
Specification and Generation of Custom-Tailored
Knowledge-Acquisition Tools*

H e n r i k E r i ksson
Medical Computer Science Group
Knowledge Systems Laboratory

Stanford University School of Medicine
Stanford, California 94305-5479

U.S.A.

A b s t r a c t
Domain-or iented knowledge-acquisi t ion tools
provide efficient support for the design of
knowledge-based systems. However, the cost of
developing such tools is h igh , especially when
their restr icted scope is taken in to account.
Developers can use metalevel tools to gen­
erate domain-or iented knowledge-acquisi t ion
tools t ha t are custom ta i lored for a smal l
group of experts, w i t h considerably less ef­
fort than is required for manual too l develop­
ment . An epistemic obstacle to creat ing such
metatools is the specif ication model for tar­
get knowledge-acquisi t ion tools. The meta too l
DOTS is based on an abstract-archi tecture ap­
proach to the specif ication and generation of
knowledge-acquisi t ion tools. DOTS is domain
and method independent, because it is based on
an archi tectural model of the target knowledge-
acquis i t ion too l .

1 I n t r o d u c t i o n

Many knowledge-acquisi t ion tools are unsuitable for
their tasks because they are adapted neither to the ap­
p l ica t ion doma in , not to the requirements of ind iv iduals ,
such as developers and experts. Researchers in know­
ledge acquis i t ion are exper iment ing w i t h knowledge-
acquis i t ion tools custom tai lored for specific domains
[Gale, 1987; Musen et al, 1987]. Usual ly, such domain -
oriented knowledge-acquisi t ion tools are more useful
than are general knowledge-acquisi t ion tools, because
custom-ta i lored tools can meet the requirements of the
par t icu lar knowledge-acquisi t ion s i tua t ion .

Simul taneously, t rad i t iona l knowledge engineering
and expertise transfer is being replaced gradual ly
by methodologies where developers assemble prob­
lem solvers for knowledge-based systems f rom reusable

*The preparation of this manuscript has been supported
in part by grants LM05157 and LM05305 from the National
Library of Medicine, by gifts from Digital Equipment Cor­
poration, and by scholarships from the Swedish Institute,
from the Fulbright Commission, and from Stanford Univer­
sity. The development of DOTS has been supported by the
Swedish National Board for Industrial and Technical Devel­
opment (NUTEK).

method components that accomplish subtasks [Chan-
drasekaran, 1986; Steels, 1990]. In McDermo t t ' s [1988]
approach, developers use method-specif ic knowledge-
acquisit ion tools to acquire the domain knowledge re­
quired by the methods. Method-or iented knowledge-
acquisit ion tools, however, are not domain oriented per
se; they must be adapted to specific domains and ind i ­
viduals.

Developers of knowledge-based systems wishing to use
domain-or iented knowledge-acquisit ion tools face several
barriers: It is di f f icul t and laborious for developers of
knowledge-based systems to adapt exist ing knowledge-
acquisit ion tools, and to implement new domain-or iented
knowledge-acquisit ion tools for new domains. Another
barrier is that the investment of developing and ma in ­
ta in ing domain-or iented tools cannot always be just i f ied
w i th in the budget of a single appl icat ion project . Many
of these barriers can be el iminated by tools tha t enable
developers to generate new domain-or iented knowledge-
acquisit ion tools f rom high-level descript ions. Such
metatools can s impl i fy the task of developing doma in -
oriented knowledge-acquisit ion tools, and can reduce sig­
ni f icant ly the work required to imp lement these tools.
Thus, metatools can make domain-or iented knowledge-
acquisit ion tools feasible in s i tuat ions where these tools
could not be used previously. The knowledge-acquisi t ion
tools generated can then support the development of the
target knowledge-based systems.

The design of metatools presents several epistemolog-
ical and technical challenges. The way developers view
knowledge acquisi t ion affects the way tha t they design
knowledge-acquisit ion tools. The developer's view of
target knowledge-acquisit ion tools determines the ap­
propr iate specification strategy for target knowledge-
acquisit ion tools in metatools. A u t o m a t i c generat ion
of such knowledge-acquisit ion tools requires a high-level
descr ipt ion—or metaview—of the target tools [Eriksson
and Musen, in press]. For example, PROTEGE [Musen,
1989] is a metatoo l tha t generates a domain-or iented
knowledge-acquisit ion tool f rom an ins tan t ia t ion of a
generic problem-solv ing method . The drawbacks of
method-or iented metatools, such as P R O T E G E , are tha t
the problem-solving method supported cannot be re­
placed easily, and that such metatools do not handle
combined methods wel l .

We have formulated a metav iew, the abstract-

510 Knowledge Base Technology

architecture v iew, for specif ication of target knowledge-
acquisi t ion tools in metatools . The abstract-archi tecture
view is based on a decomposi t ion of the ma jo r func­
t ions in target knowledge-acquisi t ion tools. In this ap­
proach, developers instant iate and combine subcompo­
nents in to specif ications of target knowledge-acquisi t ion
tools, which are then used to instant ia te target tools.
D O T S 1 is a meta too l tha t implements the abstract-
architecture view [Eriksson, 1992]. D O T S allows de­
velopers to custom ta i lo r knowledge-acquisi t ion tools
for new domains w i t h m i n i m a l effort. D O T S is do­
main and method independent in the sense tha t i t does
not assume any par t icu lar doma in , or problem-solv ing
me thod , for the knowledge-acquisi t ion tools i t generates.
DOTS assumes tha t the target knowledge-acquisi t ion
tools are based on graphical knowledge ed i t ing ; the tar­
get knowledge-acquis i t ion tools comprise several know­
ledge editors in which the experts enter their knowledge
actively according to their conceptual model of the do­
ma in .

2 Design of Knowledge-Acquis i t ion
Tools

Knowledge-acquis i t ion tools can be based on several
models—for example, models of cogni t ion, models of
knowledge representations, and models of problem-
solving methods. Musen [1989] describes three basic
conceptual models for interact ive knowledge-acquisi t ion
tools: symbol-level, task-oriented, and method-oriented
conceptual models. The support ive power and the scope
of a knowledge-acquisi t ion tool fol low f rom the model
supported. Moreover, we can conceive many models for
metatools. The essence of a meta too l is the model for
the target knowledge acquisi t ion tools tha t the metatoo l
supports. We use the te rm metaview for such specifica-
t ion models for knowledge-acquisi t ion tools. We div ide
the development process for knowledge-acquisi t ion tools
into three ma jo r stages:

1. Knowledge-acquisition analysis: In th is stage, the
developer analyzes the domain and the task,
and out l ines the requirements for the knowledge-
acquisi t ion too l . The developer must acquire do­
m a i n knowledge manual ly to determine the features
required by the knowledge-acquisi t ion too l .

2. Tool specification: In this stage, the developer mod­
els the knowledge-acquisi t ion too l . When a meta­
tool is used, the result of this stage is a specifica­
t ion tha t conforms to the metaview supported by
the me ta too l ; otherwise, the result is a regular soft­
ware specif icat ion.

3. Tool implementation: In th is stage, the developer—
or the meta too l—implements the knowledge-
acquisi t ion too l . Metatools t rans form the too l spec-
i f icat ion developed in step 2 to an operat ional pro­
g ram.

Developers can model domains independent of
the prob lem-solv ing method th rough specif icat ion ap­
proaches, such as knowledge-level analysis [Newell , 1982]

D O T S is an acronym for Domain-Oriented Tool Support.

and ontological analysis [Alexander et al . , 1987]. How­
ever, in the general case, the t ransformat ion f r o m
such models in to a high-qual i ty knowledge-acquisi t ion
too l is nont r iv ia l . Target knowledge-acquisit ion tools
must be designed by developers in cooperat ion w i t h
the tool users (e.g., domain experts). We seek appro­
pr iate knowledge-level descriptions for domain-or iented
knowledge-acquisit ion tools (rather than descriptions of
domains or descriptions of problem-solving methods) ,
because knowledge-acquisit ion tools are different f r om
target systems. Our research object ive is to develop
metaviews for domain-or iented knowledge-acquisit ion
tools tha t are general; tha t is, they are not restr icted,
for instance, to a part icular problem-solv ing method .

We have developed a rnetaview for target knowledge-
acquisi t ion tools that comprises generic bu i ld ing blocks
for knowledge-acquisit ion tools—for instance, generic
user-interface components for interact ive knowledge
ed i t ing , generic knowledge representation structures for
internal use in the knowledge-acquisit ion too l , and
generic knowledge-base generators tha t produce tar­
get knowledge bases. Th is abstract-architecture view
incorporates architectural components of knowledge-
acquisi t ion tools at an abstract level. The abstract-
architecture view provides the developer w i t h a con­
ceptual model of the target knowledge-acquisit ion too l
tha t is based on the tool 's architecture. Developers can
specify a broad variety of knowledge-acquisit ion tools by
specifying such bu i ld ing blocks and by defining the rela­
t ionships among them. A metatool can automate stage 3
by t ransforming such specifications in to an implementa­
t ion of the knowledge-acquisit ion too l .

3 Generation of Knowledge-Acquisi t ion
Tools

D O T S is a metatool that supports the abstract-
architecture view. D O T S allows its users to edit inter­
actively an abstract-architecture specif ication of the tar­
get knowledge-acquisit ion too l . From this specif ication,
D O T S produces an operat ional knowledge-acquisi t ion
too l tha t experts can use to develop knowledge bases.
We shall discuss briefly the specification of knowledge-
acquisi t ion tools in DOTS. The details of the DOTS i m ­
plementat ion in described in [Eriksson, 1992].

3 .1 S p e c i f i c a t i o n M o d e l

The abstract-architecture view comprises four compo­
nent types, each of which constitutes a stage in the acqui­
s i t ion and generation of knowledge bases in knowledge-
acquisi t ion tools (see Figure 1). In this model , knowledge
editors handle the user d ia log; for instance, there are
form-based and graph-oriented knowledge editors. Also,
there are knowledge modules tha t represent the know­
ledge acquired by these knowledge editors. The relat ion­
ships among the knowledge editors and the knowledge
modules are defined by update rules. F inal ly , there is a
descript ion language of t ransformat ion rules tha t allows
the developer to specify the knowledge-base generator of
the target knowledge-acquisit ion too l . Specifically, the
four component types in the abstract-architecture view

Eriksson 511

E xpert

Figure 1: The model of the target knowledge-acquisi t ion tools. The expert interacts w i t h knowledge editors. Update
rules map the contents of the knowledge editors to an in terna l representat ion—the knowledge modules. A knowledge­
base generator dr iven by t rans format ion rules t ransforms the knowledge modules to a target knowledge base. DOTS
allows developers to edi t the knowledge-acquis i t ion-tool specif ication according to this abstract-architecture view.

are defined as fol lows:

1. Knowledge editors: The knowledge editors al low ex­
perts to enter and edit domain knowledge according
to the experts ' conceptual domain model . Examples
of knowledge editors are domain-specif ic forms and
graph editors. The knowledge editors are par t of the
user interface of the target knowledge- acquisi t ion
too l ; they operate on the internal knowledge rep­
resentation in the knowledge-acquisi t ion too l , and
provide views of the representat ion.

In DOTS, developers can custom ta i lor the user inter­
face of target knowledge-acquisi t ion tools by speci­
fy ing and ref in ing knowledge editors, such as menu
layouts, window-system behavior, and edi tor prop­
erties (see Figure 2). D O T S provides predefined
types of knowledge editors for various types of know­
ledge, and also can allow the in t roduc t ion of user-
defined knowledge editors. Figure 3 shows a f o r m -
layout edi tor provided by DOTS. Developers use th is
too l to design layouts for form-based knowledge ed­
i tors. The resul t ing form-based knowledge editor is
shown in Figure 4. Note that this example is con­
sistent w i t h the f ixes in the Sisyphus VT task.2

2. Knowledge modules: The knowledge modules pro­
vide encapsulation and manipulation of the in ternal
knowledge representat ion of the target knowledge-
acquisi t ion tools. The in fo rmat ion tha t the expert
enters in the knowledge editors is stored in know­
ledge modules. Fur thermore, the knowledge m o d ­
ules serve as an in termediate representation in the
t rans format ion of the knowledge acquired in to the
target knowledge base (see Figure 1).

3. Update rules: Update rules preserve consistency
among the knowledge editors and the knowledge
modules in the target knowledge-acquisi t ion tools.

2The Sisyphus experiment is an attempt by the
knowledge-acquisition community to provide a set of stan­
dard problems that researchers can use to compare their ap­
proaches to knowledge acquisition and problem solving. The
Sisyphus VT task is based on the VT system for elevator con­
figuration [Marcus et al., 1988],

The specif ication of the update rules defines the
mapp ing between the knowledge presented and
edited in the knowledge editors and the knowledge
modules.

Transformation rules: The knowledge-base genera­
tor of the target knowledge-acquisit ion tool gener­
ates the knowledge bases. In the DOTS approach,
the knowledge-base generator is based on trans­
formation rules tha t map knowledge represented
by the knowledge modules into the appropriate
knowledge-base structures (e.g., classes, instances,
and rules). Generally, the rule precondit ions of the
t ransformat ion rules refer to the contents of know­
ledge modules, whereas the rule conclusions refer
to structures in target knowledge bases. In other
words, the t ransformat ion rules define the denota-

Figure 2: The specif ication of knowledge editors in DOTS.
A sample user-defined knowledge editor (f ix-ke) is h igh­
l ighted in the knowledge-editor hierarchy. The developer
uses an edi tor compris ing subeditors for slots, menu lay-
ou t , w indow propert ies, and attached menu to define the
detai ls of the knowledge editor (lower r igh t) .

512 Knowledge Base Technology

Figure 3: The editing of the layout for a form-based
knowledge editor. DOTS provides this graphical tool,
which developers can use to custom tailor forms for the
domain—in this case, elevator configuration [Marcus el
at., 1988].

Figure 4: The resulting form-based knowledge editor in
the target knowledge-acquisition tool. In this example,
the experts use this form to specify fixes for constraint
violations.

t iona l semantics for the knowledge that the target
knowledge-acquisit ion tools acquire, because, cur­
rent ly, the knowledge-acquisit ion tools do not inter­
pret the knowledge modules.

We have found the concepts of knowledge editors, know­
ledge modules, update rules, and t ransformat ion rules to
be sufficient bu i ld ing blocks for interactive knowledge-
acquisi t ion tools based on graphical knowledge edit­
ing. Other types of knowledge-acquisit ion tools, such as
interview-or iented tools tha t el ic i t knowledge through a
tex tua l dialog w i t h the expert , m igh t require other sets
of components [Kawaguchi et a/., 1991].

3.2 G e n e r a t i o n o f T a r g e t T o o l s f r o m D O T S

The DOTS code generator takes as i npu t the user's spec­
i f icat ion of the target knowledge-acquisi t ion tool and
produces code for the target knowledge-acquisit ion too l .
The code generator is based on a set of t ransforma­
t ion rules that maps abstract-archi tecture specifications
(e.g., components descriptions) in to constructs consti­
t u t i ng the target knowledge-acquisi t ion too l . The trans­
fo rmat ion rules are s imi lar to those used by the tar­
get knowledge-acquisi t ion tools for knowledge-base gen­
erat ion. The code generated is intended to run w i t h
a run - t ime l ib rary consisting of core funct ions required
by the target knowledge-acquisi t ion too l—for example,
funct ions for window management, internal bookkeep­
ing, persistent storage, and knowledge-base generation.

3.3 G e n e r a t i o n o f K n o w l e d g e Bases f r o m
T a r g e t T o o l s

The generic knowledge-base generator is an impor tan t
component of the target knowledge-acquisi t ion tools.
We shall provide an example that i l lustrates how tar­
get knowledge bases are generated f rom the contents of
knowledge modules. Th is example is loosely based on
the Sisyphus VT task. Suppose tha t we want to gener­
ate rules f rom the in fo rmat ion entered in the f ix fo rm
(Figure 4) . We assume that the developer has already
defined the knowledge edi tor and the appropr iate know­
ledge module for representing the in fo rmat ion acquired.
The task of the know ledge-base generator is to produce
appropr iate rules f rom such knowledge modules. For the
f o rm shown in Figure 4, we wish to generate an instance
of the f ix class for the knowledge base, in th is example:

(de f ins tance inc rease_p i t_dep th l o f f i x
(d e s i r a b i l i t y 9)
(v a r i a b l e p i t _dep th)
(a c t i o n increase)
(amount 1)
(d e s c r i p t i o n "Try i n c r e a s i n g . . . "))

In DOTS, t rans fo rmat ion rules map the knowledge
modules to the target knowledge base. Figure 5 shows
a sample t rans format ion rule (g e n e r a t e - 1) that pro­
duces target instances f rom the knowledge modules. The
clause states that the trans­
fo rma t ion rule is appl icable to all knowledge modules
of type f i x - k m , and tha t the variable is bound to
a knowledge-module instance dur ing the generation pro­
cess . The precondit ion of the
t rans format ion rule tests whether the user has f i l led in

Eriksson 513

Figure 5: A transformation rule that maps the contents
of the fix form to a an instance of the fix class in the
target knowledge base.

the variable field in the fix form (Figure 4). If the precon­
dition is satisfied, the conclusion of the transformation
rule builds an instance of the class fix in the target know­
ledge base. If the expert has entered several f i x - k m into
the knowledge-acquisition tool, several instances of the
generate-1 transformation rule may generate multiple
target instances. The purpose of the bu i l d - i ns tance
clause is to provide a convenient syntax for instance gen­
eration, and to allow the knowledge-acquisition tool to
maintain the target knowledge base as the knowledge
modules change, by adding and deleting rules from the
knowledge base.

An alternative to using instances of the fix class to rep­
resent fixes in the knowledge base, is to use production
rules to represent the fixes. In this case, the produc­
tion rules would implement fix operations (e.g., increase
a state variable). By using a b u i l d - r u l e clause, we
can define readily a transformation rule that generates
production rules from the contents of the f ix-km know-
ledge module. In this approach, the user interface of the
knowledge-acquisition tool and the fix form (Figure 4)
would remain the same after we modified the transfor­
mation rule. By using this technique, we can defer de­
sign decisions about the knowledge representation in the
knowledge base until we have acquired a significant body
of knowledge.

4 Related Work

The principal work with which the abstract-architecture
approach and its implementation in DOTS should be com­
pared is PROTEGE [Musen, 1989]. P R O T E G E implements
a metaview that is based on a generic problem-solving
method: skeletal-plan refinement [Tu et al., 1989]. How­
ever, this method-oriented view is restricted to a sin­
gle problem-solving method. A subsequent project,
PROTEGE-Il, generalizes PROTEGE, and removes some of
these restrictions [Puerta et al., 1992]. Spark, Burn, and
FireFighter (SBF) [Marques et ai, 1992] form a set of
tools designed to make programming easier by provid­
ing reusable programming constructs, or mechanisms.
Spark helps the developer to identify and combine rele­

vant mechanisms from a library. In the SBF approach,
each mechanism in the library is supported by a corre-
sponding knowledge-acquisition tool. Sis [Kawaguchi et
al., 1991] is a metatool that supports a metaview similar
to the abstract-architecture view. Sis, however, gener­
ates knowledge-acquisition tools that interview experts
through a textual question-and-answer dialog.

P R O T E G E , SBF, and other metatools that support
method-oriented views require less modeling than DOTS
does, because the former metatools draw their power
from assumptions on knowledge acquisition for the
problem-solving method supported, and because these
metatools use a priori knowledge-acquisition tool de­
signs. Compared to PROTEGE and SBF, DOTS trades
supportive power for generality, and requires the devel­
oper to perform a knowledge-acquisition analysis that
results in an overall tool design. D O T S differs from
toolboxes that support programmers in the implementa­
tion of knowledge-acquisition tools in conventional pro­
gramming languages [Gappa, 1991] by providing an ab­
stract and coherent architectural view, which hides from
the developer the details of the run-time library of the
knowledge-acquisition tools.

5 Summary and Discussion
Although domain-oriented knowledge-acquisition tools
provide effective support for the development of
knowledge-based systems, the task of implementing
such domain-oriented tools is laborious [Eriksson, 1991;
Gale, 1987; Musen et ai, 1987]. Previous approaches
to automatic generation of knowledge-acquisition tools,
such as PROTEGE, have relied mainly on method-oriented
views for the specification, which, unfortunately, make
the metatools specific to the problem-solving methods
of the target knowledge-based systems. The abstract-
architecture view and DOTS contribute to knowledge ac­
quisition by enabling developers to construct domain-
oriented knowledge-acquisition tools.

The DOTS project demonstrated that the abstract-
architecture view can be used for method-independent
specification of knowledge-acquisition tools, and that
the tools generated automatically from such specifica­
tions are comparable to hand-crafted tools. For instance,
we have used DOTS to generate a basic knowledge-
acquisition tool for the Sisyphus VT task. Given a do­
main ontology, the development time for this knowledge-
acquisition tool was about 9 hours. Because the prob­
lem definition is based on the VT system and the associ­
ated domain, the knowledge-acquisition tool generated
performs a knowledge-acquisition task similar to that
of SALT [Marcus and McDermott, 1989], a knowledge-
acquisition tool developed for the original VT system
[Marcus et ai, 1988].

Another general conclusion is that the abstract-
architecture view is sufficient for specification of graphi­
cal knowledge-acquisition tools that provide knowledge-
editing support for domain experts. In our approach,
a generic knowledge-base generator, which is parame­
terized by transformation rules, provides flexibility in
terms of output knowledge bases from the knowledge-
acquisition tools.

514 Knowledge Base Technology

Al though we can remove most domain and method
restrictions by using the abstract-architecture v iew, this
approach uncovers other obstacles. A l t hough D O T S is
method independent, i t is restr icted in terms of the
types of knowledge-acquisit ion tools tha t it can gener­
ate. In DOTS, the design space of the target knowledge-
acquisit ion tools is restr icted to knowledge-acquisi t ion
tools w i t h a common basic architecture. D O T S can­
not generate easily other knowledge-acquisi t ion tools,
such as repertory-gr id based tools and machine-learning
tools. However, this restr ic t ion has not been a se­
vere hindrance in pract ical development, because we
are main ly interested in generating domain-or iented
knowledge-acquisit ion tools tha t support the experts ' do­
main models.

We have applied DOTS to several domain tasks. For
instance, we have used DOTS to develop a knowledge-
acquisit ion tool for a knowledge-based system that t rou-
bleshoots D N A sequencing machines3 [Eriksson and
Larses, 1992]. Also, we are current ly fo rmu la t ing
metaviews that bridge the PROTEGE and DOTS ap­
proaches by prov id ing mu l t i p le perspectives. We are
developing a meta too l , DASH, that supports knowledge-
acquisition analysis, and tha t helps developers to design
target knowledge-acquisit ion tools f rom domain ontolo­
gies (i.e., class def ini t ions).

Acknowledgments
I thank Sture Hagglund, Mark Musen, and Kr is t ian
Sandahl for valuable discussions about DOTS, and I am
grateful to Lyn Dupre for edi tor ia l assistance. The ex­
amples based on the Sisyphus VT task benefited f rom
discussions w i th John Gennar i and Thomas Rot hen f lub.

References
[Alexander et a i , 1987] James I I . Alexander, Michael J.

Frei l ing, Sheryl J. Shu lman, Steven Rehfuss, and
Steven L. Messick. Ontological analysis: An ongoing
experiment. In te rna t iona l Journa l of Man- Machine
Studies, 26(4):473 485, 1987.

[Chandrasekaran, 1986] B. Ch andrasekaran. Generic
tasks in knowledge-based reasoning: High-level bu i ld­
ing blocks for expert system design. I E E E Expert,
l (3) :23-30, 1986.

[Eriksson and Larses, 1992] Henrik Eriksson and Per
Larses. A L F A : A knowledge acquisi t ion tool for
troubleshooting of laboratory equipment . Journa l
of Chemical I n fo rma t ion and Computer Sciences,
32(2):139-144, 1992.

[Eriksson and Musen, in press] Henrik Eriksson and
Mark A. Musen. Conceptual models for automat ic
generation of knowledge-acquisi t ion tools. Knowledge
Engineering Review, in press.

[Eriksson, 1991] Henrik Eriksson. Specialized knowledge
acquisit ion too l support compared to manua l develop­
ment: A case study. In Proceedings of the Seventh

DNA sequencing machines are pieces of laboratory equip-
ment that analyze DNA molecules to determine the latter's
base-pair sequences.

I E E E Conference on A r t i f i c i a l Intel l igence Appl ica-
t ions, M i a m i , F L , February 1991.

[Eriksson, 1992] Henrik Eriksson. Meta too l support for
custom-ta i lored domain-or iented knowledge acquisi­
t i on . Knowledge Acquis i t ion, 4(4):445-476, 1992.

[Gale, 1987] W i l l i a m A. Gale. Knowledge-based know­
ledge acquisi t ion for a stat ist ical consult ing sys­
t em. In te rna t iona l Journa l o f Man-Mach ine Studies,
26 (l) : 55 -64 , 1987.

[Gappa, 1991] Ute Gappa. A tool -box for generating
graphical knowledge acquisi t ion environments. In Pro­
ceedings of the Wor ld Congress on Expert Systems,
pages 797-810, Or lando, F L , December 1991.

[Kawaguchi e t a i , 199l] A tsuo Kawaguchi , Hiroshi Mo-
toda, and Ri ich i ro Mizoguchi . Interview-based know­
ledge acquisi t ion using dynamic analysis. I E E E Ex­
pert, 6(5) :47-60, October 1991.

[Marcus and M c D e r m o t t , 1989] Sandra
Marcus and John M c D e r m o t t . S A L T : A knowledge
acquisi t ion language for propose-and-revise systems.
A r t i f i c i a l Intel l igence, 3 9 (l) : l - 3 7 , 1989.

[Marcus et a i , 1988] Sandra Marcus, Jeffrey Stout , and
John M c D e r m o t t . V T : An expert elevator designer
tha t uses knowledge-based backt rack ing. AI Maga­
zine, 9(1):95- 112, Spr ing 1988.

[Marques et al, 1992] Dav id Marques, GeofTroy Dal le-
mange, Georg K l inker , John M c D e r m o t t , and Dav id
Tung . Easy p rog ramming : Empower ing people to
bu i ld their own appl icat ions. I E E E Expert, 7(3): 16 -
29 ,June 1992.

[McDermo t t , 1988] John M c D e r m o t t . Pre l im inary steps
toward a taxonomy of problem-solv ing methods. In
Sandra Marcus, edi tor, Au tomat ing Knowledge Acqui­
s i t ion f o r Expert Systems, chapter 8, pages 225-256.
K luwer Academic Publishers, Boston, M A , 1988.

[Musen et a i , 1987] Mark A. Musen, Lawrence M. Fa-
gan, Dav id M. Combs, and Edward H. Short l i f fe. Use
of a domain model to dr ive an interact ive knowledge-
ed i t ing too l . I n te rna t iona l Journa l o f Man-Mach ine
Studies, 26(1) :105-121, 1987.

[Musen, 1989] Mark A. Musen. Automated Gener­
at ion of Model-Based Knowledge-Acquis i t ion Tools.
M o r g a n - K a u f m a n n , San Mateo, C A , 1989.

[Newell , 1982] A l len Newell . The knowledge level. A r t i ­
f i c i a l Intel l igence, 18(1):87 127, 1982.

[Puerta et a i , 1992] Angel H. Puer ta , John W. Egar,
Samson W. T u , and Mark A. Musen. A mu l t ip le -
method knowledge-acquisi t ion shell for the automat ic
generat ion of knowledge-acquisi t ion tools. Knowledge
Acquis i t ion, 4(2) :171-196, 1992.

[Steels, 1990] Luc Steels. Components of expertise. AI
Magazine, l l (2) : 2 8 - 4 9 , 1990.

[Tu et a i , 1989] Samson W. T u , Michael G. Kahn ,
Mark A. Musen, Jay C. Ferguson, Edward H. Short­
l i ffe, and Lawrence M. Fagan. Episodic skeletal-plan
refinement based on tempora l data. Communicat ions
of the A C M , 32(12):1439-1455, 1989.

Eriksson 515

