
Test Case Generation using KBS Strategy 

Laurence Vignollet 
Laboratoire d'Intelligence Artificicllc 
ESIGEC - UNIVERSITE DE SAVOE 
73376 Le Bourget du Lac Cedex 

FRANCE 

Abstract 

The system we have developed, SYCOJET, 
automatically builds test cases making use of specific 
expert knowledge. In our first version, it uses the 
internal structure of the knowledge base to be tested, 
and implicitly assumes that the inference engine derives 
all that can be derived from the knowledge base and the 
problem data. Here we are concerned with how to take 
into account, in a second version of SYCOJET, the 
actual inference engine control strategy. This control 
strategy, included in the inference engine, is not in 
general explicited in a form accessible to the computer. 
In this paper, we investigate to what extent the 
knowledge of the control strategy of the system being 
tested can be used to improve the "quality" of the test 
cases generated by SYCOJET. 

1 Introduction 

KBS-testing is a recent field of study [Morell 1988, Miller 
1989, Ayel 1993, Gupta 1991]. Some execution monitoring 
tools, like WITNESS [VALID, 1991], provide information 
about the KBS running on a given problem. Other tools 
exist to help in the evaluation of the KBS results, such as 
CONTROLLER [VALID, 1991] and VORTEX (Cross et al, 
1990].SYCOJET is a different type of tool: it automatically 
builds test cases for a KBS; these test cases are then used to 
study the behaviour of the KBS, its performance and many 
other validation topics. Other test case generators are 
described in [Zlatareva et a/, 19931. 

To build test cases, SYCOJET first analyses the KB itself. 
This analysis is based on building ATMS-like labels; these 
labels arc an adaptation of De Kleer's [De Kleer, 1986]. 

SYCOJET uses specific expert knowledge in order to 
propose pertinent test cases. To reinforce the pertinence of 
the test itself, SYCOJET may use different coverage criteria, 
freely chosen by the user. When the KBS inference engine 
exhaustively derives everything that can be derived, the 
required level of the chosen criteria wil l be reached when all 
the selected test cases have been run with the KBS. Thus, 
when SYCOJET proposes a set of test cases, the level of the 
chosen criteria wi l l be reached only with this hypothesis 
concerning KBS strategy. 

If the KBS inference strategy can effectively be used in 
test case generation, the test cases wil l be of better "quality". 
Moreover, it wil l ensure that the required level of the chosen 

Ruddy Lelouche 
Departement d'Informatique 

UNIVERSITE L A V A L 
Quebec G1K7P4 

CANADA 

criteria will actually be reached when running the test cases 
with the KBS. In this paper, we propose two different 
approaches in order to account for the KBS strategy when 
selecting the test cases. 

The first section presents the basic principles behind 
SYCOJET [Vignollet, 1991]. It shows why labels might be 
used to exhaustively "summarize" the deduction capabilities 
of a knowledge base (KB), and how these labels can be used 
in order to define test cases. Finally, section 2 demonstrates 
how some knowledge of the inference engine strategy can be 
useful to guide the construction of test cases respecting the 
assigned criteria, and presents two approaches to taking this 
strategy into account, depending on whether it is formally 
described and accessible or not 

2 C o n s t r u c t i o n of test cases 

In this paper, we present simplified label building for KBSs 
using a propositional formalism. However, the method can be 
generalized to KBSs using a first order logic formalism, as 
can be seen in [Ayel et al, 1993]. 

2.1 KBS formalism 
Each KBS considered in this paper includes: 
• a factual part describing the domain, or domain fact base, 
• a factual part describing the problem that the KBS has to 
solve, or problem fact base, 
• a deductive part describing the expertise required to solve a 
problem. 

Definitions, 
• A fact is a proposition. 
• A fact is a problem fact if it may appear in a problem fact 
base. 
• The deductive part of the KBS is a set of monotonic rules 
of the form 

IF condition part THEN consequent part1 

which can only assert new facts. 
• A fact is terminal if it appears in a consequent part of a 
rule and if it does not appear in the condition part of any 
rule. 

1 The condition part is a conjunction of propositions, whereas 
the consequent part is a proposition (using a conjunction of 
propositions in the consequent part of the rule would not 
fundamentally change the method). 

Vignollet and Lelouche 483 



2.4.2 Test case building method 
To build the test cases, the first step consists in 

constructing the deduction labels for each terminal fact of the 
KB as described above. In this way, we obtain all realistic 
problem fact bases of the KBS. 

As a second step, the test cases are chosen from this set of 
problem fact bases. This choice is guided by the quality 
criteria retained but we stil l have to determine the 
contribution of each deduction environment to a given 
coverage criterion. 

Definitions, 
• The contribution of an environment to a coverage criterion 
is the number of KB components to be covered according to 
that criterion that have not yet been counted in the set of test 
cases under development 

• The contribution of a terminal fact to a coverage criterion 
is the maximum contribution of all the deduction 
environments in its deduction label. 

Each newly chosen test case wi l l be one for which the 
environment from which it is extracted yields a contribution 
that is maximal. 

Example. - Using the example in 2.2, if the quality criterion 
retained is rule coverage, the first deduction environment 
chosen wil l be because it 
maximizes the number of rules fired. The corresponding test 
case is the set of problem facts in this environment, i. e. the 
set 

3. Using inference engine strategy: two 
approaches 

There are many different possible strategies in the control 
mechanism of a KBS. J.P. Laurent in [Laurent 1984J gives a 
general presentation, and we shall certainly not deal with all 
of them here. However, we can start investigating this field 
in a general manner. 

Since the assumption behind SYCOJET, i.e. that the KBS 
being tested exhaustively derives all that can be derived 
[Vignollet, 1991], does not hold in general, it might be of 
interest to investigate the situations where the actual strategy 
can be used to prune the search trees while building 
deduction environments. In other words, it might not be 
necessary to construct environments that wil l never be used 
by the actual system when it is run. However, this 
possibility is kept as a longer term approach, and the 
remainder of this paper deals exclusively with what can be 
done when exhaustively constructing the KB labels, as done 
in SYCOJET. 

In order to take into account the inference engine strategy 
when deriving test cases from the computed labels, one can 
distinguish two different approaches. In the first (3.1), the 
strategy is known, formally expressed, and can be exploited; 
in such a case it may be taken into account in the choice of 
test cases, as is shown with a particular strategy. In the 
second (3.2), the strategy is not known, or cannot be 
automatically exploited, and we use a more empirical 
approach. 

484 Knowledge Base Technology 

3.1 Known and exploitable strategy 
The case wherein the inference engine strategy is known is 
intellectually more challenging, because it could possibly 
lead to some kind of automatic generation (i.e. "intelligent 
selection") of actual test cases. However, there are few 
chances indeed that it can actually be of general use, i.e. for 
all existing strategies. 

Stil l, for particular inference engine strategies, strategy-
specific knowledge can sometimes be used and lead to 
interesting results independent from the domain knowledge 
or from the validation knowledge itself. That allows us to go 
beyond the SYCOJET case where all possible deductible 
facts are derived. Such is the case, for example, when the 
conflicts are solved using weights on the deduction elements 
(e.g. rules) and the system stops as soon as the first terminal 
fact is reached, as we shall now demonstrate. 

3.1.1 Strategy hypotheses 
In order to simplify our discussion, we still assume that 

the KB deduction formalism is of the propositional logic 
type. Moreover, we now also assume that we deal with a 
KBS where: 
• each rule is marked with some interest coefficient (or 
weight), and any conflict is solved by always firing the rule 
with the highest coefficient (note that the multiple maximum 
case is only theoretic, since either it is solved by executing 
some sub-procedure based on another condition, or the actual 
conflict resolution is implementation dependent7; we 
therefore assume that there is always only one highest 
coefficient rule8); 
• the system stops as soon as a terminal fact has been 
reached. 

Incidentally, let us remark that, under these assumptions, 
some satisfaction criteria may prove to be unattainable. 

For example, if there are two rules in the KB with the 
same fact(s) as premise(s), the rule with the lower coefficient 
wil l never be fired. Therefore a test criterion specifying 
"execute every rule at least once" cannot be met. The same 
holds true if the rule with the higher coefficient has the form 

(where SP1 is the set of premise facts and 
SCI is the set of derived facts), and the rule with the lower 
coefficient has the form for some 
non empty set of facts SF. With the test criterion above, in 
order to eliminate this problem, we would have to verify that 
the premise set of facts of any rule is never included in the 
premise set of facts of another rule with a lower coefficient.9 

(but this can be done automatically). 

3.1.2 A first result: potentially conflicting environments 
Lemma. - Under the strategy hypotheses in 2.1.1, when 
executing the KBS, the problem facts of an environment Ex 
might lead to using another environment Ey≠ Ex only if the 
problem facts of Ey arc included in those of Ex . 

Actually, if no sub-procedure exists, the first - or the last -
rule with the highest coefficient wi l l be fired, depending on 
the implementation. 
Note that this assumption cannot be automatically verified. 
The above conclusion shows that, in spite of the distinction 
traditionally made between verification and testing, the two 
aspects may be inter-related. 



2.2 Example 
This example illustrates our method used to build test cases 
with a prepositional formalism. Let us assume that we have 
the following rule base: 

where the problem facts are italicized and the terminal facts 
are underlined3. 

Then, for each terminal fact TF (F6 and F10), we build the 
problem fact bases which can lead to TF deduction. 
Furthermore to build test cases we need to associate to each 
problem fact base the rules used to deduce TF from it. The 
couple of the problem fact base and the rule list is called the 
deduction environment of TF. A l l the deduction 
environments of a terminal fact constitute its deduction label. 
For our example, we have: 

If the user's objective is to use 60% of the rules when 
running test cases, we propose one test case which is: {F1 , 
F2, F3, F8}. In this case, rules R1, R2 and R5 are supposed 
to be fired when the KBS runs. However, if the KBS 
inference engine uses a specific strategy, these rules might 
not be fired. 

In the following sections we present the formalized method 
to build the deduction label of a terminal fact and to build 
test cases taking into account quality criteria. 

2.3 Building ATMS-like labels 
The objective of label building is to make explicit all the 
problems, i.e. all the problem fact bases, through which the 
KB terminal facts can be derived. Our building method is a 
variation of De Kleer's ATMS labels [De Kleer, 1986]; in 
fact, we adapt the ATMS concepts to our problem by 
defining the deduction environments and the deduction label 
of a terminal fact. 

Definitions. 
• A deduction environment of a terminal fact TF is a couple 
of the form where SPF is a set of problem facts 
and SR a minimal set of rules used to derive TF from SPF4. 

• A set of problem facts is also called a problem fact base, 

• The deduction label of a terminal fact TF is the set of all 
its deduction environments. 

Note that a derivable fact may also be a problem fact. 
The definitions of these special facts are given in the next 
section. 
Note that SPF has also to be sufficiently large to allow the 
deduction of TF, but such that withdrawing any facts from 
SPF would no longer allow the deduction of TF. In other 
words, it constitutes a minimal problem fact base. 

Each terminal fact may have several deduction 
environments; the set of these environments is then the 
deduction label of the terminal fact 

To construct the deduction label of a terminal fact TF, we 
have to build the search tree of TF, by backward chaining. 
We thus obtain all the potential problem fact bases allowing 
deduction of TF. 

Each of these potential problem fact bases docs not 
necessarily correspond to a real problem fact base. Thus, the 
set of all real problem fact bases is included in the set of all 
potential problem fact bases. In order to refine this last set, 
the domain expert is asked to define constraints to reinforce 
the realism of its elements, in order to build a set of realistic 
problems5. We wil l not develop this aspect here but the 
reader may refer to [Ayel & Vignollet 1992]. In the 
following, we suppose that the only deduction environments 
that are built are those containing a realistic problem fact 
base. 

The next section shows how these deduction labels can be 
used to build pertinent test cases, i.e. test cases that detect a 
maximum number of errors, as implemented in SYCOJET. 

2.4 The construction 
The test cases are provided to verify correct system 
behaviour. Whenever the results obtained by the KBS do not 
fit the results expected by the expert the presence of at least 
one error has been detected in tne KB. Then the debugging 
task (under the expert's control) is responsible for locating 
and correcting this error (or these errors); this last task is not 
our topic here. 

2.4.1 Test quality criteria 
As long as the KBS results are accepted by the expert, 

testing goes on, i.e. adequate test cases are fed into the 
system, until the latter is believed to have been sufficiently 
tested. This decision can be difficult to make and therefore, 
in order to help in decision-making, we propose using 
quality criteria. 

In general, these quality criteria are coverage criteria such as: 
• coverage of facts, like problem facts, terminal facts, etc.; 
• coverage of rules, or of groups of rules; 
• coverage of paths6. 

Note that coverage is not necessarily exhaustive, and that 
it may be of a mixed nature (e.g. coverage of 75% of the 
rules and 90% of the terminal facts). In any case, the retained 
criteria can then be used: 
• to chose the test cases, 
• to assess the quality of any test case, according to the 
components of the KB that wil l be used during the execution 
of that test case by the KBS. 

The real problems are included in the realistic ones because 
we cannot be sure that the expert's constraints are sufficient 
to guaranty the realism of the askable fact bases. These 
constraints may greatly reduce the set of potential problem 
fact bases, but in general yield only a superset of real 
problems ; it is this superset that we call the set of realistic 
problems. 

At this stage of our research, we consider only monotonic 
KBSs. That means that path coverage is the same as groups of 
rules coverage. 

Vignollet and Lelouche 485 



Proof. - The proof is trivial considering the completeness of 
the labels. 

several rules can be fired, the one with the highest coefficient 
is fired first). 

Example. - Using the same example as before (see 2.2), one 
can see from the labels only that: 

• if facts F l , F2, F3 only are assumed to hold, the system 
wil l always use the deduction environment 

and derive F10; in fact, F6 cannot be 
derived because F8 would be needed as a problem fact; 

• if facts F l , F2, F3, and F8 are assumed to hold, depending 
on the rule firing order, the system might either use the 
environment and 
derive F6, or use the environment 

and derive F10. 

The above lemma justifies the following definition: 

Definition. - A deduction environment Ey is said to be 
potentially conflicting with another one whenever 
the problem facts of Ey are included in those of Ex. 

Example. - In the above example, the environment E10 = 
is potentially conflicting with the 

environment 

Note that the concept of potentially confl icting 
environments is not symmetric, since the set inclusion 
relation is not. 

The lemma can then be formulated as: the problem facts of 
an environment Ex might lead to using another environment 

only if Ey is potentially conflicting with E x . 
Interestingly enough, it may be used in two different ways: 

• with a terminal fact coverage criterion, if Ex and Ey are in 
the labels of two different terminal facts then an 
actual conflict might lead to deriving TFy rather than TFX 
(that is the case with the example above); 

• with a rule coverage criterion, even if Ex and Ey are in the 
same label (i.e. they lead to the same terminal fact), the 
derivation path of Ey might be followed rather than that of 
Ex. 

However, the condition is only a necessary but not a 
sufficient one; even if it holds, the system might still use Ex 
as expected, which is a relatively weak result. Can we 
strengthen it, taking the interest coefficients into account ? 
Fortunately we can, and the result which we arrive at is the 
following: 

Theorem. - Let be an environment and 
be another one potentially conflicting 

with Ex . Let mx and my be the minimum of the coefficients 
of the rules in SRX and in SRy respectively. Then, under the 
strategy hypotheses 3.11, executing the KBS with SPFX will 
use Ey rather than Ex iff 

Proof. - If contains a set of problem 
facts needed to use the environment Ey, executing the system 
with SPFX wi l l successively fire rules from SRX and rules 
from SRy (and possibly some other rules coming from other 
deduction environments) in a given order, according to the 
conflict resolution strategy given above (i.e. whenever 

486 Knowledge Base Technology 



The reasons are that: 

and, by the theorem above, E10 is used rather than E6 (the 
conflict is effective). Thus {F1 , F2, F3, F8] should not be 
proposed as a test case since it would not yield its 
"theoretical" contribution to the quality criteria (rule 
coverage for instance). Instead, one should look for another 
environment, i.e. the one giving the best theoretical 
contribution among the environments not already selected or 
marked as unattainable. 

Now suppose that the coefficient of R4 is 8 rather than 12, 
leaving the other coefficients unchanged. Then the rules will 
be fired in the order R5, R3, R1, R2, and the system stops 
after reaching F6, i.e. after using E6. Here: 

and, by the theorem above, E6 is used as expected and not 
E10 (the conflict is not effective). 

Again note the generality of the above lemma and theorem: 
cither can be indistinctly applied for rule coverage or for 
terminal fact coverage, as has been shown above for the 
lemma 

Also note that, in the above theorem, nothing is asserted in 
a situation where several environments Ey potentially 
conflict with a given environment E x . This is why the 
corollary below deals precisely with this point. 

3.1.3 Using this result for choosing test cases. 
As explained in 2.4, all test cases are chosen inside the set 

of realistic problem fact bases. At each choice point, i.e. 
whenever SYCOJET is to add a new test case to the set 
under construction, it selects the deduction environment with 
the maximal contribution. As already pointed out, this choice 
is made assuming that the KBS derives all that it can from a 
problem fact base. 

However, when a test case is run by a KBS using a non 
exhaustive deduction strategy, the system might use a 
different environment, and therefore take a different 
derivation path than the one expected from the chosen 
environment, or reach a different terminal fact than the one 
corresponding to the chosen environment, etc. Since this may 
happen at each choice point, the overall result might show a 
large gap between the criteria level actually reached in 
executing the set of test cases with the KBS and the 
SYCOJET-predicted level for the same criteria. 

Indeed, when choosing a test case, we must know whether 
the environment it comes from wil l be the one actually used 
when running it on the system. Thus at each stage of test 
case building, we have to choose the environment which will 
actually be used and with the highest possible contribution. 

If the KBS uses rule weights and stops at the first terminal 
fact encountered (strategy hypotheses 3.1.1), the lemma in 
3.12 shows that, if SYCOJET selects an environment E, a 
degradation can only come from an environment potentially 
conflicting with E. Moreover, the theorem in 3.1.2 gives a 

necessary and sufficient condition for a potentially 
conflicting environment to yield an actual conflict, i.e. to 
prevent E from being actually used when running the system. 

To be sure that a selected environment E would be 
effectively used in a running session, we have to find all 
environments actually conflicting with E. The following 
corollary to the theorem in 3.12 allows to decide if the 
selected environment E should be used. 

Corollary. - Let be a deduction 
environment. Let 

be the set of all deduction environments potentially 
conflicting with E. Then, under the strategy hypotheses 3.11, 
executing the KBS with SPF as problem facts will use SR 
iff, for every 

Proof. - If the system running SPF actually uses E, then 
every environment Ej potentially conflicting with E is not in 
actual conflict, and therefore by the theorem in 3.1.2. 

Conversely, if for every potentially 
conflicting with holds, then by the theorem in 
3.12 none of the Ei wil l be used. Since no other environment 
is potentially conflicting with E, E wil l be used. ♦ 

This corollary shows that if, for any deduction environment 
selected by SYCOJET, there exists one 

deduction environment potentially 
conflicting with E and such that mi > m, then we should not 
use SPF as the next test case to be included in the set of test 
cases under construction. In other words, the existence of 
such an Ej implies that E, which has been selected because of 
its potential contribution to the retained quality criteria, 
cannot actually yield this "theoretical" contribution to these 
criteria when running the system. 

3.2 The strategy is not known, or not exploitable 
The second approach deals with the situations in which 
nothing particular is known about the KBS inference 
strategy. In those situations, even though the inference 
engine strategy cannot be exploited as such, we still have 
some quality criteria (see 2.4.1) for defining a set of "good", 
or of "the best", test cases, with respect to these criteria. We 
then may define two procedures as follows. 

The first procedure is an algorithm defined over the 
existing KB: 
1° Compute the deduction labels as shown in section 1. 
2° Define the criteria satisfaction indices (e.g. the various 
coverage counters) according to the retained test criteria and 
initialize them. 
3° WHILE the criteria satisfaction indices are not satisfied 
AND there are pertinent environments available in the labels: 

• Choose a pertinent environment in the computed 
deduction labels, using the underlying test criteria as a 
guide for this choice (using the SYCOJET mechanism for 
choosing a test case). 
• Define a test case from this environment, and execute it 
on the KBS. 

Vignollet and Lelouche 487 



• IF the results are correct, i. e. agree with the expert's 
opinion or conclusion, THEN: 

- Analyze the execution traces to update the criteria 
satisfaction indices. 
- Mark any environment(s) in the labels which 
become unnecessary (i.e. executing the corresponding 
test would not improve the criteria satisfaction 
indices). 
ELSE (the expert disagree with the obtained results) 
End the procedure (there is something wrong in the 
KB; procedure 2 must be performed next). 

• END WHILE. 
4° IF the criteria satisfaction indices arc satisfied THEN 

The KBS has been successfully tested {the 
satisfaction criteria are met). 
ELSE (there is no pertinent environment left in the labels) 

Testing the KBS is impossible with respect to the 
defined test criteria. 
END of first procedure (over the existing KB). 

The second procedure takes place whenever the existing 
KB proves erroneous somewhere, i.e. when a test case 
uncovers an erroneous behavior of the KBS. It consists in 
correcting the KB with the help of the domain expert. This 
correction cannot be formalized without the adequate domain 
knowledge, and is therefore outside the scope of this article. 
Once the KB has been modified, the first procedure above 
must be run again on the KBS with the new KB. 

Conclusion 

In the area of test case generation for knowledge-based 
systems, SYCOJET is an automatic test case building system 
which has given significant results on several KBSs10. The 
method it uses in this test case construction consists first in 
building the deduction label of each terminal fact of the 
knowledge base. These labels provide the set of all potential 
problem fact bases. Then the actual test cases are extracted 
from this set, according to the coverage criteria chosen by the 
user. SYCOJET is operational for KBSs using a first order 
formalism [Ayel et al, 1993). However, it makes the 
hypothesis that the inference engine of the KBS deduces all 
it can. If that is not the case, the criteria level obtained in 
executing the set of test cases proposed by SYCOJET might 
be significantly lower than the SYCOJET-predicted level for 
the same criteria. Thus, taking into account the inference 
engine strategy wil l lead to better test case generation. 

In this paper, we have proposed two approaches which take 
the inference engine strategy into account differently. 

In the first approach, we suppose that the strategy is 
known and that it is used to help choose the test cases. This 
approach cannot actually concern all existing expressible 
strategies, but we have shown that it can work for some 
particular strategies. Indeed, we have established some results 
for a KBS which uses rule weights and stops at the first 
terminal fact encountered. First, we have introduced the 
notion of a deduction environment that potentially conflicts 
with another. We have exhibited and proven a lemma which 

One of them, called GIBUS, comes from the European 
Spatial Agency (in the scope of ViVa (ESPRIT III Project)). 

shows that if an environment E is selected, a degradation can 
only come from an environment potentially conflicting with 
E. Moreover, we have established a theorem which gives a 
necessary and sufficient condition for a potentially 
conflicting environment to yield an actual conflict, i.e. to 
prevent E from being used when running the system. These 
results can lead to more intelligent test case selection. 

The second approach to the choice of test cases can always 
be taken, in particular when the strategy is not explicitly 
known, or when it is not exploitable. It is a more pragmatic 
one: a test case wil l be chosen according to the level of the 
required criteria already reached by the execution of previous 
test cases. 

The first approach is intellectually more satisfactory but 
very limited in scope. Our study has shown that, even for a 
KBS with a well defined but simple strategy, it requires a 
specific, fairly complex method. 

One potentially interesting path for further research could 
be to examine some other strategies, and investigate whether 
strategy-specific procedures can be established. Another one 
would be to try to adequately use the strategy-specific 
knowledge to prune the search trees used in deduction label 
construction. 

References 
[Ayel et al, 1993] M. Ayel and L. Vignollet "SYCOJET and 
SACCO, two tools for verifying expert systems". International 
Journal of Expert Systems: Research and Applications (special 
issue on validation, to be published). 

[Cross et al, 1990J S. Cross & M. Grisoni "VORTEX: a 
methodology for producing validated real-time expert systems". 
Conf Knowledge-Based Systems, Applications for guidance 
and control, NATO Advisory Group for Aerospace Research and 
Development, Proc. N° 474, pp. 27.1-27.11. 
[Gupta, 1991] Uma G. Gupta, ed. Validating and Verifying 
Knowledge-Based Systems. IEEE Computer Society Press (Los 
Alamitos, Calif.), pp. 176-187. 
[De Kleer, 1986] J. De Kleer "An assumption-based TMS". AI 
Journal, Vol. 28, N° 2, pp. 127-162. 
[Laurent, 1984] J. P. Laurent "Control structures in expert 
systems". Technology and Science of Informatics, Vol. 3, Nc 3, 
pp. 147-162. 
[Laurent 1992] J. P. Laurent "Proposals for a valid terminology 
in KBS validation", Proc. of the 10th European Conference on 
Artificial Intelligence, Vienna (Austria). 
[Miller, 1989] L.A. Mil ler "A comprehensive approach to the 
verification and validation of knowledge-based systems". 
Workshop on Validation, Verification and Test of Knowledge-
Based Systems, IJCAI 89, Detroit (USA). 
[Morel l , 1988] L.L. Morell "Use a Metaknowledge in the 
Verification of Knowledge-Based Systems". Proc. of the IEA-
AEl, June 1987, pp. 847-857. Reprinted in [Gupta 1991], pp. 
176-187. 

V A L I D (1991) VALID: VETA Definition. ESPRIT II Project 
2148, VAL ID Report Deliverable D4. 
[Vignol let , 1991] L. Vignol let Une approche pour la 
Construction automatique de Jeux de Donnies de Test pour 
des Systemes a Base de Connaissances. These de Doctoral. 
Laboratoire d'Intelligence Art i f ic iel le, University de Savoie 
(Chambery, France). 
[Zlatareva et al 1993].N. Zlatareva and A. Preece "State of the 
Art in Automated Validation of KnwoledgBased Systems". 
International Journal of Expert Systems: Research and 
Applications (special issue on validation, to be published). 

488 Knowledge Base Technology 

http://Connaissanc.es

