
TREE: the Heuristic Dr iven Join Strategy
of a RETE-Like Matcher*

Jacques B o u a u d
Departement Intelligence Art i f iciel le et Medecine

INSERM U194 & Service d' lnformatique Medicale AP-HP
91 , boulevard de l 'Hopital

F-75634 Paris Cedex 13 - F R A N C E

A b s t r a c t

TREE is an optimized RETE-like pattern-
matching algorithm. It has been designed for a
production system whose restricted data for
malism leads to a highly combinatorial join
step like in SOAR. TREE aims at reducing the
join search spaces without using hashing tech
niques. Its join strategy uses constraint prop
agation to define the solution space of a join,
then a constraint relaxation to determine the
index to be used in the join computation. Con
straint relaxation is heuristic driven and based
on the relational paradigm. Unlike RE IE, the
indexing scheme TREE requires is not based on
the membership of condition elements but on
the sharing of references to symbols. On the
basis of experimental evidence, TREE'S strat
egy showed better results than the standard
RETE one. The number of comparisons during
join steps has been reduced by a factor ranging
from 1 to nearly two orders of magnitude.

1 I n t r o d u c t i o n

Match continues to be a problem for AI systems, espe
cially for general purpose production systems like SOAR
[Laird et a/., 1987]. In this kind of systems, a large flexi
bility in representations is provided through their decom
position into binary relations or into an object-attribute-
value paradigm. Consequently, basic data elements are
mainly restricted to triples. As pointed out by Tambe
and Rosenbloom [1990], this kind of restricted formalism
leads to a combinatorial match since a condition element
(CE) of a rule can match nearly all the working memory
elements (WMEs), and condition parts of rules contain
many CEs. Several works attempt to improve match
algorithms for such systems. With or without paral
lelism, efficiency gains can be obtained through condi
tion ordering [Smith and Genesereth, 1985; Ishida, 1988;
Miranker, 1990], by restricting expressiveness [Tambe et
a/., 1990], or using hashing techniques [Gupta, 1987;
Gupta et a/., 1988].

*This work has been partly supported by the Program
for Artificial Intelligence (PRC-IA) of the French Ministry of
Research.

TREE [Bouaud, 1992] is a state-saving match algo
r i thm that has been designed for K, a production system
with a restricted data formalism: WMEs are triples of
symbols. TREE aims at reducing the size of join search
spaces without using hashing techniques. It differs from
R E T E [Forgy, 1982] in its indexing scheme which does
not rest on "memory support"1 [McDermott et al., 1978],
t.e. based on the CEs, but on the sharing of references
to symbols. In this framework, we investigate a new join
formulation. A constraint propagation and a heuristic
relaxation based on the data paradigm is performed on
the CEs in order to select the indexes to be used in the
join step computation. These indexes are expected to be
smaller than those built up from the CEs.

The paper is organized as follows: section 2 mentions
R E T E and join issues are revisited in the framework of
the "k-search model" [Tambe et al., 1990]. The features
of our system and the T R E E algorithm are described in
section 3. Section 4 reports experimental data about
TREE 'S strategy in comparison with RETE 'S . These re
sults and related works are discussed in section 5.

2 Background
We assume the reader is familiar with production system
issues and the R.ETE algorithm. Condition parts of rules
are mostly represented by conjunctions of CEs. Using
the database terminology, an n-ary CE conjunction is
represented by:

where is the binary join operator. Tambe et al. [1990]
showed that most match algorithms were based on the
same model, referenced as the k-search model: an ex
haustive standard backtracking search is made to ex
hibit every instantiation of an n-ary join. A conjunction
is processed from left to right according to the recur
rent formula:
is produced. The trace of this algorithm yields an in
stantiation tree where nodes at depth k are the partial
instantiations corresponding to

In state-saving algorithms, all intermediate join results
are memorized in what we shall call by analogy with
the working memory (WM) the instantiation memory
(IM). Then, each partial instantiation is an instantiation
memory element (IME). Problems of IM update arise
when a new W M E is added or an old one is removed.

496 Knowledge Base Technology

Fol lowing the k-search f ramework , the p rob lem of
complet ing a given pa r t i a l i ns tan t ia t ion can be described
as fol lows:

Le t i be an I M E of wh ich is to be
jo ined to C o m p u t i n g requires to
f ind al l the W M E s that b o t h ma tch CEk and
satisfy some compat ib i l i t y tests w i t h i which
are ma in l y equal i ty tests between var iable val
ues. These W M E s cons t i tu te the solution space
of th is j o i n . We shall cal l such a j o i n a im ing at
comple t ing a given I M E an I-join.

The p rob lem of IM upda te when a W M E is added is
to f ind every I M E tha t the W M E completes. W h e n a
W M E i s deleted, a l l I M E s inc lud ing the W M E must be
deleted. We shal l address th is p rob lem later on. A d d i n g
a new W M E can be described as fol lows:

Le t w be an added W M E . For each C E * t ha t
matches w, the j o i n must be
computed to upda te Th is requires to
f ind al l the I M E s of such tha t w sat
isfies the i r compa t ib i l i t y test. These I M E s con
s t i t u te the solution space of this j o i n . Simi lar ly ,
such a j o i n a im ing a t upda t i ng IM f r o m a W M E
wi l l bo called a W-join.

An index can be defined as a bu i l t - i n re la t ion: the set
of its tuples can be d i rec t ly enumerated. The indexing
schemes o f WM and IM are very i m p o r t a n t as indexes
const i tu te pract ica l search spaces for the jo ins. A neces
sary cond i t ion for an index being used in an I- or W - j o i n
is to inc lude the so lut ion space.

2.1 T h e R E T E m a t c h e r

Like most matchers, R E T E ' S index ing scheme is based
on the of a ru le base. The set of W M E s match ing a
given is stored in an a-memory, and the instant ia
tions of a given are stored in a memory.
memories cons t i tu te the I M . R E T E ' S abstract procedures
for I M E and W M E adds are given in Figure 1 where c, p
and r are respectively the number of w i t h an iden
t ical (node shar ing) , of CEs match ing w and
of whose matches w.

Figure 1: R E T E ' S procedures for I M E and W M E adds.

and memories can be accessed f r o m each other
as they are connected in the R E T E network t ha t reflects

the CE order ing. D a t a elements (W M E s) and pa r t i a l i n
s tant ia t ions (IMEs) are called tokens w i t h o u t d is t inc t ion
as they traverse ident ical ly the network in order to com
pu te jo ins. Consider ing a l inear R E T E network, I M E s
correspond approx imate ly to left tokens, W M E s to r ight
tokens, and I - and W- jo ins to left and r igh t j o i n act i
vat ions. T h e .selection step, ADD-WME.l, deals w i t h the
maintenance of W M . A number of tests are appl ied to a
W M E for assigning i t to the r ight a-memories. Unl ike
the j o i n step, th is step is not costly and can be opt imized
[Ghal lab, 1981].

W h e n memories are implemented as l inear l ists
and as the basic b inary j o in a lgo r i thm is the cross-
p roduc t , ADD-IME is basically computed in
and ADD-WME in where the no ta t ion
stands for the card ina l i ty of X. As for W M E removal,
RETE uses the same procedures as for adds except tha t
store operat ions in memories are subst i tu ted by remove
operat ions. T h e n , a W M E removal is at least as costly
than an add. Th is last po in t has of ten been cr i t ic ized
for state-saving a lgor i thms [Mi ranker , 1990].

2 .2 I m p r o v i n g R E T E ' s j o i n s : H - R E T E

In pract ice and even w i t h a good CE order ing,
and can be large thus l i m i t i n g R E T E ' S effi
ciency. Index ing techniques l ike hashing can be used
to improve the jo in step by reducing the search spaces
[Gupta , 1987]. Mos t of j o i n tests being equal i ty tests,
memories can be hashed according to the variable to be
tested. T w o global hash-tables are used for WM and
I M . The hash code for a token (W M E or I M E) is a func
t i on of the value of the variable to be tested and of the
actual memory locat ion . As a result , hash-
values const i tu te memory indexes for jo ins. The i r sizes
depend on the hash-table sizes and on the qual i ty of the
hash- funct ion. Though the a im of hashing is to access
the solut ion space, i t only provides a good seard i space
reduc t ion , by a tenfo ld factor as usually acknowledged.
B u t , i t is also known tha t the overhead of compu t ing
hash-values can e l iminate the benefi ts of th is reduct ion
for smal l sets compared to a l ist imp lementa t ion [Aho et
a/., 1983].

3 The TREE algorithm
3 .1 W o r k i n g f r a m e w o r k

T R E E has been implemented for a general purpose pro
duc t ion system, K, where W M E s are t r ip les o f sym
bols, e.g. [F R V] . Th is s t ruc tu re is close to S O A R ' S and
the equivalent no ta t i on wou ld be: (triple identifier F

attribute R value V).
Indexat ion in K is not CE-based bu t organized on the

c r i te r ion of shar ing an ident ica l reference to an ident ical
symbol : W M E s are no t aggregated according to their
membersh ip o f CEs, b u t to the fact t h a t they contain the
same symbol at the same loca t ion (ident i f ier , a t t r i bu te ,
or value). For instance, the W M E [F R V] is indexed 3
t imes: by F as first field, R as second, and V as t h i r d .
In the fo l lowing, we consider indexes as simple pat terns.
Hence, [F R V] is indexed by the pat terns [F??], [?R?],
and [??V], where ? are unnamed free variables.

Bouaud 497

498 Knowledge Base Technology

to each CE. If the type of V(CE) is [F??], [?R?] or [??V],
where letters correspond to known places (symbols or
bound variables), then it corresponds to an index that
the matcher wil l use. In the other situations, V(CE) is
not an index and constraint relaxation applies. Here is
how R selects a subsuming index for each of the five non
index pattern types according to our assumptions:

• [???], which describes the whole W M , is a special
case. We suppose that such a CE will never remain
unconstrained i

The plain lines in Figure 3 represent our constraint relax
ation function between pattern types2 whereas dashed
lines represent the subsumption relation and illustrate
how constraint propagation can apply.

Figure 3: Subsumption links and constraint relaxation.

Now the question is: are the search spaces of I-joins
and W-joins defined by RoP applied to the CEs smaller
than those defined by the CEs themselves?

4 Exper imenta l measurements
In order to evaluate TREE 'S join strategy and compare it
with a CE-based join, some experimental measurements
were carried out with K. Five rule-based programs de-
velopped in our laboratory were used as benchmarks:
M A B , the "monkey and bananas" problem [Brownston et
a/., 1985]; ALEXIA, a qualitative model for hypertension
[Bichindaritz and Seroussi, 1992]; CHART, a syntactic
chart parser; AMD, a semantic analyzer for natural lan
guage [Cavazza and Zweigenbaum, 1992]; and A B A C A B ,
a blackboard controller [Bachimont, 1991]. Table 1 pro
vides some of their external characteristics.

4.1 P a t t e r n card ina l i t y measurements
We first studied the cardinality in WM of every possible
pattern at the end of each execution. The average cardi
nalities of each pattern type are reported in Table 2. As
these numbers correspond to the cardinalities of poten
tial CEs, search and solution spaces for I-joins, the CE

2Pattern types with a * correspond to indexes.

Table 2: Average cardinality of each pattern type.

Bouaud 499

Table 3: CEs, constrained CEs and T R E E ' S constrained/relaxed CEs.

the solut ion spaces of these I- joins, and a ROP co lumn,
thei r search spaces w i t h T R E E .

Compar ing co lumn CE w i t h Ro'P i l lustrates how the
in i t i a l search spaces defined by the CEs are t ransformed
by TREE. W i t h the numbers of Table 2 in m i n d , one
should not ice t ha t for each p rog ram:

1. Mos t of the CEs correspond to h igh card ina l i ty pat
terns, [?R?] being the most f requent and [???] some
t imes used (A M D and A B A C A B) ;

2. Mos t of the CEs are constra ined, especially [?R?]
and every [???], and the constra ined CEs correspond
to low card ina l i t y pa t te rns ;

3. As most of the constra ined CEs are non index pat
terns, R is of ten appl ied and [F??] and [??V] are
ma in l y used, the cardinal i t ies of which are not h igh.

These po in ts h igh l ight t ha t h igh gain factors g due to
V and low loss factors / due to 7Z are of ten expected,
resul t ing in a combined reduct ion ra t io
due to RoV greater t h a n 1. However, th is wou ld be only
val id for I- joins, bu t in pract ice the previous arguments
are not sufficient to determine whether the loss due to
R discards the benefi ts f r om V or not . Yet , no s imi lar
i n fo rma t ion is available for W- jo ins .

4 .3 P r o g r a m e x e c u t i o n m e a s u r e m e n t s

Final ly , each p rog ram has been r u n w i t h three different
j o i n strategies. T h e only difference between t hem lies
in the indexes used to search W M E s (in I-joins) and to
store I M E s (for W- jo ins) : TREE uses the indexes deter
mined by the heur ist ic TZoV f unc t i on appl ied to the CEs.
RETE uses the i n i t i a l CEs as indexes and then simulates
a s tandard RETE l inear network. O P T I is a s imula t ion ;
only V is appl ied. It is as if the so lut ion space of every
j o i n was d i rec t ly accessible: search spaces were exact ly
so lu t ion spaces.

T h e number of comparisons per j o i n is used as the
met r i c for compar ing the strategies as i t corresponds to
the size of the search spaces explored du r i ng j o i n at
tempts . T h e smaller th is number , the more efficient the
j o i n strategy. Moreover, th is met r i c is adequate to com
pare index ing schemes [Mi ranker et a l . , 1990]. For a
given p rog ram, ident ica l i n i t i a l WM and cond i t ion or
der ing were used. Compar i ng the number of generated
" tokens" (I M E s) as in [Nayak et a/., 1988] is inappro
pr ia te here because the general a l go r i t hm is the same,
used in the same condi t ions, and consequently produces
ident ical I M E s : every j o i n has the same solut ion space

whatever the strategy. As every local j o i n is op t ima l in
O P T I , this " v i r t u a l " s t rategy is the best one and nei ther
T R E E nor R E T E can ou tpe r fo rm i t : i n the same condi
t ions, i t is not possible to do less comparisons.

Stat ist ics about the number of comparisons per I - and
W- jo ins are recorded in Table 4. On ly non empty j o in
a t tempts , i.e. w i t h at least one compar ison, were con
sidered. R u n t i m e per formance is not signif icant here
since the R E T E and O P T I strategies were emulated f r om
T R E E ' S . A l t h o u g h each result could be separately dis
cussed, some points must be emphasized.
1 - The average number of comparisons per j o in (Avg.) is
lower w i t h T R E E than w i t h R E T E whatever the p rogram.
Thus , actual search spaces def ined by RoV, for b o t h
I- and W- jo ins , are smaller t h a n those defined by the
CEs. The resul t ing reduct ion ra t io ranges f r o m 1 up to
near ly two orders of magn i tude and the same t rend is
also observed for s tandard dev ia t ion (SD) and max ima
(Max.).3

2 - For every p rog ram, M A B excepted, T R E E ' S number
of non empty j o i n a t t emp ts is approx imate ly the same
as, or even smaller than R E T E ' S . Th is being combined
w i t h the previous result explains t h a t the t o ta l number o f
comparisons per execut ion (Sum) is always much smaller
w i t h T R E E than w i t h R E T E by a factor rang ing f r o m 10
(W- jo ins o f A M D) t o 7 4 (W- jo ins o f A B A C A B) .
3 - M A B , which is a s impler p rog ram, is an interest ing
case for i t i l lustrates a s i tua t ion where R E T E performs
bet te r than T R E E : R E T E ' S t o t a l number o f comparisons
for W- jo ins is lower and though T R E E ' S search spaces are
smaller t han R E T E ' S , more j o i n a t t emp ts are per fo rmed,
j us t enough to cancel out the previous benef i ts.
4 - T h e number of comparisons of OPTI corresponds to
the number o f solut ions o f the jo ins. W i t h this number
and those of RETE and TREE, a g lobal gain factor G
due to constra int p ropagat ion and a g lobal loss factor L
due to constra int re laxat ion can be es t imated. Table 5
gives such rat ios. G is R E T E / O P T I and ranges f r om 5
to 750 whereas L, wh ich is T R E E / O P T I , never exceeds
22. As previously no ted the g lobal resu l t ing reduct ion
ra t io R E T E / T R E E is between 1 and near ly two orders
of magn i tude . Ac tua l l y , th is shows t h a t in our most
complex programs the effect of V outdoes the effect of R
even du r i ng execut ion, then p roduc ing an actua l search
space reduc t ion . M A B excepted, th is reduc t ion seems
to increase w i t h the number o f WM modi f ica t ions. As

These properties are very interesting in the framework of
parallel implementations [Gupta, 1987].

500 Knowledge Base Technology

Table 5: Reduction ratios of the total number of comparison due to the different jo in strategies.

a global resul t , TREE does less comparisons t han R E T E
for b o t h I - and W- jo ins .

5 Discussion and related works
On the basis of exper imenta l evidence, T R E E has shown
a bet ter per formance t han a s tandard R E T E on the over
all number of comparisons per fo rmed dur ing j o in at
tempts. Th is result has been obta ined w i t h five pro
grams in dif ferent areas tha t al l satisfied the assumpt ion
of the re la t iona l pa rad igm. To expla in th is result , we
can observe tha t most of the CEs ment ion expl ic i t re
lations: [?x R ?y]. These CEs are also nearly always
linked th rough var iable shar ing such tha t of ten ?x or
?y are b o u n d . In th is s i tua t ion , TREE choses [F??] or
[??V] as indexes. For the j o i n step, TREE prefers using
the contextual constraints of variables b indings to focus
the searches instead of the definitional constraints of the
CEs tha t R E T E wou ld use. Under our assumpt ion and
w i t h the previous resul ts, i t appears t ha t the contex
tual constra ints are stronger t han the def in i t ional ones.
Moreover, th is tendancy is not expected to collapse as
the WM size increases. In th is s i tua t ion , we expect new
symbols to be created, new connections to be made, bu t
no (or few) new relat ions to appeal*. As a resul t , |[?/??]|
would increase whereas b o t h | [F??] | and |[??Vr]| would
very l ikely rema in constant . Therefore, the global re
duct ion ra t i o due to T R E E is also expected to increase
making s t i l l more difference w i t h RETE. Th is is an hy
pothesis t h a t wou ld have to be s tud ied and conf i rmed.

Several o ther works a t t e m p t to improve the j o i n step
by the use of index ing techniques wh ich are not (only)
based on CEs. T h e domain-based index ing of a new

version of T R E A T [Mi ranker et a/., 1990] relies on the
actual values of variables in a ru le.

T h e role o f hashing in H - R E T E is also to provide
smaller j o i n search spaces. It is usual ly acknowledged
tha t hashing techniques prov ide a tenfo ld reduct ion.
G u p t a et al. [1988] exh ib i t on three O P S 5 programs
search space reduct ions rang ing f r o m 1 to 12. Th is num
bers indicate tha t H-RETE and T R E E prov ide the same
range of search space reduct ion t hough we d id not test
the H - R E T E strategy on our programs. Nevertheless, the
overhead due to hash-code computa t ions can be impor
tan t and can sometimes e l iminate the benefi ts of hashing.
Compared to t ha t , T R E E ' S index ing scheme maintenance
cost is low even compared to R E T E ' S because no test is
per formed.

The predefined index ing scheme provides some addi
t iona l advantages. R a n d o m WM access is handled effi
c ient ly ei ther by s tat ic pa t t e rn -ma tch ing or by p rogram.
Since i t is independent of the CEs and therefore of any
rule base, new rules can be dynamica l l y compi led w i t h
out any WM re -s t ruc tu ra t ion . As a RETE-l ike a lgo r i t hm,
TREE also handles some features t ha t have not been dis
cussed such as "node sha r ing " , expl ic i t r igh t j o i n opera
tor , and negated CE con junc t ion .

T h o u g h T R E E and H - R E T E wou ld prov ide quant i ta
t ively ident ica l effects, we wou ld l ike to po in t ou t some
qual i ta t ive difference. T h e na tu re of an index is sym
bolic w i t h T R E E versus numer ic w i t h H-RETE and the
index choice is made accord ing to a heur ist ic strategy
versus to some hashing a l go r i t hm . The index choice can
be made at compi le t ime w i t h TREE whereas i t must
be made a t r u n t i m e w i t h H - R E T E . Last ly, changing the

Bouaud 501

Table 4: Statistics of the # of comparisons per non empty jo in attempt.

index choice can be made according to some qua l i ta t ive
reasonning versus some numer ica l a lgo r i t hm. Th is a l
lows us to consider the possib i l i ty of t ak ing in to account
some propert ies of representat ions in order to improve
p roduc t ion system per formance.

6 Conclusion
I n the f ramework o f K , T R E E ' S heur ist ic j o i n st rategy
has been shown as a challenger for R E T E . We are con
vinced tha t T R E E can be appl ied to other systems w i t h a
restr ic ted WM fo rma l i sm because CEs are of ten weakly
selective b u t of ten constra ined. For instance, we believe
T R E E wou ld cer ta in ly pe r fo rm eff iciently for S O A R as i t
ful f i l ls these condi t ions and satisfies the assumpt ion of
re lat ional pa rad igm. T h o u g h we d id not test i t , TREE
would p robab ly no t f i t for OPS5 programs as thei r CEs
are l ikely more d iscr iminant t han symbo l shar ing.

However, T R E E can st i l l be op t im ized . I t could be in -
terest ing to explore other constra int re laxat ion strategies
tha t wou ld take in to account the CEs and the represen
t a t i o n f ramework . A j o i n st rategy exp lo i t ing a combi
na t ion o f T R E E ' S and RETE's index ing schemes wou ld
cer ta in ly lead to be t te r results t han TREE alone. Th is
has to be tested in the fu tu re .

Acknowledgements
We wou ld l ike to t hank B. Bach imont , I . B ich indar i t z ,
M. Cavazza, and L. Dore for graceful ly p rov id ing the
rule-based programs we used.

References
[A A A I , 1988] Proceedings of the 7 i h Na t iona l Confer-

ence on A r t i f i c i a l Intel l igence, St. Pau l , M N , Augus t
1988. A A A I .

[Aho et a i , 1983] A. V. A h o , J . E. Hopc ro f t , and J . D.
U l l m a n . Da ta structures and algori thms. Add ison
Wesley, 1983.

[Bach imont , 1991] B. Bach imont . A logical f ramework
to manage coherence and convergence in b lackboard
archi tectures: a proposal . In Proceedings of the
A AAI' 91 Workshop on Blackboard Systems, Anahe im ,
C A , 1991. A A A I .

[B ich indar i tz and Seroussi, 1992] I . B ich indar i t z and
B. Seroussi. Con t ra ind re l 'analogie par la causali te.
Technigue et Science Informat iques, 11(4):69 98,
1992.

[Bouaud, 1992] J. Bouaud . T R E E : une strategie de
j o i n tu re heur is t ique pour a lgor i thme de f i l t rage. Re-
vue d ln te l l igence Ar t i f i c ie l le , 6(4) :457-493, 1992.

[Brownston et a l , 1985] L. B rowns ton , R. Farel l ,
E . K a n t , and N. M a r t i n . Programming expert systems
in OPS5. An in t roduct ion to rule-based programming.
Add ison Wesley, 1985.

[Cavazza and Zweigenbaum, 1992] M. Cavazza
and P. Zweigenbaum. E x t r a c t i n g imp l i c i t i n fo rma t i on
f r o m free tex t technical repor ts . I n fo rma t ion Process
ing and Management, 28(5) :609-618, 1992.

[D ixneuf et a i , 1988] P. Dixneuf , A. Mel ler , and
M. Porcheron. E L O I S E ' s hear t , an efficient f rame for
p roduc t ion system execut ion. In Proceedings of the
8 t h European Conference on A r t i f i c i a l Intell igence,
pages 24-26, M u n i c h , F R G , Augus t 1988. E C A I .

[Forgy, 1982] C. L. Forgy. Rete: A fast a lgo r i t hm for the
many p a t t e r n / m a n y object pa t t e rn ma tch prob lem.
A r t i f i c i a l Intel l igence, 19:17-37, 1982.

[Ghal lab, 198l] M. Ghal lab . Decision trees for op t im iz
ing pa t te rn -match ing a lgor i thms in p roduc t i on sys
tems. In Proceedings of the 7 t h I n te rna t iona l Jo int
Conference on A r t i f i c i a l Intel l igence, pages 310-312,
Vancouver, Canada, Augus t 1981. I J C A I .

[Gup ta e t a i , 1988] A . G u p t a , M. Tambe, D . K a l p ,
C. Forgy, and A. Newel l . Paral le l imp lementa t ion of
OPS5 on the Encore mul t iprocessor: results and anal
ysis. In te rna t iona l Journa l of Para l le l Programming,
17(2):95-124, 1988.

[Gupta , 1987] A. Gup ta . Para l le l ism in Product ion Sys
tems. P i t m a n ; Mo rgan K a u f m a n n Publ ishers, 1987.

[Ishida, 1988] T. Ishida. O p t i m i z i n g rules in p roduc t ion
system programs. In A A A I [1988J, pages 6 9 9 7 0 4 .

[La i rd et al . , 1987] J .E. L a i r d , A. Newel l , and P.S.
Rosenbloom. S O A R : An arch i tec ture for general in
tel l igence. A r t i f i c i a l Intel l igence, 33:1-65, 1987.

[M c D e r m o t t et a l . , 1978] J. M c D e r m o t t , A. Newel l , and
J. Moore . The efficiency of Cer ta in Product ion
System Implementat ions, pages 155-176. Academic-
Press, New York , 1978.

[Mi ranker et al , 1990] D. P. M i ranker , B. J. Lofaso,
G. J . Farmer, A. Chandra , and D. A. B ran t . On a
T R E A T - b a s e d p roduc t i on system compi ler . In Pro
ceedings of the 10 i h I n te rna t iona l Workshop Expert
Systems & their Appl icat ions, pages 617-630, A v i
gnon , France, May-June 1990. EC2 .

[Mi ranker , 1990] D. P. M i ranker . T R E A T : a New and
Ef f ic ient Ma tch A lgo r i t hm f o r A I Product ion Systems.
P i t m a n ; M o r g a n K a u f m a n n Publ ishers, 1990.

[Nayak et a l . , 1988] P. Nayak, A. G u p t a , and P. Rosen-
b loom. Compar ison o f the R E T E and T R E A T pro
duc t ion matchers for Soar (a s u m m a r y) . In A A A I
[1988], pages 693-698.

[Smi th and Genesereth, 1985] D. E. S m i t h and M. R.
Genesereth. Order ing con junct ive queries. A r t i f i c i a l
Intel l igence, 26:171-215, 1985.

[Tambe and Rosenbloom, 1990] M. Tambe and P. S.
Rosenbloom. A f ramework for invest igat ing produc
t i on system formula t ions w i t h po l ynomia l l y bounded
ma tch . In Proceedings of the 8 t h Na t i ona l Conference
on A r t i f i c i a l Intel l igence, pages 693-700, Bos ton , M A ,
Ju ly -Augus t 1990. A A A I .

[Tambe et a i , 1990] M. Tambe, A. Newel l , and P. S.
Rosenbloom. T h e p rob lem of expensive chunks and i ts
so lu t ion by res t r i c t ing expressiveness. Machine Learn
ing, 5(3) :299-348, 1990.

502 Knowledge Base Technology

