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Abstract

Domain-oriented knowledge-acquisition tools
provide efficient support for the design of
knowledge-based systems. However, the cost of
developing such tools is high, especially when
their restricted scope is taken into account.
Developers can use metalevel tools to gen-
erate domain-oriented knowledge-acquisition
tools that are custom tailored for a small
group of experts, with considerably less ef-
fort than is required for manual tool develop-
ment. An epistemic obstacle to creating such
metatools is the specification model for tar-
get knowledge-acquisition tools. The metatool
DOTS is based on an abstract-architecture ap-
proach to the specification and generation of
knowledge-acquisition tools. DOTS is domain
and method independent, because it is based on
an architectural model of the target knowledge-
acquisition tool.

1 Introduction

Many knowledge-acquisition tools are unsuitable for
their tasks because they are adapted neither to the ap-
plication domain, not to the requirements of individuals,
such as developers and experts. Researchers in know-
ledge acquisition are experimenting with knowledge-
acquisition tools custom tailored for specific domains
[Gale, 1987; Musen et al, 1987]. Usually, such domain-
oriented knowledge-acquisition tools are more useful
than are general knowledge-acquisition tools, because
custom-tailored tools can meet the requirements of the
particular knowledge-acquisition situation.
Simultaneously, traditional knowledge engineering
and expertise transfer is being replaced gradually
by methodologies where developers assemble prob-
lem solvers for knowledge-based systems from reusable
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method components that accomplish subtasks [Chan-
drasekaran, 1986; Steels, 1990]. In McDermott's [1988]
approach, developers use method-specific knowledge-
acquisition tools to acquire the domain knowledge re-
quired by the methods. Method-oriented knowledge-
acquisition tools, however, are not domain oriented per
se; they must be adapted to specific domains and indi-
viduals.

Developers of knowledge-based systems wishing to use
domain-oriented knowledge-acquisition tools face several
barriers: It is difficult and laborious for developers of
knowledge-based systems to adapt existing knowledge-
acquisition tools, and to implement new domain-oriented
knowledge-acquisition tools for new domains. Another
barrier is that the investment of developing and main-
taining domain-oriented tools cannot always be justified
within the budget of a single application project. Many
of these barriers can be eliminated by tools that enable
developers to generate new domain-oriented knowledge-
acquisition tools from high-level descriptions. Such
metatools can simplify the task of developing domain-
oriented knowledge-acquisition tools, and can reduce sig-
nificantly the work required to implement these tools.
Thus, metatools can make domain-oriented knowledge-
acquisition tools feasible in situations where these tools
could not be used previously. The knowledge-acquisition
tools generated can then support the development of the
target knowledge-based systems.

The design of metatools presents several epistemolog-
ical and technical challenges. The way developers view
knowledge acquisition affects the way that they design
knowledge-acquisition tools. The developer's view of
target knowledge-acquisition tools determines the ap-
propriate specification strategy for target knowledge-
acquisition tools in metatools. Automatic generation
of such knowledge-acquisition tools requires a high-level
description—or metaview—of the target tools [Eriksson
and Musen, in press]. For example, PROTEGE [Musen,
1989] is a metatool that generates a domain-oriented
knowledge-acquisition tool from an instantiation of a
generic problem-solving method. The drawbacks of
method-oriented metatools, such as PROTEGE, are that
the problem-solving method supported cannot be re-
placed easily, and that such metatools do not handle
combined methods well.

We have abstract-

formulated a metaview, the



architecture view, for specification of target knowledge-
acquisition tools in metatools. The abstract-architecture
view is based on a decomposition of the major func-
tions in target knowledge-acquisition tools. In this ap-
proach, developers instantiate and combine subcompo-
nents into specifications of target knowledge-acquisition
tools, which are then used to instantiate target tools.
DOTS' is a metatool that implements the abstract-
architecture view [Eriksson, 1992]. DOTS allows de-
velopers to custom tailor knowledge-acquisition tools
for new domains with minimal effort. DOTS is do-
main and method independent in the sense that it does
not assume any particular domain, or problem-solving
method, for the knowledge-acquisition tools it generates.
DOTS assumes that the target knowledge-acquisition
tools are based on graphical knowledge editing; the tar-
get knowledge-acquisition tools comprise several know-
ledge editors in which the experts enter their knowledge
actively according to their conceptual model of the do-
main.

2 Design of Knowledge-Acquisition
Tools

Knowledge-acquisition tools can be based on several
models—for example, models of cognition, models of
knowledge representations, and models of problem-
solving methods. Musen [1989] describes three basic
conceptual models for interactive knowledge-acquisition
tools: symbol-level, task-oriented, and  method-oriented
conceptual models. The supportive power and the scope
of a knowledge-acquisition tool follow from the model
supported. Moreover, we can conceive many models for
metatools. The essence of a metatool is the model for
the target knowledge acquisition tools that the metatool
supports. We use the term metaview for such specifica-
tion models for knowledge-acquisition tools. We divide
the development process for knowledge-acquisition tools
into three major stages:

1. Knowledge-acquisition —analysis: In this stage, the
developer analyzes the domain and the task,
and outlines the requirements for the knowledge-
acquisition tool. The developer must acquire do-
main knowledge manually to determine the features
required by the knowledge-acquisition tool.

2. Tool specification: In this stage, the developer mod-
els the knowledge-acquisition tool. When a meta-
tool is used, the result of this stage is a specifica-
tion that conforms to the metaview supported by
the metatool; otherwise, the result is a regular soft-
ware specification.

3. Tool implementation: In this stage, the developer—
or the metatool—implements the knowledge-
acquisition tool. Metatools transform the tool spec-
ification developed in step 2 to an operational pro-
gram.

Developers can model domains independent of
the problem-solving method through specification ap-
proaches, such as knowledge-level analysis [Newell, 1982]

DOTS is an acronym for Domain-Oriented Tool Support.

and ontological analysis [Alexander et al., 1987]. How-
ever, in the general case, the transformation from
such models into a high-quality knowledge-acquisition
tool is nontrivial. Target knowledge-acquisition tools
must be designed by developers in cooperation with
the tool users (e.g., domain experts). We seek appro-
priate knowledge-level descriptions for domain-oriented
knowledge-acquisition tools (rather than descriptions of
domains or descriptions of problem-solving methods),
because knowledge-acquisition tools are different from
target systems. Our research objective is to develop
metaviews for domain-oriented knowledge-acquisition
tools that are general; that is, they are not restricted,
for instance, to a particular problem-solving method.

We have developed a rnetaview for target knowledge-
acquisition tools that comprises generic building blocks
for knowledge-acquisition tools—for instance, generic
user-interface components for interactive knowledge
editing, generic knowledge representation structures for
internal use in the knowledge-acquisition tool, and
generic knowledge-base generators that produce tar-
get knowledge bases. This abstract-architecture view
incorporates architectural components of knowledge-
acquisition tools at an abstract level. The abstract-
architecture view provides the developer with a con-
ceptual model of the target knowledge-acquisition tool
that is based on the tool's architecture. Developers can
specify a broad variety of knowledge-acquisition tools by
specifying such building blocks and by defining the rela-
tionships among them. A metatool can automate stage 3
by transforming such specifications into an implementa-
tion of the knowledge-acquisition tool.

3 Generation of Knowledge-Acquisition
Tools

DOTS is a metatool that supports the abstract-
architecture view. DOTS allows its users to edit inter-
actively an abstract-architecture specification of the tar-
get knowledge-acquisition tool. From this specification,
DOTS produces an operational knowledge-acquisition
tool that experts can use to develop knowledge bases.
We shall discuss briefly the specification of knowledge-
acquisition tools in DOTS. The details of the DOTS im-
plementation in described in [Eriksson, 1992].

3.1 Specification Model

The abstract-architecture view comprises four compo-
nent types, each of which constitutes a stage in the acqui-
sition and generation of knowledge bases in knowledge-
acquisition tools (see Figure 1). In this model, knowledge
editors handle the user dialog; for instance, there are
form-based and graph-oriented knowledge editors. Also,
there are knowledge modules that represent the know-
ledge acquired by these knowledge editors. The relation-
ships among the knowledge editors and the knowledge
modules are defined by update rules. Finally, there is a
description language of transformation rules that allows
the developer to specify the knowledge-base generator of
the target knowledge-acquisition tool. Specifically, the
four component types in the abstract-architecture view
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Figure 1: The model of the target knowledge-acquisition tools. The expert interacts with knowledge editors. Update
rules map the contents of the knowledge editors to an internal representation—the knowledge modules. A knowledge-
base generator driven by transformation rules transforms the knowledge modules to a target knowledge base. DOTS
allows developers to edit the knowledge-acquisition-tool specification according to this abstract-architecture view.

are defined as follows:

1. Knowledge editors: The knowledge editors allow ex-
perts to enter and edit domain knowledge according
to the experts' conceptual domain model. Examples
of knowledge editors are domain-specific forms and
graph editors. The knowledge editors are part of the
user interface of the target knowledge- acquisition
tool; they operate on the internal knowledge rep-
resentation in the knowledge-acquisition tool, and
provide views of the representation.

In DOTS, developers can custom tailor the user inter-
face of target knowledge-acquisition tools by speci-
fying and refining knowledge editors, such as menu
layouts, window-system behavior, and editor prop-
erties (see Figure 2). DOTS provides predefined
types of knowledge editors for various types of know-
ledge, and also can allow the introduction of user-
defined knowledge editors. Figure 3 shows a form-
layout editor provided by DOTS. Developers use this
tool to design layouts for form-based knowledge ed-
itors. The resulting form-based knowledge editor is
shown in Figure 4. Note that this example is con-
sistent with the fixes in the Sisyphus VT task.?

2. Knowledge modules: The knowledge modules pro-
vide encapsulation and manipulation of the internal
knowledge representation of the target knowledge-
acquisition tools. The information that the expert
enters in the knowledge editors is stored in know-
ledge modules. Furthermore, the knowledge mod-
ules serve as an intermediate representation in the
transformation of the knowledge acquired into the
target knowledge base (see Figure 1).

3. Update rules: Update rules preserve consistency
among the knowledge editors and the knowledge
modules in the target knowledge-acquisition tools.

2The Sisyphus experiment is an attempt by the
knowledge-acquisition community to provide a set of stan-
dard problems that researchers can use to compare their ap-
proaches to knowledge acquisition and problem solving. The
Sisyphus VT task is based on the VT system for elevator con-
figuration [Marcus et al., 1988],
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The specification of the update rules defines the
mapping between the knowledge presented and
edited in the knowledge editors and the knowledge
modules.

Transformation rules: The knowledge-base genera-
tor of the target knowledge-acquisition tool gener-
ates the knowledge bases. In the DOTS approach,
the knowledge-base generator is based on trans-
formation rules that map knowledge represented
by the knowledge modules into the appropriate
knowledge-base structures (e.g., classes, instances,
and rules). Generally, the rule preconditions of the
transformation rules refer to the contents of know-
ledge modules, whereas the rule conclusions refer
to structures in target knowledge bases. In other
words, the transformation rules define the denota-
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Figure 2: The specification of knowledge editors in DOTS.
A sample user-defined knowledge editor (fix-ke) is high-
lighted in the knowledge-editor hierarchy. The developer
uses an editor comprising subeditors for slots, menu lay-
out, window properties, and attached menu to define the
details of the knowledge editor (lower right).
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at., 1988].
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Figure 4: The resulting form-based knowledge editor in
the target knowledge-acquisition tool. In this example,
the experts use this form to specify fixes for constraint
violations.

tional semantics for the knowledge that the target
knowledge-acquisition tools acquire, because, cur-
rently, the knowledge-acquisition tools do not inter-
pret the knowledge modules.

We have found the concepts of knowledge editors, know-
ledge modules, update rules, and transformation rules to
be sufficient building blocks for interactive knowledge-
acquisition tools based on graphical knowledge edit-
ing. Other types of knowledge-acquisition tools, such as
interview-oriented tools that elicit knowledge through a
textual dialog with the expert, might require other sets
of components [Kawaguchi et a/., 1991].

3.2 Generation of Target Tools from DOTS

The DOTS code generator takes as input the user's spec-
ification of the target knowledge-acquisition tool and
produces code for the target knowledge-acquisition tool.
The code generator is based on a set of transforma-
tion rules that maps abstract-architecture specifications
(e.g., components descriptions) into constructs consti-
tuting the target knowledge-acquisition tool. The trans-
formation rules are similar to those used by the tar-
get knowledge-acquisition tools for knowledge-base gen-
eration. The code generated is intended to run with
a run-time library consisting of core functions required
by the target knowledge-acquisition tool—for example,
functions for window management, internal bookkeep-
ing, persistent storage, and knowledge-base generation.

3.3 Generation of Knowledge Bases from
Target Tools

The generic knowledge-base generator is an important
component of the target knowledge-acquisition tools.
We shall provide an example that illustrates how tar-
get knowledge bases are generated from the contents of
knowledge modules. This example is loosely based on
the Sisyphus VT task. Suppose that we want to gener-
ate rules from the information entered in the fix form
(Figure 4). We assume that the developer has already
defined the knowledge editor and the appropriate know-
ledge module for representing the information acquired.
The task of the knowledge-base generator is to produce
appropriate rules from such knowledge modules. For the
form shown in Figure 4, we wish to generate an instance
of the fix class for the knowledge base, in this example:

(definstance increase_pit_depthl of fix
(desirability 9)
(variable pit_depth)
(action increase)
(amount 1)
(description "Try increasing..."))

In DOTS, transformation rules map the knowledge
modules to the target knowledge base. Figure 5 shows
a sample transformation rule (generate-1) that pro-
duces target instances from the knowledge modules. The
clause {$km :whichis fix-km) states that the trans-
formation rule is applicable to all knowledge modules
of type fix-km, and that the variable $km is bound to
a knowledge-module instance during the generation pro-
cess (i.e., Yz where x € fix-km). The precondition ofthe
transformation rule tests whether the user has filled in
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{define-transformation-rule generate-1
{$)m :whichis tix-km)
IF (not-empty (get-value $km variable))
THEN
(build-instance
:name (target-id $km)
rclams 'fix
tinitargs
‘({(desirability ,{get-value 3km desirability))
(variable ,{(get-value $km variable))
(action ,(get-value $km action))
(amount , (get-value $km amount))
(description , (get-value $km deecriptien)))))

Figure 5: A transformation rule that maps the contents
of the fix form to a an instance of the fix class in the
target knowledge base.

the variable field in the fix form (Figure 4). Ifthe precon-
dition is satisfied, the conclusion of the transformation
rule builds an instance of the class fix in the target know-
ledge base. If the expert has entered several fix-km into
the knowledge-acquisition tool, several instances of the
generate-1 transformation rule may generate multiple
target instances. The purpose of the build-instance
clause is to provide a convenient syntax for instance gen-
eration, and to allow the knowledge-acquisition tool to
maintain the target knowledge base as the knowledge
modules change, by adding and deleting rules from the
knowledge base.

An alternative to using instances of the fix class to rep-
resent fixes in the knowledge base, is to use production
rules to represent the fixes. In this case, the produc-
tion rules would implement fix operations (e.g., increase
a state variable). By using a build-rule clause, we
can define readily a transformation rule that generates
production rules from the contents of the fix-km know-
ledge module. In this approach, the user interface of the
knowledge-acquisition tool and the fix form (Figure 4)
would remain the same after we modified the transfor-
mation rule. By using this technique, we can defer de-
sign decisions about the knowledge representation in the
knowledge base until we have acquired a significant body
of knowledge.

4 Related Work

The principal work with which the abstract-architecture
approach and its implementation in DOTS should be com-
pared is PROTEGE [Musen, 1989]. PROTEGE implements
a metaview that is based on a generic problem-solving
method: skeletal-plan refinement [Tu et al., 1989]. How-
ever, this method-oriented view is restricted to a sin-
gle problem-solving method. A subsequent project,
PROTEGE-II, generalizes PROTEGE, and removes some of
these restrictions [Puerta et al., 1992]. Spark, Burn, and
FireFighter (SBF) [Marques et ai, 1992] form a set of
tools designed to make programming easier by provid-
ing reusable programming constructs, or mechanisms.
Spark helps the developer to identify and combine rele-
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vant mechanisms from a library. In the SBF approach,
each mechanism in the library is supported by a corre-
sponding knowledge-acquisition tool. Sis [Kawaguchi et
al., 1991] is a metatool that supports a metaview similar
to the abstract-architecture view. Sis, however, gener-
ates knowledge-acquisition tools that interview experts
through a textual question-and-answer dialog.

PROTEGE, SBF, and other metatools that support
method-oriented views require less modeling than DOTS
does, because the former metatools draw their power
from assumptions on knowledge acquisition for the
problem-solving method supported, and because these
metatools use a priori knowledge-acquisition tool de-
signs. Compared to PROTEGE and SBF, DOTS trades
supportive power for generality, and requires the devel-
oper to perform a knowledge-acquisition analysis that
results in an overall tool design. DOTS differs from
toolboxes that support programmers in the implementa-
tion of knowledge-acquisition tools in conventional pro-
gramming languages [Gappa, 1991] by providing an ab-
stract and coherent architectural view, which hides from
the developer the details of the run-time library of the
knowledge-acquisition tools.

5 Summary and Discussion

Although domain-oriented knowledge-acquisition tools
provide effective support for the development of
knowledge-based systems, the task of implementing
such domain-oriented tools is laborious [Eriksson, 1991;
Gale, 1987; Musen et ai, 1987]. Previous approaches
to automatic generation of knowledge-acquisition tools,
suchasPROTEGE, have relied mainly on method-oriented
views for the specification, which, unfortunately, make
the metatools specific to the problem-solving methods
of the target knowledge-based systems. The abstract-
architecture view and DOTS contribute to knowledge ac-
quisition by enabling developers to construct domain-
oriented knowledge-acquisition tools.

The DOTS project demonstrated that the abstract-
architecture view can be used for method-independent
specification of knowledge-acquisition tools, and that
the tools generated automatically from such specifica-
tions are comparable to hand-crafted tools. For instance,
we have used DOTS to generate a basic knowledge-
acquisition tool for the Sisyphus VT task. Given a do-
main ontology, the development time for this knowledge-
acquisition tool was about 9 hours. Because the prob-
lem definition is based on the VT system and the associ-
ated domain, the knowledge-acquisition tool generated
performs a knowledge-acquisition task similar to that
of SALT [Marcus and McDermott, 1989], a knowledge-
acquisition tool developed for the original VT system
[Marcus et ai, 1988].

Another general conclusion is that the abstract-
architecture view is sufficient for specification of graphi-
cal knowledge-acquisition tools that provide knowledge-
editing support for domain experts. In our approach,
a generic knowledge-base generator, which is parame-
terized by transformation rules, provides flexibility in
terms of output knowledge bases from the knowledge-
acquisition tools.



Although we can remove most domain and method
restrictions by using the abstract-architecture view, this
approach uncovers other obstacles. Although DOTS s
method independent, it is restricted in terms of the
types of knowledge-acquisition tools that it can gener-
ate. In DOTS, the design space of the target knowledge-
acquisition tools is restricted to knowledge-acquisition
tools with a common basic architecture. DOTS can-
not generate easily other knowledge-acquisition tools,
such as repertory-grid based tools and machine-learning
tools. However, this restriction has not been a se-
vere hindrance in practical development, because we
are mainly interested in generating domain-oriented
knowledge-acquisition tools that support the experts' do-
main models.

We have applied DOTS to several domain tasks. For
instance, we have used DOTS to develop a knowledge-
acquisition tool for a knowledge-based system that trou-
bleshoots DNA sequencing machines® [Eriksson and
Larses, 1992]. Also, we are currently formulating
metaviews that bridge the PROTEGE and DOTS ap-
proaches by providing multiple perspectives. We are
developing a metatool, DASH, that supports knowledge-
acquisition analysis, and that helps developers to design
target knowledge-acquisition tools from domain ontolo-
gies (i.e., class definitions).
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