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Abstract

TREE is an optimized RETE-like pattern-
matching algorithm. It has been designed for a
production system whose restricted data for-
malism leads to a highly combinatorial join
step like in SOAR. TREE aims at reducing the
join search spaces without using hashing tech-
niques. Its join strategy uses constraint prop-
agation to define the solution space of a join,
then a constraint relaxation to determine the
index to be used in the join computation. Con-
straint relaxation is heuristic driven and based
on the relational paradigm. Unlike RE IE, the
indexing scheme TREE requires is not based on
the membership of condition elements but on
the sharing of references to symbols. On the
basis of experimental evidence, TREE'S strat-
egy showed better results than the standard
RETE one. The number of comparisons during
join steps has been reduced by a factor ranging
from 1 to nearly two orders of magnitude.

1 Introduction

Match continues to be a problem for Al systems, espe-
cially for general purpose production systems like SOAR
[Laird et a/., 1987]. In this kind of systems, a large flexi-
bility in representations is provided through their decom-
position into binary relations or into an object-attribute-
value paradigm. Consequently, basic data elements are
mainly restricted to triples. As pointed out by Tambe
and Rosenbloom [1990], this kind of restricted formalism
leads to a combinatorial match since a condition element
(CE) of a rule can match nearly all the working memory
elements (WMEs), and condition parts of rules contain
many CEs. Several works attempt to improve match
algorithms for such systems. With or without paral-
lelism, efficiency gains can be obtained through condi-
tion ordering [Smith and Genesereth, 1985; Ishida, 1988;
Miranker, 1990], by restricting expressiveness [Tambe et
al/., 1990], or using hashing techniques [Gupta, 1987;
Gupta et a/., 1988].
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TREE [Bouaud, 1992] is a state-saving match algo-
rithm that has been designed for K, a production system
with a restricted data formalism: WMEs are triples of
symbols. TREE aims at reducing the size of join search
spaces without using hashing techniques. It differs from
RETE [Forgy, 1982] in its indexing scheme which does
not rest on "memory support"' [McDermott et al., 1978],
te. based on the CEs, but on the sharing of references
to symbols. In this framework, we investigate a new join
formulation. A constraint propagation and a heuristic
relaxation based on the data paradigm is performed on
the CEs in order to select the indexes to be used in the
join step computation. These indexes are expected to be
smaller than those built up from the CEs.

The paper is organized as follows: section 2 mentions
RETE and join issues are revisited in the framework of
the "k-search model" [Tambe et al., 1990]. The features
of our system and the TREE algorithm are described in
section 3. Section 4 reports experimental data about
TREE'S strategy in comparison with RETE'S. These re-
sults and related works are discussed in section 5.

2 Background

We assume the reader is familiar with production system
issues and the RETE algorithm. Condition parts of rules
are mostly represented by conjunctions of CEs. Using
the database terminology, an n-ary CE conjunction is
represented by:

CEI.,.H = C"E"I. e CET M...NM CEH"’I ™ CE"I

where M is the binary join operator. Tambe et al. [1990]
showed that most match algorithms were based on the
same model, referenced as the k-search model: an ex-
haustive standard backtracking search is made to ex-
hibit every instantiation of an n-ary join. A conjunction
is processed from left to right according to the recur-
rent formula: CE, = CE| 4-y ¥ CE, until CE, ,,
is produced. The trace of this algorithm yields an in-
stantiation tree where nodes at depth k are the partial
instantiations corresponding to CE;_ 4.

In state-saving algorithms, all intermediatejoin results
are memorized in what we shall call by analogy with
the working memory (WM) the instantiation memory
(IM). Then, each partial instantiation is an instantiation
memory element (IME). Problems of IM update arise
when a new WME is added or an old one is removed.



Following the k-search framework, the problem of
completing a given partial instantiation can be described
as follows:

Let i be an IME of CE}{ ,—3; which is to be
joined to CEg. Computing i M CEy requires to
find all the WMEs that both match CE, and
satisfy some compatibility tests with i which
are mainly equality tests between variable val-
ues. These WMEs constitute the solution space
of this join. We shall call such ajoin aiming at
completing a given IME an /+oin.

The problem of IM update when a WME is added is
to find every IME that the WME completes. When a
WME is deleted, all IMEs including the WME must be
deleted. We shall address this problem later on. Adding
a new WME can be described as follows:

Let w be an added WME. For each CE* that
matches w, the join CE; _x-y M w must be
computed to update CE;,”k. This requires to
find all the IMEs of CFy_ i_1 such that w sat-
isfies their compatibility test. These IMEs con-
stitute the solution space of this join. Similarly,
such ajoin aiming at updating IM froma WME
will bo called a W+oin.

An index can be defined as a built-in relation: the set
of its tuples can be directly enumerated. The indexing
schemes of WM and IM are very important as indexes
constitute practical search spaces for the joins. A neces-
sary condition for an index being used in an I- or W-join
is to include the solution space.

2.1 The RETE matcher

Like most matchers, RETE'S indexing scheme is based
on the CEs of a rule base. The set of WMEs matching a
given {UEy is stored in an a-memory, and the instantia-
tions of a given ("’F; y_ are stored in a /- memory. i3-
memories constitute the IM. RETE'S abstract procedures
for IME and WM E adds are given in Figure 1 where c, p
and r are respectively the number of CE; with an iden-
tical CF| 4.1 (node sharing), of CEs matching w and
of C'E|. _4-1 whose CE; matches w.

ADD-IME() 7 watchlr. CEr. a1 1)
t. Store i in IM[F(CE, :_.)]
2. Get ¢ CE,
3. For sach CE,; do
3.1 For each w € WM[a{CE})] do
It test then ADD-IME(: x w)

ADD-WME ()
1. Salect p CE/match(w,CE).
2. For each CE do
2.1. Stors w in WMla(CK)]
2.2. Get r CE| ,../CE, =CE.
2.3. Por each CE; ,_, do
2.3.1. For each t € IM[3(CE; 1-.)] do
It test then ADD-IME(: x u'}

Figure 1: RETE'S procedures for IME and WME adds.

a- and #-memories can be accessed from each other
as they are connected in the RETE network that reflects

the CE ordering. Data elements (WMEs) and partial in-
stantiations (IMEs) are called tokens without distinction
as they traverse identically the network in order to com-
pute joins. Considering a linear RETE network, IMEs
correspond approximately to left tokens, WMEs to right
tokens, and I- and W-joins to left and right join acti-
vations. The .selection step, ADD-WME.I, deals with the
maintenance of WM. A number of tests are applied to a
WME for assigning it to the right a-memories. Unlike
thejoin step, this step is not costly and can be optimized
[Ghallab, 1981].

When memories are implemented as linear lists
and as the basic binary join algorithm is the cross-
product, ADD-IME is basically computed in O(c.|CEg|)
and ADD-WME in O(p.r.|CEy  x_1|) where the notation |X]|
stands for the cardinality of X. As for WME removal,
RETE uses the same procedures as for adds except that
store operations in memories are substituted by remove
operations. Then, a WME removal is at least as costly
than an add. This last point has often been criticized
for state-saving algorithms [Miranker, 1990].

2.2 Improving RETE's joins: H-RETE

In practice and even with a good CE ordering, |CEy|
and |CE) _g-,] can be large thus limiting RETE'S effi-
ciency. Indexing techniques like hashing can be used
to improve the join step by reducing the search spaces
[Gupta, 1987]. Most of join tests being equality tests,
memories can be hashed according to the variable to be
tested. Two global hash-tables are used for WM and
IM. The hash code for a token (WME or IME) is a func-
tion of the value of the variable to be tested and of the
actual memory {a or 3) location. As a result, hash-
values constitute memory indexes for joins. Their sizes
depend on the hash-table sizes and on the quality of the
hash-function. Though the aim of hashing is to access
the solution space, it only provides a good seardi space
reduction, by a tenfold factor as usually acknowledged.
But, it is also known that the overhead of computing
hash-values can eliminate the benefits of this reduction
for small sets compared to a list implementation [Aho et
a/., 1983].

3 The TREE algorithm

3.1 Working framework

TREE has been implemented for a general purpose pro-

duction system, K, where WMEs are triples of sym-

bols, e.g. [F R V]. This structure is close to SOAR'S and

the equivalent notation would be: (triple identifier F
attribute R value V).

Indexation in K is not CE-based but organized on the
criterion of sharing an identical reference to an identical
symbol: WMEs are not aggregated according to their
membership of CEs, but to the fact that they contain the
same symbol at the same location (identifier, attribute,
or value). For instance, the WME [F R V] is indexed 3
times: by F as first field, R as second, and V as third.
In the following, we consider indexes as simple patterns.
Hence, [F R V] is indexed by the patterns [F??], [?R?],
and [??V], where ? are unnamed free variables.
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The set of symbols defines the indexing scheme of K
insofar as each symbol S in the system controls the in-
dexes [S77), [?S7], and [??5] both in WM (for WMEs)
and in IM (for IMEs). The six corresponding indexes
are additional fields of a symbol and their content are
simply implemented as linear lists. A symbol is unique
and created when it is fir;t referenced either at read time
or during execution. As a result, symbols, and there-
fore their corresponding indexes, always exist before any
WME that refers to them is created. When the WME
[F R V] is created, the symbols F, R, and V are accessed
and the WME is directly stored without test in the three
indexes [F?7], [?R?], and {?7V]. This constitutes TREE's
selection step which is independent of any rule base.

3.2 TREE’s principles

TREE aims at reducing the size of join search spaces,
making the most of K's actual indexing scheme. It
mainly differs fremn RETE in the [-join formulation where
contextual constraints (variable bindings) »re used to de-
termine the join index.

The problem of WME remeoval in our implementation
is treated like in [Dixneuf et al., 1988] where dependency
links between IMEs are memorized. IMEs are organized
in a tree structure according to the instantiation tree of
the k-search algorithm. This tree is independent of the
join strategy used to build or update it. When a WME is
deleted, the subtrees the roots of which are the WME are
deleted. Thus, WME removals are like the instantiation
tree independent of the join strategy. We do not address
here the evaluation of this method.

Now, let us consider the I-join ¢ M CE, where i €
CE) _x-1. Let CP} be the constrained pattern obtained
by the substitution of the bound variables of i in CFE,.
The corresponding constraint propagation function is
noted P and CP; = P(i,CE;}. CP, describes the so-
lution space of the initial join: every present or future
WME matching CP} is successfully joined to ¢ with-
out test. For instance, let ¢ be an instantiation where
?x is bound to A, CE, = [?x P ?y|, and the I-join be
i M {?x P ?y]. Applying P we obtain P{i,{?x P ?y|} =
A P ?y] and the initial join is equivalent to i x [A P 7y].
Now, two situations must be considered:

1. CP} is an index: the search space WMICP;] is ex-
actly the solution space and this I-join is computed
optimally. For the future updates of i, i is stored
in IM[CP{]. The idea is to group IMEs accord-
ing to the WMEs that will complete them, not to
their membership of CE, ,_,: every added WME
matching CP} completes i without test.

2. CP} is not an index: some constraints on CP{ must
be relaxed in order to find a subsuming relazed pat-
tern RP} that is an index. We note the constraint
relazation function R and the initial join is turned
into another one: i M R{i,CP}}. WM[RP]| de-
scribes the new search space, wider than the solu-
tion space CP[, but including it. WMEs matching
RP; complete i only if some compatibility test suc-
ceeds. For future updates, i is stored in IM[RP]]. In
our example, the constrained pattern [A P ?y] is not
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an index but [A 7t 7y] is, then R{{,[A P ?y]} could
be [A 7t ?y] and therefore the initial join would be
computed as i M [A ?t ?y] with the test 7t = P.

With regard to the whole join algorithin, TREE computes
the same joins ags RETE, but initial I-joins ¢ M CE, arere-
formulated as ¢ M R (¢, P(i, CE};)), where P(i, p) returns
the substitution of i in p, and R(i,p) returns an index
subsuming p. In the following, every pattern p is consid-
ered within an I-join (i given) so that we use the notation
R{P(p)) in place of R(i,P(i,p)). RETE's procedures
are consequently slightly modified for TreE (Figure 2).
ADD-IME is basically computed in O{e.[R(P{CE}))|) and
ADD-WME in O(3.{IM|Indez]|).

ADD-IME(1/ mafchif, CEr 2-1))
1. Gest ¢ CE:
2. For each CE,; do

2.1. Let Indexr = R(i, P(i,CE}))
2.2. Store i in IM[indez]
2.3. For sach w € WN[Index] do

1f test then ADD-IME(: x w)

ADD-WME{w/w = {F R ¥])
1. For each Inder € {[F?7]1,[7R71,[?7V]1]} do
1.1 Store w in WM[Indez]
1.2 For each i € IM[Inder] do
It test then ADD-IME(G X w)

Figure 2: RETE's modified procedures for TREE.

Since only the search spaces of joins are changed,
it is not possible to demonstrate which of TREE and
RETE performs better joins without explicit relations
between index cardinalities, i.e. |CE| vs. |R{P(CE))|.
and [CE| .| vs. |{IMfindez]l. If P could be used alone
one could not perform a better join computation.! But,
building an architecture providing all possible indexes
is unreasonable. R could be also easily directed toward
the initial CE, but we would return to the RETE model.
As a consequence, efficiency depends on R which itself
depends on the predefined indexing scheme.

3.3 A heuristic constraint relaxation

In our implementation, R is heuristic based. Unlike P
which depends on both a CE and its local constraints
{variable bindings), R only considers its argument, a
pattern, to deliver an index. The heuristic principles rest
on the expected cardinalities of different pattern types
which themselves depend on the properties of the for-
malism the WMEs are used for. Since triples are mainly
used in the relational paradigm, we assume that the no-
tation [F R V] expresses that F is in relation R with V.
We also assume that the number of relations is relatively
small compared to the number of other symbols. in the
general case and back to pattern cardinalities, |[?7R?)] is
expected to be much greater than |[F??]| and |[??V]],
and, [[??V]| to be close to, or even smaller than, [[F?7?]],
whatever the symbols F, V, and the relation R.
TREE's I-join formulation is realized at compile-time.
Within an ordered conjunction, RoP is virtually applied

! This is only true considering a RETE-like algorithm, with

a given initial WM and a given conjunction ordering.



to each CE. If the type of V(CE) is [F?7?], [?R?] or [??V],
where letters correspond to known places (symbols or
bound variables), then it corresponds to an index that
the matcher will use. In the other situations, V(CE) is
not an index and constraint relaxation applies. Here is
how R selects a subsuming index for each of the five non
index pattern types according to our assumptions:

o R([7RV]) = [77V], instead of [?R7];

¢ R([FR?]) = [F?7), instead of [?R7);

o R([F?V]) = [77V], instead of [F?7?};

. ’R([FRV]) = [??V], instead of [F??] or [?R7);

* [??7], which describes the whole WM, is a special
case. We suppose that such a CE will never remain
unconstrained {P{[777]} # [?77]).

The plain lines in Figure 3 represent our constraint relax-
ation function between pattern types2 whereas dashed

lines represent the subsumption relation and illustrate
how constraint propagation can apply.

(71

- -~ =
- L) S
z "7 ¥ Tt e
[F??) [?R?]* [7*V]"
L .~

\:" o
[FR?

(FRV]

Figure 3: Subsumption links and constraint relaxation.

Now the question is: are the search spaces of I-joins
and W-joins defined by RoP applied to the CEs smaller
than those defined by the CEs themselves?

4 Experimental measurements

In order to evaluate TREE'S join strategy and compare it
with a CE-based join, some experimental measurements
were carried out with K. Five rule-based programs de-
velopped in our laboratory were used as benchmarks:
MAB, the "monkey and bananas" problem [Brownston et
al., 1985]; ALEXIA, a qualitative model for hypertension
[Bichindaritz and Seroussi, 1992]; CHART, a syntactic
chart parser; AMD, a semantic analyzer for natural lan-
guage [Cavazza and Zweigenbaum, 1992]; and ABACAB,
a blackboard controller [Bachimont, 1991]. Table 1 pro-
vides some of their external characteristics.

4.1 Pattern cardinality measurements

We first studied the cardinality in WM of every possible
pattern at the end of each execution. The average cardi-
nalities of each pattern type are reported in Table 2. As
these numbers correspond to the cardinalities of poten-
tial CEs, search and solution spaces for I-joins, the CE

2pattern types with a * correspond to indexes.

Characteristics Map ALFEXiA CHART AMD ABACAB
# of rules 26 15 95 196 107
#¢ of distinct CEs 26 35 78 197 171
mean # of CEs/rule 7.3 B4 4.1 8.2 8
Initial # of WMEs G7 3,734 97 1,610 1,028
Fipal # of WMEs 1567 3,772 1,868 1,716 2,502
# of WM changes 267 274 1,771 176 2,088
% of adds 80% 54% 100% 97T% 291%
# of ﬁrin&g 43 128 1423 100 3289

Table 1: Characteristics of programs and executions.

Pattern MaB  ALEXIA  CHART AMD ABACAB
T 157 3,772 1,868 1,776 7 3502
R 11.21 87.72 51.80 24.32 14.97
F?7)* 2.96 11.86 4.21 2.77 5.85
77V 2.24 1.71 1.91 2.01 2.83
TR 1.96 1.57 185 1.75 1.72
FR? 1.00 1.66 1.30 1.23 1.41
F?v 1.00 1.03 1.00  1.03 1.07

R 1 1 1 1 1

Table 2: Average cardinality of each pattern type.

tranformations P and R can be quantified. From now
on, it must be noted that all quantitative information is
given on average.

As expected, the cardinality of {TR?} is always the
highest ([77?] excepted)}. |[7R7]| is much greater than
the cardinalities of the other indexes, [F'77] and [??V],
by a factor ranging from 2.6 (|{?R?]|/|[F??]|, Amacap)
to 51 ([ZR7/117?7VIL, ALEX1A). |[7?V]] is only slightly
smaller than |[F??]|. the reduction factor is not very im-
portant, no more than 7 (§F??)}/}{77V]|, ALEx1a}. This
ensures that the heuristic foundations for TREE were
correct at least for these programs.

Considering the constraint propagation function P
and a CE, we know that |P{CE)| £ |CE|. Thus, the
reduction or gain factor g = ﬁ%!ﬂ due to P, il applied
in some relevant cases, could vary from 1 {no censtraint)
to more than 1000 (|[???]|/{FRV]] = 3772, ALEXIA).
Now, let us consider the constraint relaxation function
R for non index patterns. The cardinalities of [F??] and
[77V], which are the indexes selected by R in our case,
are rather low, 12 being a maximum {{F??}, ALEX1A). As

the cardinalities of non index patterns are yet lower, the
R(P(CE

expansion or less factor I = due to R ranges

from 1 {|[??V]I/{[7RV]|. Cuarr} to 7 ({[F?7?){/{[FR?|,
ALEX1A). Thus, we can sce that for I-joins, the gain
factor due to P could reach three orders of magnitude
whereas the loss factor due to R would be always inferior
to one order of magnitude,

4.2 Analysis of pattern distributions

In & second step, the rule bases were analyzed to study
qualitatively how P and R apply. Table 3 reports the
pattern type distributions of; the CEs, the CEs con-
strained by P, and the indexes resulting from RoP ap-
plied to the CEs. A CE column gives the CE distribution
in the rule base. It also corresponds to the kind of search
spaces RETE would use for I-joins. A P column describes
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Pattern MaB ALEXIA CHART AMD ABACAB
CE P ReP CE P RoP CE P ReP _C% P RoP CE P RoP
T - - - - = L I
TR 86 i Ki 42 - - 2497 1 1 444 53 53 457 15 15
F77)* - - 53 - 51 - 296 - 28 304 - - 318
V)" - - 129 - - 75 - ~ 93 8 6 632 - - 471
& 93 64 58 a0 a3 93 408 235 266 146
FR? - 53 10 51 - 296 30 278 36 318
F7V] - - - - - - - 59 - -
] = 65 16 45 - - ~ 332 17 325

Table 3: CEs, constrained CEs and TREE'S constrained/relaxed CEs.

the solution spaces of these I-joins, and a ROP column,
their search spaces with TREE.

Comparing column CE with Ro'P illustrates how the
initial search spaces defined by the CEs are transformed
by TREE. With the numbers of Table 2 in mind, one
should notice that for each program:

1. Most of the CEs correspond to high cardinality pat-
terns, [?R?] being the most frequent and [???] some-
times used (AMD and ABACAB);

2. Most of the CEs are constrained, especially [?R?]
and every [??7], and the constrained CEs correspond
to low cardinality patterns;

3. As most of the constrained CEs are non index pat-
terns, R is often applied and [F??] and [??V] are
mainly used, the cardinalities of which are not high.

These points highlight that high gain factors g due to
V and low loss factors / due to 7Z are often expected,
. . . . . CE
resulting in a combined reduction ratio BcEN] = 1
due to RoV greater than 1. However, this would be only
valid for I-joins, but in practice the previous arguments
are not sufficient to determine whether the loss due to
R discards the benefits from V or not. Yet, no similar

information is available for W-joins.

4.3 Program execution measurements

Finally, each program has been run with three different
join strategies. The only difference between them lies
in the indexes used to search WMEs (in I-joins) and to
store IMEs (for W-joins): TREE uses the indexes deter-
mined by the heuristic TZoV function applied to the CEs.
RETE uses the initial CEs as indexes and then simulates
a standard RETE linear network. OPTI is a simulation;
only V is applied. It is as if the solution space of every
join was directly accessible: search spaces were exactly
solution spaces.

The number of comparisons per join is used as the
metric for comparing the strategies as it corresponds to
the size of the search spaces explored during join at-
tempts. The smaller this number, the more efficient the
join strategy. Moreover, this metric is adequate to com-
pare indexing schemes [Miranker et al., 1990]. For a
given program, identical initial WM and condition or-
dering were used. Comparing the number of generated
"tokens" (IMEs) as in [Nayak et a/., 1988] is inappro-
priate here because the general algorithm is the same,
used in the same conditions, and consequently produces
identical IMEs: every join has the same solution space
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whatever the strategy. As every local join is optimal in
OPTI, this "virtual" strategy is the best one and neither
TREE nor RETE can outperform it: in the same condi-
tions, it is not possible to do less comparisons.
Statistics about the number of comparisons per I- and
W-joins are recorded in Table 4. Only non empty join
attempts, i.e. with at least one comparison, were con-
sidered. Runtime performance is not significant here
since the RETE and OPTI strategies were emulated from
TREE'S. Although each result could be separately dis-
cussed, some points must be emphasized.
1- The average number of comparisons perjoin (Avg.) is
lower with TRE E than with RETE whatever the program.
Thus, actual search spaces defined by RoV, for both
I- and W-joins, are smaller than those defined by the
CEs. The resulting reduction ratio ranges from 1 up to
nearly two orders of magnitude and the same trend is
also observed for standard deviation (SD) and maxima
(Max.).?
2 - For every program, M AB excepted, TREE'S number
of non empty join attempts is approximately the same
as, or even smaller than RETE'S. This being combined
with the previous result explains that the total number of
comparisons per execution (Sum) is always much smaller
with TREE than with RETE by a factor ranging from 10
(W-joins of AMD) to 74 (W-joins of ABACAB).
3 - MAB, which is a simpler program, is an interesting
case for it illustrates a situation where RETE performs
better than TREE: RETE'S total number of comparisons
for W-joins is lower and though TREE'S search spaces are
smaller than RETE'S, morejoin attempts are performed,
just enough to cancel out the previous benefits.
4 - The number of comparisons of OPTI corresponds to
the number of solutions of the joins. With this number
and those of RETE and TREE, a global gain factor G
due to constraint propagation and a global loss factor L
due to constraint relaxation can be estimated. Table 5
gives such ratios. Gis RETE/OPTI and ranges from 5
to 750 whereas L, which is TREE/OPTI, never exceeds
22. As previously noted the global resulting reduction
ratio RETE/TREE is between 1 and nearly two orders
of magnitude. Actually, this shows that in our most
complex programs the effect of V outdoes the effect of R
even during execution, then producing an actual search
space reduction. M A B excepted, this reduction seems
to increase with the number of WM modifications. As

These properties are very interesting in the framework of
parallel implementations [Gupta, 1987].



" Program Method # of # of comparisons/I-join # ol # of companisons/W-join
Ljoins | Sum Avg.  (SD  Max.)] W-joins [ Sum AVE'. {SD Max)!
“Mae OFTI 413 413 1.0 00 1 138 498 y : 1
TREE 763 2,480 3.2 2.1 11 201 2,744 13.6 26.6 150
RETE 721 2,806 4.0 3.9 20 151 2,511 16.6 303 150
“ALexia Ormi 3,006 4,253 21 55 114 57 103 11 29 22
TREE 2,752 17,803 6.5 5.7 115 57 142 2.7 2.7 22
RETE 2,752 305,933 111.2 81.2 263 102 3,929 38.5 40.1 134
“CHART OPTI 1,975 1,975 1.0 0.0 1 1,333 2,075 6.6 14 13
TREE 1,975 8,018 4.1 0.7 9 2,086 8,617 4.1 8.4 64
RETE 2,774 422,125 152.2 1088 496 2,289 203,610 128.3 243.2 1,149
AMD OPT! 3,511 13,159 37 B.7 48 204 1,352 6.6 10.0 47
THEE 14,444 292,757 20.3 311 101 394 15,800 40.1 168.5 1,489
RETE 14,568 3,451,861 237.1 6021 2102 940 170,228 3152 3551 4,350
ABACAB  UPTI 4,044 6,367 1.6 2.4 28 1,024 2921 2.8 4.1 44
TREE 7,258 56,608 78 6.0 37 2,195 29,442 134 36.4 612
RETE 7,194 3,257,925 4529 7715 2307 3,993 2,189,330 548.3 5336 1,835
Table 4: Statistics of the # of comparisons per non empty join attempt.
Ratio Join type Mas ALEXIA CHART AMD ABACAB
- RETE/OPTI I-joins 7.0 71.9 213.7 262.3 o117
W-joins 5.1 38.1 141.5 125.9 749.5
TREE/OPTI I-joins 6.0 4,2 4.1 22.2 B9
W-joins 5.5 1.4 4.1 11.7 10.1
RETE/TREE I-joins 1.2 17.2 52.6 118 57.5
W-joins 0.9 279 3.1 10.8 74.4

Table 5: Reduction ratios of the total number of comparison due to the different join strategies.

a global result, TREE does less comparisons than RETE
for both I- and W-joins.

5 Discussion and related works

On the basis of experimental evidence, TREE has shown
a better performance than a standard RETE on the over-
all number of comparisons performed during join at-
tempts. This result has been obtained with five pro-
grams in different areas that all satisfied the assumption
of the relational paradigm. To explain this result, we
can observe that most of the CEs mention explicit re-
lations: [?x R ?y]. These CEs are also nearly always
linked through variable sharing such that often ?x or
?y are bound. In this situation, TREE choses [F??] or
[??V] as indexes. For the join step, TREE prefers using
the contextual constraints of variables bindings to focus
the searches instead of the definitional constraints of the
CEs that RETE would use. Under our assumption and
with the previous results, it appears that the contex-
tual constraints are stronger than the definitional ones.
Moreover, this tendancy is not expected to collapse as
the WM size increases. In this situation, we expect new
symbols to be created, new connections to be made, but
no (or few) new relations to appeal*. As a result, |[?/?7?]|
would increase whereas both |[F??]| and |[??V']] would
very likely remain constant. Therefore, the global re-
duction ratio due to TREE is also expected to increase
making still more difference with RETE. This is an hy-
pothesis that would have to be studied and confirmed.

Several other works attempt to improve the join step
by the use of indexing techniques which are not (only)
based on CEs. The domain-based indexing of a new

version of TREAT [Miranker et al.,
actual values of variables in a rule.

The role of hashing in H-RETE is also to provide
smaller join search spaces. It is usually acknowledged
that hashing techniques provide a tenfold reduction.
Gupta et al. [1988] exhibit on three OPS5 programs
search space reductions ranging from 1 to 12. This num-
bers indicate that H-RETE and TREE provide the same
range of search space reduction though we did not test
the H-RETE strategy on our programs. Nevertheless, the
overhead due to hash-code computations can be impor-
tant and can sometimes eliminate the benefits of hashing.
Comparedto that, TREE'S indexing scheme maintenance
cost is low even compared to RETE'S because no test is
performed.

1990] relies on the

The predefined indexing scheme provides some addi-
tional advantages. Random WM access is handled effi-
ciently either by static pattern-matching or by program.
Since it is independent of the CEs and therefore of any
rule base, new rules can be dynamically compiled with-
out any WM re-structuration. As a RETE-like algorithm,
TREE also handles some features that have not been dis-
cussed such as "node sharing", explicit right join opera-
tor, and negated CE conjunction.

Though TREE and H-RETE would provide quantita-
tively identical effects, we would like to point out some
qualitative difference. The nature of an index is sym-
bolic with TRE E versus numeric with H-RETE and the
index choice is made according to a heuristic strategy
versus to some hashing algorithm. The index choice can
be made at compile time with TREE whereas it must
be made at runtime with H-RETE . Lastly, changing the
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index choice can be made according to some qualitative
reasonning versus some numerical algorithm. This al-
lows us to consider the possibility of taking into account
some properties of representations in order to improve
production system performance.

6 Conclusion

In the framework of K, TREE'S heuristic join strategy
has been shown as a challenger for RETE. We are con-
vinced that TR E E can be applied to other systems with a
restricted WM formalism because CEs are often weakly
selective but often constrained. For instance, we believe
TREE would certainly perform efficiently for SOAR as it
fulfills these conditions and satisfies the assumption of
relational paradigm. Though we did not test it, TREE
would probably not fit for OPS5 programs as their CEs
are likely more discriminant than symbol sharing.

However, TREE can still be optimized. It could be in-
teresting to explore other constraint relaxation strategies
that would take into account the CEs and the represen-
tation framework. A join strategy exploiting a combi-
nation of TREE'S and RETE's indexing schemes would
certainly lead to better results than TREE alone. This
has to be tested in the future.
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