 
certainty subtraction (OP3). The cv of d before r is applied is 
increased, following the FN5 procedure. Rule r is specialized 
following the FN2 procedure. 

5.3 Solving False Positives 

Local izat ion. When a false positive diagnosis d is 
detected, both control and domain knowledge are analyzed. 
Contrary to the false negative case, there arc not definite but 
tentative causes since there is no evidence of what 
rule/metarule should not been fired. Control knowledge is 
responsible for the false positive when the module m 
containing d has been visited but it should not. This can 
happen by the following causes: 
FP1. A metarule adding m has been fired but it should not. 
FP2. A metarule removing m has not been fired but it 
should. 
FP3. Execution has terminated after visiting m but it should 
terminate before. 

Domain knowledge is responsible for the false positive 
when, assuming that m hits been correctly visited, d should 
not been deduced. This can happen by the following causes: 
FP4. Rules required to deduce d have been fired. 
FP5. Certainty of rules used to deduce d is too high to be 
cut by x. 
FP6. An up-down rule has increased d certainty. 

Ciiven that no definite evidence of the actual cause exists 
(except for FP6), all the possible causes for a false positive 
are considered. For the cause IP2 requiring generalization, 
the partial proof trees requiring a minimum number of 
assumptions are computed and passed to next phases. For 
the rest of causes, responsible rules are located and passed to 
the next phases. 

Generation/Selection. Each cause type is treated as 
follows. Selected modifications satisfy AC2. 
FP1. Conditions in metarules mr adding m are specialized 
(OP1). Each metarule mr is specialized (OP4), taking as 
positive examples the true positives in which mr has been 
fired, and as negative examples the false positives that are 
being solved. 
FP2. Unsatisfied conditions in the partial proof trees are 
tentatively generalized (OPI). One or several metarules 
removing m are inductively learned (OP6), taking as 
positive examples the set of false positives that is being 
solved and as negative examples the set of true positives 
caused by the previous unsuccessful generalization. 
FP3. The certainty degree of metarules adding m is decreased 

(OP2). Module m is located at the end of the add part of the 
fired metarule (OP4). 
FP4. Analogous to FP1 substituting metarules by rules. 
FP5. Certainty degree of rules involved in the deduction is 
decreased (OP2). 
FP6. When an up-down rule r has increased the cv of a false 
positive it is specialized following the FP1 procedure. 

5.4 Solving Order ing Mismatches 

Localization. When an ordering mismatch is detected only 
domain knowledge is analyzed because control knowledge 
has no effect in cvs of diagnoses. It can happen by one of 
the following causes: 
O M l . Certainty degree of rules used to deduce d is too 
high/too low. 
OM2. An up-down rule has incorrectly increased/decreased d 
ceruiinty. 

Generation/Selection. Each cause type is treated as 
follows. Selected modifications satisfy AC3. 
O M l . Certainty degree of rules involved in the deduction of 
d is decreased/increased (OP2). 
OM2. The up-down rule r is smoothed making smaller the 
certainty addition/subtraction (OP3). The cv of d before r is 
applied is decreased/increased, following the OMl procedure 

6 Empirical Results 

We have used IMPROVER to validate PNEUMON-IA, an ES 
composed of 500 facts, 600 rules, 100 metarules and 24 
modules. The case library is composed of 66 cases. We have 
the recommendations of five independent experts for every 
case in the library. Using the consensus function (section 
5.1), we have obtained the gold standard for every case, that 
has been used by IMPROVER to refine PNEUMON-IA. 

To evaluate the performance level of PNEUMON-IA before 
and after the refinement process, we compare it against 
human expert competence. Thus, we have matched the 
recommendations of the five independent experts against the 
gold standard for every case, obtaining the number of false 
negatives, false positives and ordering mismatches that each 
expert has performed with respect to the gold standard. We 
remind that the gold standard was computed as a consensus 
among the opinions of these experts. We also matched the 
recommendations of PNEUMON-IA, before and alter the use 
of IMPROVER, against the gold standard. The results of these 
comparisons, summarized for all the cases, are recorded in 
table 1. 

Regarding false negatives, PNEUMON-IA (before) 
surpasses in performance to a human expert only (expert 4), 
while the other four experts exhibit a better performance. 
However, PNEUMON-IA (after) surpasses in performance to 
all the human experts in the most important error type. This 
result shows clearly the usefulness and power of IMPROVER, 
as well as the quality of the knowledge contained in 
PNEUMON-IA. Regarding false positives, all the experts 
surpass in performance to both PNEUMON-IA (before) and 
PNEUMON-IA (after), which decreases 11 false positives. 
Experts perform a low number of false positives at the 
expenses of a high number of false negatives (for example, 
see expert 4). On the contrary, P N E U M O N - I A 

Meseguer 481 



Table 1. Comparison among five human experts (E1-E5) and 
PNEUMON-IA (PN) before and after refinement. #FN, 
#FP,#OM and #DIAG stand for the number of false 
negatives, false positives, ordering mismatches and total 
number of diagnoses, considering the whole case library. 

follows the classification of error importance. Regarding 
ordering mismatches, both PNEUMON-IA (before) and 
PNEUMON-IA (after) surpass in performance to all experts 
except for expert 4. The number of ordering mismatches 
increases in 5 during the refinement process as a consequence 
of solving more important errors, specifically false 
negatives. This is a good example of how the number of 
errors of a given type may increase at the expenses of 
solving other errors, resulting in a better ES. In summary, 
PNEUMON-IA after refinement is clearly more valid than 
before, what evidences that KB refinement is a very valuable 
technique for ES validation. 

Considering computational complexity, it has been 
proved [Valtorta 91] that rule base refinement is exponential 
in the worst case. Empirical results indicate that, under some 
assumptions, this problem is tractable for medium-size KB. 
IMPROVER has required 4, 16 and 7 CPU hours on a SlIN-
4/260, for solving false negatives, false positives, and 
ordering mismatches respectively. 

7 C o n c l u s i o n s 

From this work we extract the following conclusions. First, 
KB refinement techniques can be effectively used to support 
ES validation. Second, when used for validation purposes, 
KB refinement should be guided by error importance with 
respect to the ES task, in order to assure a neat validity gain. 
In addition to satisfy acceptance criteria, final acceptance of 
refinements depends on the expert responsible for ES 
development. Third, when solving an error, KB refinement 
must consider every kind of knowledge that could be 
responsible for it. And four, using some heuristic 
assumptions to l imit the number of modifications, 
refinement is computationally feasible for medium-size KB. 

Acknowledgements 

I thank Ram6n L6pez de Mantaras and Enric Plaza for 
reading a previous version of this paper and providing many 
useful comments. I specially thank Dr. Albert Verdaguer for 
his support on evaluating refinements, and Romero Donlo 
for her collaboration on writing this paper. 

References 

Buchanan B.G., Shortliffe E.H. (1984). Rule-Based Expert 
Systems. The MYCIN Experiments of the Stanford 
Heuristic Programming Project. Addison-Wesley. 

Cain T. (1991). The DUCTOR: A Theory Revision System 
for Propositional Domains. Proceedings of the 8th 
International Workshop on Machine Learning, 485-489. 

Craw S, Sleeman D. (1990). Automating the Refinement of 
Knowledge-Based Systems. Proceedings of the 9th 
European Conference on Artificial Intelligence, 167-172. 

Gasching J., Klahr P., Pople H., Shortliffe E., Terry A. 
(1983). Evaluation of Expert Systems: Issues and Case 
Studies. Building Expert Systems, Hayes-Roth, Waterman 
and Lenat eds., Addison-Wesley. 

Ginsberg A., Weiss S., Politakis P. (1985). SEEK2: a 
Generalized Approach to Automatic Knowledge Base 
Refinement. Proceedings of the 9th International Joint 
Conference on Artificial Intelligence, 367-374. 

Ginsberg A. (1988). Theory Revision via Prior 
Operationalization. Proceedings of the 7th National 
Conference on Artificial Intelligence, 590-595. 

Krause P., O'Neil M., Glowinski A. (1991). Can we 
Formally Specify a Medical Decision Support System?. 
Proceedings of the European Workshop on Verification, 
Validation and Testing ofKBS, 247-258. 

McDermott J. (1981). R l : The Formative Years, AI 
Magazine, 2:21-29. 

Meseguer P. (1991) Verification of Multi-Level Rule-Based 
Expert Systems. Proceedings of the 9th National 
Conference on Artificial Intelligence, 323-328. 

Meseguer P. (1992). Incremental Verification of Rule-Based 
Expert Systems. Proceedings of the 10th European 
Conference on Artificial Intelligence, 840-844. 

O'Keefe R.M., Balci O., Smith E. (1987). Validating Expert 
System Performance, IEEE Expert, vol 2, num 4, 81-89. 

Ourston D., Mooney R.J. (1990). Changing the Rules: A 
Comprehensive Approach to Theory Refinement. 
Proceedings of the 8th National Conference on Artificial 
Intelligence, 815-820. 

Politakis P., Weiss S.M. (1984). Using Empirical Analysis 
lo Refine Expert System Knowledge Bases. Art i f ic ial 
Intelligence, vol 22, 23-48. 

Rushby J. (1988). Quality Measures and Assurance for AI 
Software. SRI-CSL-88-7R, SRI International. 

Sierra C. (1989). MILORD: Arquitectura multinivell per a 
sistemes experts en classificacio. PhD Thesis, Universitat 
Politecnica de Catalunya. 

Valtorta M. (1991). Some results on the computational 
complexity of refining confidence factors. International 
Journal of Approximate Reasoning, 5(2). 

Verdaguer A. (1989). Pneumon-ia: Desenvolupament i 
validacio d'un si sterna expert d'ajuda al diagnostic medic. 
PhD Thesis, Universitat Autonoma de Barcelona. 

Wilkins D.C., Buchanan B.C. (1986). On Debugging Rule 
Sets when Reasoning Under Uncertainly. Proceedings of 
the 5th National Conference on Artif icial Intelligence, 
448-454. 

482 Knowledge Base Technology 


