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Abstract 
A knowledge representation server is described which 
provides a fast, memory-efficient and principled system 
component. Modeling the server through intensional 
algebraic semantics leads naturally to an open-
architecture class library into which new data types may 
be plugged in as required without change to the basic 
deductive engine. It is shown that the operation of an 
existing knowledge representation system, CLASSIC, 
may be implemented through one data type supporting 
sets with upper and lower set and cardinality bounds. 
The architecture developed is cleanly layered by 
complexity of inference so that fast propagation of 
constraints is separated from potentially slow model-
checking search. Client programs may obtain estimates 
of the complexity of a request, and may control the 
resources allocated to its complete solution. 

1 Introduction 
One of the basic technologies that may be factored out of 
virtually all artificial intelligence systems is some form of 
knowledge representation service. Theoretical foundations 
have been developed for such technologies in recent years 
[Brachman and Levesque, 1984; Ait-Kaci, 1986; Nebel, 
1990]. These foundations make it possible to develop 
general-purpose knowledge representation services that are 
well-principled, space and time efficient, and embeddable as 
sub-systems in a wide variety of applications. 

Since complexity analyses shows that knowledge 
representation systems with even minimal features are able 
to represent intractable problems [Brachman and Levesque, 
1984; Nebel, 1988; Schmidt-SchauB, 1989], it has been 
suggested that the representation and deduction capabilities 
of knowledge representation services should be limited 
[Levesque and Brachman, 1987). The reasons for and 
against this have been surveyed by Doyle and Patil [1991] 
who conclude that, while there are sound arguments for such 
limitations, the capabilities of the resultant systems wil l 
often fail to satisfy reasonable application requirements. 
One impact of this is that system designers may add 
functionality that provides the missing capabilities in ways 
that arc less principled than those of a general server. A 
second is that problems may have to be represented in 
unnatural ways that are conducive to poor performance. A 
third is that the effect of the limitations on deductive 
capabilities may not be apparent to users, leading to errors. 

This motivates an open-architecture server design to 
which functionality may be added in a principled fashion, 
implemented as a class library with well defined interfaces 
to new classes for additional data types. The inherent 
intractability of some representable problems, contrasted 
with adequate practical performance of existing knowledge 
representation systems [Vilain, 1991], suggests that services 
need to be layered. Some deductions can be carried out in 
low-polynomial time and space whereas others may involve 
a search whose lower bound is at least exponential in the 
size of the problem. An architecture which separates these 
deductions into separate layers of service is desirable in 
applications, particularly if the computationally expensive 
ones can be carried out asynchronously in the background, 
provide useful partial results, and can be terminated before 
completion if appropriate. To allow users to estimate the 
cost of using a service, it is important to instrument the 
complexity of knowledge structures to provide meta-
services that estimate the tractability of a problem. 

This paper describes the design and implementation of an 
open architecture knowledge representation server, KRS, as 
a class library in C++. The server was originally modeled on 
CLASSIC [Borgida, Brachman, McGuiness and Resnick, 
1989], and designed to be the kernel of a new family of 
interactive knowledge acquisition tools, and its architecture 
and applications as an artificial intelligence tool have 
already been described [Gaines, 1991a], as have the 
associated rule system [Gaines, 1991b], visual knowledge 
representation language [Gaines, 1991c], and its application 
to organizational modeling and problem solving [Gaines, 
199Id]. This paper focuses on the underlying principles and 
the way in which they determine an architecture for term 
subsumption knowledge representation systems. 

2 Theoretical and Practical Framework 
The most widely used framework for the formal analysis of 
knowledge representation has been the standard model and 
proof theory of first order logic. However, there are 
alternative algebraic models for first and higher order logics 
that are becoming increasingly used in programming 
language semantics because they represent abstract data 
types simply and naturally. Ait-Kaci [1984, 1986] has given 
a lattice-theoretic model of knowledge base languages with 
operational semantics through term rewriting that resolves 
many of the issues of complexity and deduction algorithms 
for term subsumption knowledge representation. 
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The merits of algebraic, type-theoretic semantics for 
knowledge representation are that they provide formal 
models and complexity analyses that relate closely to the 
features and issues of existing knowledge representation 
systems. For example, they provide simple accounts of 
common constraints, such as cardinality, extensional 
inclusion and numeric ranges. Clearly, these are questions of 
naturality rather than logical power, since accounts of set 
theory and arithmetic can be developed in first order logic, 
and algebraic feature constraint logics may be translated into 
first-order formulae [Smolka, 1992]. However, natural 
models giving minimal formulations of representational 
requirements are valuable in both the software engineering 
of knowledge representation servers, and the effective 
presentation of the services offered to those using them. 

The model for term subsumption knowledge 
representation used in the development of KRS is that the 
computational units arc: for the TBox, concepts, identified 
with collections of constraints indexed by roles; and for the 
ABox, individuals represented as unique identifiers, each of 
which has associated conceptual variable whose value in 
any particular state of the knowledge base is a concept. This 
has the normal semantics for KL-ONE systems that 
concepts are precisely a composition of constraints— 
changing the constraints changes the identity of the concept, 
whereas individuals are precisely identities of objects-
changing the associated constraints changes the state of the 
individual, not its identity. In Zalta's [1988J terminology, 
abstract objects (concepts) encode properties whereas 
concrete objects (individuals) exemplify them. 

Thus, the computational structure of both theory and 
implementation is modeled as an algebra of constraints, but 
the nature of the constraints is left undefined. Any data type 
can be used in representation and deduction provided it can 
be modeled as a constraint algebra. In KRS the data types 
and their operations arc implemented as separate classes, 
and 'plugging in ' new data types involves adding a new 
class with four associated operations (composition, 
subsumption test, input and output). The kernel deduction 
systems for constraint propagation, for rule, inverse role and 
coreference application, and for model checking search, 
remain unchanged. 

3 Constraint Algebras 
The semantics of constraints may be developed directly 
from informal requirements to a formal model. The key 
notions are that the composition of two constraints should be 
a well-defined constraint (binary function), that it makes no 
difference to compose a constraint with itself 
(idempotency), that grouping of multiple constraints in 
resolving them to binary compositions makes no difference 
(associativity), and that the order of application of 
constraints makes no difference (commutativity). Without 
these requirements, one would have the semantics of general 
operators rather than constraints. Together they imply that 
composition generates a semi-lattice in which it is the join 
operation. There is a natural order relation of subsumption 
of constraints, defined as one constraint subsumes another if 
their composition equals the second constraint. The semi-

lattice can then be extended to be a full lattice by defining a 
dual, order-inverting meet operation (which, as a side effect, 
adds the lattice adsorption identities [Gratzer, 19711). A 
unique lowest element, or zero, can be defined in the lattice 
corresponding to the composition of incompatible 
constraints. A unique greatest element, or unit, can be 
defined corresponding to a universally applicable constraint. 

Thus, the lattice structures common to all knowledge 
representation systems arise out of the basic primitive of a 
constraint. Any mathematical or logical formulation is a 
representation of the properties of this primitive, and any 
representation schema with reasonably normal semantics 
will have a constraint algebra interpretation. 

Formally, a constraint algebra is defined as a pair of 
binary operations upon a set, (composition) and 
(minimum common generalization), unique greatest and 
least elements (universal and incoherent constraints), 
defined ideal sub-lattices (types), defined order and 
incompatibility relations, (subsumption) and — 
(disjoint), and defined atomic elements (values), satisfying 
the following: 

The semantic notions of knowledge representation can 
now be modeled formally by taking any bounded lattice as a 
constraint algebra in which the atoms arc values, other 
elements are constraints upon those values, ideals are types 
of values, the order relation is one of constraint 
subsumption, the incompatibility relation as one of disjoint 
constraints, the unit element as a universal constraint and 
the zero element as an incoherent constraint. The next 
section defines types for record structures as constraint 
algebras giving a complete account of the semantics of term 
subsumption knowledge representation schema. 

4 Constraint Algebras for the T-box and A-box 
To develop the semantics for concepts in the and 
worlds of individuals in the A-box, take any constraint 
algebra, L, and consider an indefinite product of such 
algebras, indexed by a set of projections, 

such that The arity of an 
element of X is defined to be the number of non-1 
projections. There is a natural constraint lattice formed by X 
under the definitions: 
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That is, the lattice operations operate on a component by 
component basis, and any projection becoming zero implies 
that the product is itself zero. The order relation of (L5) may 
also be computed on a component by component basis: 

(X5) 
The base algebra L may be treated as a sublattice of X by 

defining a specific and the mapping, 
(X6) 

(X1) through (X6) construct one constraint lattice as the 
indefinite product of another such that the original lattice 
may be mapped to a sublattice of the product. This 
construction may be iterated indefinitely to construct a well-
founded sequence of constraint lattices of increasing order 
corresponding to the well-founded construction of sets in 
classical set theory. The order of an element of one of the 
lattices is defined to be the position in this sequence of its 
initial definition. The complexity of an element is defined 
recursively as its arity plus the arities of each of its non-unit 
projections—this corresponds to the number of non-unit 
modes in its expansion or graph. 

4.1 T-box Representation 

If the projections are defined to be roles and the lattice 
elements concepts, this construction is adequate to account 
for representation and deduction in the T-box of term 
subsumption systems. Concept subsumption is the order 
relation of (X5) and individual classification is the same 
relation if the A-Box is taken simply to associate an 
individual with a concept asserted of it. 

Some issues relating to the complexity of subsumption 
and classification are now apparent. The subsumption of 
(X5) for elements of a given order in a system that stores 
only non-unit projections and caches precomputcd lower 
order subsumptions involves only n cache accesses where n 
is the minimum of the arities of the elements being 
compared. This model of subsumption computation gives an 
upper bound that makes it appear highly tractable. However, 
there are a number of reasons why this result is misleading. 

First, the subsumption relation in the base lattice wil l 
generally not be cached because the space complexity wil l 
be high even if the time complexity is not, and the time 
complexity could also be high in an open architecture 
system in which arbitrary lattices can be plugged in 
(including the product lattices just defined). In practice, the 
base lattices currently used in systems such as CLASSIC are 
such that subsumption computation is tractable as wi l l be 
shown in the next section. 

Second, the composition of concepts may generate large 
numbers of additional (anonymous) concepts such that the 
caching assumed may itself become intractable in space and 
time. Nebel [1990] has given a simple construction of a 
series of related concepts where the number of anonymous 
concepts grows exponentially with the number of originally 

defined concepts. In KRS the number of anonymous 
concepts generated by a given concept definition is reported 
as an auxiliary complexity measure. 

Third, it is unrealistic to implement assertions about 
individuals in a caching scheme. Individual classification 
may involve a complete expansion of the concepts testing 
each node at the base lattice level. The number of tests is 
then the complexity defined above which can also grow 
exponentially with the number of concepts defined. 

Fourth, the subsumption relation defined in (X5) is 
intensional. It docs not take into account the constraints that 
may be propagated in the A-box to ensure that the concepts 
associated with individuals cannot become incoherent. 
Extensional subsumption taking into account such constraint 
propagation is consistent with, but a stronger partial order, 
than intensional subsumption. This is how intractability may 
be shown in CLASSIC by representing satisfiability of a 
restricted CNF formula [Lenzerini and Schaerf, 1991]. 

4.2 A-box Representation 

If the projections are defined to be individuals and the 
lattice elements worlds, the construction, (XI ) through (X5), 
is adequate to account for representation and some aspects 
of deduction in the A-box of term subsumption systems. 
World subsumption through the order relation of (X5) 
corresponds to monotonic reasoning, that the subsumed 
world can be reached from the other by a series of assertions 
about individuals. However, there are additional modes of 
reasoning in the A-box that make its analysis more complex. 

First, CLASSIC-like systems implement rules as pairs of 
concepts such that if an individual is classified as falling 
under the first then the second is asserted of it. 

Second, individuals may participate in base lattice 
constructions, for example through extension and cardinality 
constraints on sets of individuals, and hence assertions of a 
concept as applying to one individual may imply that other 
concepts apply to other individuals. In particular, cardinality 
constraints may imply the existence of (Skolem) individuals 
not previously created. 

Third, there may be assertions about individuals that, 
while they do not lead to incoherence directly, do so 
indirectly through the previous two mechanisms. Taking 
into account these implicit constraints may involve a search 
over possible worlds that may grow exponentially with the 
number of individuals involved. 

The first two modes of reasoning do not in themselves 
lead to intractability but, taken together with the third, they 
allow intractable problems to be represented in the A-box 
that go beyond those already discussed for the T-box. 

5 Base Algebras for CLASSIC-Like Systems 

Specific base lattices for CLASSIC-like systems may be 
constructed from a four element constraint algebra as shown 

on the left of Figure 1 in which is the zero element, 

the unit element, and and are complementary 
elements distinct from them. The semantics of this lattice is 
that of role constraints: 



Figure 1 The basic constraint algebra and insertion of 
data types 

In CLASSIC-like systems there is a distinguished data 
type based on sets of individuals. The algebra of subsets of a 
set with set union as meet and set intersection as join is a 
constraint lattice. However, its semantics do not support the 
distinction between F ILLS and ONE-OF constraints, the 
CLOSE constraint, or cardinality constraints. The following 
constructions do so by combining the constraints of the 
algebra of subsets with those of the dual lattice. 

Consider an arbitrary set, S, its powerset, PS, and the 
Cartesian product on its powerset, There is a 
natural constraint lattice formed by P under the definitions: 

The semantics of this lattice are those of constraints upon 
the subsets of S with the first projection of the product being 
a lower bound corresponding to F I L L , the second 
projection being an upper bound corresponding to ONE-
OF, unsatisfiable constraints in which the lower bound is 
not contained in the upper bound mapping to zero, and the 
lattice operations corresponding to complementary pairs of 
intersections and unions of lower bounds and upper bounds. 
The atoms of this lattice are elements in which the lower 
and upper bounds coincide. They provide the semantics for 
CLOSE in corresponding to a set constrained to consist 
precisely of its specified members. 

The SAME-AS constraint corresponds to an equality 
assertion between nodes of a concept structure. It is simply 
implemented in the A-box by indirect addressing. The 

Figure 2 Example type lattice for set valued roles 

PRIMIT IVE and DISJOINT-PRIMITIVE constraints 
are implemented through a hidden role filled by elements of 
a P lattice based on the set of concepts rather than that of 
individuals. A concept defined to be primitive stores its own 
name as FILLS in this role. A concept defined to be disjoint 
to another stores the other's name as NOT in this role. This 
results in the proper semantics for primitive concepts. 
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I n d e t e r m i n a t e a role possibly existing. 

O v e r d e t e r m i n a t e a role existing but unfillable. 

A p p l i c a b l e a role definitely existing. 

Nonapplicable a role definitely not existing. 
This lattice supports no data types in itself but it can be 

extended to support any arbitrary combination of data types 
by inserting their constraint lattices between and 
such that their unit elements represents the relevant types 
and their zero elements are mapped to Figure 1 center 
shows two mutually incompatible constraint lattices inserted 
in this way. Figure 1 right shows two compatible lattices 
inserted such that one is a sublattice of the other, 
corresponding to type coercion. 



Thus, the capabilities of CLASSIC arc implemented in 
KRS through a single data type which is a set with upper 
and lower bounds and cardinality constraints. It is a an 
unusual data type compared with those of conventional 
programming languages, but it is readily implemented and 
optimized for fast and memory-efficient operation. 

A principled implementation of some applications of the 
TEST constraint used to extend CLASSIC is made available 
in KRS by direct support of data types such as integers, time 
intervals, strings, and so on, through the lattice constructions 
of Figure 1. This allows general abstract data types to be 
integrated in CLASSIC-like systems. What it does not 
support is operations upon them that do not correspond to 
the lattice joins and meets, and the use of side-effects to 
communicate with other subsystems. 

6 Architecture of KRS 
The KRS architecture is shown in Figure 3. It supports the 
normal features of KL-ONE-like systems in allowing 
concepts to be defined, and assertions to be made about 
individuals in terms of these concepts. What is essentially 
type propagation inference can then be used to deduce the 
consequences of the assertions through reference to the 
definitions. KRS also supports the rule schema of 
CLASSIC, extended to handle rules with exceptions, such 
that an individual recognized as satisfying one concept has 
another automatically asserted of it. This integrates 
production rule and frame-based reasoning. It also supports 
model checking [Halpern and Vardi, 1991] or "puzzle 
mode" reasoning in which, if necessary, after propagation of 
type and rule constraints a search of possible worlds is 
carried out to determine whether additional conclusions can 
be drawn because not to do so would lead to absurdity. 

Figure 3 Overall KRS architecture 

KRS supports a wide variety of data types through a 
data type manager accessing separate modules through a 
uniform interface such that constraints supported, such as 
interval bounds on numbers, enter fully into concept 
definitions, individual assertions and deductive inference. 
Complexity measures are derived from the concept 
definitions that estimate the probable costs of problem 
solving in a particular domain. 

The algebraic model of knowledge representation leads 
directly to an open architecture implementation as a class 
library as illustrated in Figure 4. The knowledge base class 
has two main instance variables, one holding individual 
records and the other holding concept records. The base 
knowledge base class implements the type lattice on the left 
of Figure 1, having codes for indeterminate, applicable, non-
applicable and overdeterminate values and constraints. It 
also supports other constraints by reference codes 
containing a type code and pointer. The type code is used to 
access a list of data type support objects which is initially 
empty. For each data type implemented an object is added 
to the list that supports it by providing storage for values 
and constraints of that subtype, and methods to compute and 
support input/output with such values and constraints. 

Figure 4 at the bottom left also illustrates another 
important feature of the class library construction. Type 
subsumption computation for record structures is simply 
expressed recursively. However, to attain the known 
complexity lower bound requires that already computed 
subsumption relations be cached to avoid duplicate 
computation. This caching is implemented in a sub-class in 
KRS, allowing the simple recursive computation to be 
called as an inherited method during debugging as a check 
on the correctness of the caching algorithm. 

The utility of the class library construction are also 
apparent in the implementation of model checking reasoning 
in KRS. This is the mode that exhibits intractability so that it 
is appropriate to implement it as a separate service. It 
involves a search of possible worlds once other forms of 
inference have reached a fixed point. The form of reasoning 
is that certain further constraints upon existing individuals 
that appear possible may not be so because their 
consequences are inconsistent. If one searches all possible 
worlds resulting from the assertion of combinations of such 
constraints then constraints which apply in all consistent 
worlds are necessary and can be deduced. Puzzles are 
usually designed so that there is only one world that is 
consistent, but real problems usually involve multiple 
possible worlds as consistent extensions. In KRS this mode 
of reasoning is implemented by making the individual 
records instance variable shown at the top of Figure 4 a 
pointer to a tree structure of possible worlds. The rest of the 
reasoning and type system remains unchanged. 

6 Conclusions 
Now that the theoretical foundations of knowledge 

representation servers have been developed in terms of 
abstract data types, and the demand for embeddablc 
implementations is growing, it is attractive to investigate the 
possibility of class libraries supporting efficient, extensible 
implementations. This paper has specified the requirements, 
detailed the relevant theory, and shown how this has led to a 
class library implementation of a fast, principled, open 
architecture knowledge representation server. 
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