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Abstract

This paper describes a general framework for
the formalization of monotonic reasoning about
beliefin a multiagent environment. The agents*
beliefs are modeled as logical theories. The
reasoning about their beliefs is formalized in
still another theory, which we call the theory of
the computer. The framework is used to model
non-omniscient belief and shown to have many
advantages. For instance, it allows for an ex-
haustive classification of the "basic" forms of
non logical omniscience and for their "composi-
tion" into the structure of the system modeling
multiagent omniscient belief.

1 The approach

This paper describes a general framework for the formal-
ization of monotonic reasoning about belief in a multia-
gent environment. The most common solution is to take
a first order (propositional) theory, to extend it using
a set of modal operators, {B*}ics, and to take B*A as
meaning that an agent a; believes A (see for instance
[Halpern and Moses, 1985]). There is only one theory
of the world, however this theory proves facts about the
agents' beliefs. According to a first interpretation, this
theory is taken to model things how they really are. It is
therefore a finite (and possibly incomplete) presentation
of what is true in the world, and the fact that B’ A is a
theorem means that it is, in fact, the case that a' believes
A. According to another interpretation, this theory is
taken to be the perspective that a generic reasoner has
of the world. It is therefore a finite presentation of the
reasoner's beliefs, and the fact that B'A is a theorem
means that the reasoner believes that a; believes A.
Once one accepts the second interpretation (as we
do), a mechanized theory is naturally taken as repre-
senting the beliefs of the computer where it is imple-
mented. Moreover, in the case of multiagent belief, a
further step is to have, together with the theory of the
computer, one theory (at least, see later) for each agent.

*Alessandro Cimatti and Kurt Konolige have provided
very useful feedback and suggestions. The work at IRST
has been done as part of the MAIA project. This paper is a
short version of the IRST technical report #9206-03.
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The theory of the computer plays the same role as the
unique theory in the modal logics approach. The agents'
theories are the (mental) representations that the com-
puter has of the agents themselves. The computer has
beliefs about the beliefs of the agents not because, as
it happens in the single theory approaches, it "simu-
lates" them in its own theory but, rather, because it
can infer, say, B/("A") from the fact that A is a the-
orem in the a;'s theory. (In this framework, theories
are called "contexts" and the formal systems, which
are basically defined as sets of contexts, are called mul-
ticontext systems (MC systems) and, sometimes, mul-
ttlanguage systems (ML systems) [Giunchiglia, 1991;
Giunchiglia, 1993].)

All the previous work on the formalization of proposi-
tional attitudes, namely modal logics and the syntac-
tic approach (where belief is a first order predicate,
see for instance [Konolige, 1982]) makes use of a sin-
gle theory. However, ideas similar to ours, which sug-
gest the use of multiple distinct theories, have been ex-
ploited in much applied work in computational linguis-
tics and Al (see for instance [Wilks and Biem, 1979;
Giunchiglia and Weyhrauch, 1988]). There are in fact
many irnplementational advantages, all deriving from
the fact that reasoning becomes intrinsically localized
[Giunchiglia, 1993] (for instance: the modularization of
the knowledge base, computational efficiency ~ due to
the division of the search space in smaller search spaces
- and the possibility of parallelization of the reasoning
process). Our formalism seems quite close, arguably
closer than the previous approaches, to the current prac-
tice in the more applied irnplementational work. In-
deed this is one of the main motivations underlying our
work and MC systems have been implemented inside the
GETFOL system, [Giunchiglia, 1992] an extension of a re-
implementation of the FOL system [Weyhrauch, 1980].
However in this paper we focus on the representational
issues and argue that our approach allows for more natu-
ral and more intuitive formalizations (see also [Dinsmore,
1991]).

In [Giunchiglia and Serafini, 1991] we have described
and motivated the basic system, which models logically
omniscient agents. In this paper we take a step fur-
ther and treat the problem of non saturated belief, that
is the fact that real agents never believe all the logi-
cal consequences of their basic beliefs. Our treatment



is based on a distinction between ideal and real reason-
ers. We show how ideal and (different) real reasoners can
be modeled by contexts with different structural proper-
ties (section 2) and/or different connections among them
(section 3). Our approach presents various advantages.
First, it allows for an exhaustive classification of all the
basic forms of non logical omniscience (see sections 2, 3).
Second, all the various forms of non logical omniscience
can be identified as a distinct structural property of the
system. Third, complex forms of non logical omniscience
can be "constructed" by composing simpler forms into
the structure provided by the system for saturated belief
(see sections 2, 3). All the cases studied in the past plus
new interesting ones are captured by this classification
(see section 4). Fourth, deductions can be performed
very naturally by exploiting the fact that each reasoner
is modeled as a distinct theory (section 5)".

2 ldeal and real reasoners

As informally described in the previous section, reason-
ers {¢.9. agents and the computer itsell) are modeled
as logical theories, which we present as axiomatic for-
mal systems. Technically, we define a formal system &
as a pair consisting of a language Ly and a set of the-
orems TgClg, ie. Y = (lLg, 7x). Ly is defined as
the smallest set generated from the set of propositional
letters (atomic formulas) Py and closed (by ) under
the set of formula building operations Wy, i formulas
Ly = C{Fz,Wg). Analogously, Tt is defined as the
smallesi set generated from the set of axioms {ix and
closed under the set of inference rules Ay, in formulas
Te = C(§¥g, Ag). i 1s also called the set of the basic
beliefs.

A first approach is to take a reasoner I = (Ly, T}),
such that, given a set P; of atomic formulas and a set
;CLy of true facts, it believes all the tautologies and
logical consequences of £2;. € is therefore I's sel of ba-
sic beliefs. Technically, this implies that W; and Ay are
complete for a propositional language and for proposi-
tional logic, respectively. In this case we say that [ is an
ideal, logically omniscient reasoner,

The problem is that real reasoners are not logically
omniscient. Given them enough knowledge and re-
sources (e.g. space, time), real reasoners tend Lo con-
verge Lo the behaviour of an idealized reasoner but this
may never be the case. Thus, if we take £ = {Lg, Tg)}
to be a reasoner which is the “realized” version of I, a
plausible model for E is that LgCL; and TgCTy. This
captures the intuition that the ideal reasoner is the limit
saturaied case of the real reasoner in the sense that £'s
beliefs are always a subset of ['s beliefs. However it is
possible to ask for stronger notions of realization. For
instance, if by is the consequence relation of E (that is

! For lack of space, these ideas are described only partially.
For instance, we state theorems but we do not prove them.
We do not consider nested belief. We do not give semantics
([Giunchiglia et al., 1992] presents a somewhat old semantics
for the basic saturated case). We do not give any complexity
argument; although it is intuitive that reasoning with con-
texts saves time, we have not done any in depth analysis on
this issue.

the set of pairs (I', A), with [' U {A} € Lg, such that
there exigts a derivation of A from '}, we could impose
that kg C t. Intuitively this means that not only do
we ask thal E's beliefs are a subset of I's but also that
E’s ability to compute the logical consequences of sets
of assumptions is weaker than I’s. In the following we
consider the case TgCTy.

The recursive definition of Ly and Ty allows for an
exhaustive classification of all the possible ways for a
reasoner to be not ideal. We may have Lg C Ly and
Tg C T because £'s basic sets { Pg, 2g) or because E's
constructors {Wg for formulas, Ag for derivations and
theorems) are “incomplete”. Technically, this intuitive
notion of incompleteness can be made precise as follows.

Definition 2.1 Let 5, = C(B;, Fy), 5§52 = C(Bz2, F») be
two sels such that 5 C S2. We say that

e B, is incomplete wri By, and wnie B; < By, iff
C(By, Fi) C C(Bz, F1). We also say thet S) is in-
complete (wrl 5;) in the basic facts.

o F1 ts incomplete wrt Fy, and write Fy < Fy, iff
C(B1,F1) C C(By, Fy). We also say that 5) 1s in-
complete (wri 53 ) in the construction rules.

“<" ia defined in the obvious way. Set equality, written
“="is the equivalence relation for <. Lg and Tg may
be incomplete (wrt L; and T; respectively) because of
their basic facts or because of their construction rules
{or both). This suggesis the classification below. Let us
start from the incompleteness in the language.

Incompleteness in the signature (Pe < Pr). In this
case we take Pg < Py to mean Pp C Py, namely that
E is not aware of some primitive propositions {we sup-
pose that real reasoners know the logical connectives).
As pointed out in [Fagin and Halpern, 1988], supposing
that P is the proposition expressing thal personal com-
puter prices are going down, it is very likely thal a Bantu
tribenan is not aware of P.

Incompleieness in the formation rules (Wg < W;).
E 15 aware of a set of proposilions. Still he does not
succeed in composing some complex propositions. This
may happen for two reasons. In the first case, simijarly
to the case of incompleteness in the signature, £ simply
does not know some formation rules (Wg C W;). For
instance even if it knows the logical connective for con-
junction, he does not know how to build P A P, from Py
and . In the second case £ suffers from a form of lim-
itation of resources and it is not able to form sentences
beyond a certain level of completeness, ¢.¢. longer than a
certain limit. For instance a sentence with one hundred
constants rises problems of space and time. Notice that
in this case (Wg ¢ W;).

A similar classification can be given for Tg.

frecompleteness in the artoms ({1g < 7). This means
C(Qg,Ag) € C(§l;,Ag). A first possibility is that
Qp C ;. This may have two causes. The first is due
to the fact that incompleteness in the signature or in
the formation rules may imply Qg C Q; {as QpCLg).
However, and this is the second case, we may think of
situations where E is aware of a proposilion but without
knowing whether it holds. Technically these two situ-
ations are distinguished as in the second case we have
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Figure 1: MBI - 1deal reasoner

C(Qtg,Ag) C C(§i N Lg,Ag). The second possibil-
ity is that Qg ¢ ;. Technically this situation is easy
to construct. It is sufficient to substituie some axioms
with some new “weaker” ones which are not contained
in £2y. The issue here is whether an E so defined can
still be considered the realized version of /. Intuitively
one would like to have an operation of realization which
amounts to limiting the capabilities of the ideal reasoner
withoul “creating” anything really new. However con-
sider the situation where I believes Aand A D B and F
believes B. In this case it seems plausible to say that £
15 a realization of I.

incompleteness in the deduction rules (Ap < Aj).
This case is entirely dual to that for Wg. That is, we
may have ignorance of some rules (Ag C A;) or resource

boundedness (Ag ¢ A;).

3 MC systems for belief

In this paper we take the computer to be logically om-
miscient. Even under this hypothesis, we are able to
build systems whose provability relations are equivalent
to those of all the systems defined in the past.

3.1 Saturated belief

We start by considering the case with an agent which
is the ideal reasoner I described above. We have two
contexts, one for I and one for the computer ¢ having
beliefs about I's beliefs. We take IB to be the belief
predicate for [ in L.. For IB to mean (in ¢) belief of |
we require that the following two properties hold:

+ ¢ must be complete for I: for any wfl A believed by
I. IB{"A”) is believed by c.

e ¢ must be correct for [: for any wif of the form
IB(“A") believed by ¢, A is believed by 1.

Technically, these properties are obtained via certain
bridge rules (s.e. rules whose premises and conclusions
belong to distinct contexts) which allow us to prove
[B(“A"} n ¢ just because A is a belief of ! and, vicev-
ersa, to prove A in I just because IB(“A”) is a belief in
c. Figure | gives a structural description of the resuiting
system, calied MBI. MBI is defined as follows (MC sys-
tems are pairs “set of contexts, set of bridge rules”. We
write {4, i) to mean A and that A € L;. We say that A
is an L;-wfl to mean that 4 € L;. The formal definition
of de]duction of an MC system is given in [Giunchiglia,
1993].)
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Figure 2: MBIE - Ideal and real reasoner

Definition 3.1 (MBI) Let P be a sct of primstive
propositional letiers. An MC system MBI = {{c. ]}, A.l)
18 such that:

(i) ¢ = (L., T¢). L. is a propositional language whose
atomic formulas are P and IB(*A") for any for-
mula A in L;. L. is closed under the proposi-
tional connectives. T, = C(Q., A.). A, is correct
and complele for propositional logic.

(W) I = {L;,Ty). L; is a propositional lunguage
whose atomic formulas are P. L; 1s closed under
the propositional connecltives. Ty = C(8;, Ap).
Ay ts correct and complele for propositional logic.

(i) Ay ts the following set of bridge rules:

{A, I} {IB{“A"), ¢}
B(“4"), 0 7' T (A7)

Restrictions: Ryp s can be applicd only if the in-
dex of every undischarged assumption {A, I) de-
pends on, is equal {o c.

MBI was already discussed in [Giunchiglia and Ser-
afini, 1991]. R, ; and Ry, ; are called reflection up
and reflection down respectively. Ry, s allows to derive
A in [ from the fact that [B{“A”} has been derived in c.
Rup.r has a similar reading. The restriction on R, s is
needed to preserve the correctness of c.

dr 1

3.2 Implicit and Explicit belief

One approach to the formalization of non logical
omniscience is based on the distinction between ex-
plicit beliefs and implicit beliefs. According to
Levesque [Levesque, 1984], while explicit beliefs are the
set of effective beliefs of the agent, implicit beliefs model
what the world would be like if what he believed were
true. Implicit belief is used as a limit notion which gives
an upper bound to what a real agent can ever believe. No
matter what it explicitly believes, it will never explicitly
believe more than its implicit beliefs. In this context, a
natural step is to take the agent's implicit and explicit
beliefs as the beliefs of an ideal reasoner 7 and of its real-
ized version E, respectively. The intuition is in fact the
same, that is that I/ implicit belief is the limit idealized
version of E/ explicit belief. However the emphasis is
slightly changed as we do not care of how the world is
but only of the subjective view of /. Implicitly we as-
sume that the world is how / assumes it is, but this is
irrelevant from a technical point of view.

Thus, if we want to model a situation where ¢ can rea-
son about the idealized and real capabilities of an agent,



we have to have two contexts / and £ and two belief
predicates, that is IB and EB. As we want ¢ to be a per-
fect believer for I and E, we have the two reflection rules
for each of the two contexts. Figure 2 gives a structural
description of the resulting MC system, called MBIE.
The forma) definition follows:

Definition 3.2 (MBIE) Let P be a sct of primi-
tive propossitional letlers. An MC system MBIE =
{{e,1,E}, At UAE) is such that:

(i) c ia as in definition 3.1 with the atomic formulas
of L, exiended to contlain also EB(“A”), for any
formule A€ Ly;

{(ii) I is as in definition 3.1;

(iii) A,y is as in definition 3.1,

(iv) E = (LB,TE) with Pp < Py, Wg < Wy, Qp <
Qr and Ap < By;

{v) Ag. is the following sei of bridge rules:

(A, £}

(EB(“A"), ¢}
(EB(“4"), c)

“E T, E)

an £

Restrictions: Ry, g can be appiied only if the in-
dex of every undischarged assumption {A, E) de-
pends on, 15 nol equal o £ Ry, p can be applied
only if A s e Lp-wff.

Some observations. E is defined to be the realized
version of [. According to clause (i), even if a certain
formula A is not an Lg-wil, EB(“A") is a wif of L.. This
allows us to say in ¢ that A is not explicitly believed
(~EB(*4")).

3.3 Local reasoning

Underlying all the above definitions is the intuition that
a reasoner can use all its construction rules on all its basic
facts. However, it is well known that human beings have
difficulty in putting together all the information they
possess. Human memory seems structured in frames of
mind hardly communicating between them [Stalnaker,
1984). Reasoning happens locally to each frame and
hardly interacts with the reasoning performed in other
frames. Thus, for instance, we never think of Africa and
a flat tire at the same time. The obvious way to model
this situation is to associate to each agent a set of rea-
soners Ei,...,E, one for each frame of mind, variously
interconnected among themselves and with ¢. This can
be done in many different ways, each modeling a different
intuition. In the following we discuss one very general
possibility.

As usual c is connected to | via reflection up and reflec-
tion down. We suppose that the various E; have different
languages and different sets of inference rules. We have
a reflection up rule between ¢ and each E;. This guar-
antees the completeness of c. However we have only one
predicate EB for all frames and no reflection down rules
into the frames. This models the intuition that ¢ has a
correct view of what is explicitly believed but without
knowing in which frame theorems are proved. EB("A")
means that there is at least one frame of mind in which

Figure 3: MBIE(n) - Local reasoning

A 18 true. A weak form of reflection down and there
fore a weak notion of correctness for ¢ can still be given
Suppose that we have n frames E,,..., E, of which A i
a formula. Suppose that in all such frames but E;, as
surning A we derive a formula B that we do not believe
Then, as a consequence, A must be believed in £,. Thi
models the intuition that, still not knowing a priori ir
which frame a theorem is proved, ¢ can sometimes infel
this by evaluating all the possibilites. The structure o
the resulting system, called MBIE(n), is given in figure 3
Its definition is as follows.

Definition 3.3 (MBIE{n)) Let P be a set of primitiv
propostiional letters and n a natural number. An M(
system MBIE{!I) = ({t.‘, I, {E,'}]S,'Sn},ﬁd Y Ar_g[n)) Y
such that:

(i) ¢ 1s as mn definttron $.2;

(33) I 1s as wm definition §3.2;

(i) Agp is as mn definition 3.2,

(iv) Fach E; = (Lg,,Tg,) is defined the same as E i

definstion 3.2;
(v) A p(n) contains bridge rules Ryp g, (1< i< n)

(4, E)
(EB{“A"), ¢)
and bridge rules Ran g, , (1 S ky ... km < 7).

[(A Eud]
{EB{*A™), &) {{-~EB{*A."), r)}?S'Sm {A,, Ei,) "

(A, Ex,)

Restrictions: Ry g, can be applied only of the -
dex of cvery undischarged assumption (A, E}) de.
pends on, is notl equal to K, in the rule Rd“'b'h"
ki, kq,... ki ore all the indczes such that A 15 ¢
wff of the corresponding frame.

Definition 3.3 generalizes definition 3.2 of MBIE in the
sense that E has been substituted with n frames.

Notice that, starting from the intuition that a reasoner
can be modeled as a logical theory, we have introduced
various forms of non logical omniscience and associated
them to a particular structural part of E. The resulting
system MBIE(n) models all of them. This process is
exhaustive in the sense that all the structural subparts of
E have been considered (that is its language, its theorems
and E itself). Ifone accepts the abstract characterization
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of reasoners as contexts, this process is exhaustive also
in the sense that it considers all the possible forins of
non logical omniscience. Experimentally, so far we have
failed to find a form of non logical omniscience which
cannot be modeled as composition of the basic forms
defined above. ln particular, all the forins of lack of
logical omniscicence defined in the past that we are aware
of can be uniformly reconstructed (sce next section for
some hints of how this can be done).

It can be proved that the following proposition holds
(a3 18 the consequence relation defined by the MC ays-
tem MS):

Proposition 3.1 For any L;-wif Ay, Ay and any Ly -
uﬂ B]r Bz N

(i) f A1 3 @ classical lauiology then hyng
(IB{“A;”), ¢};

(1) Fupiey  (IB(“A") A 1B(“Ar D
IB(“A4,"), ¢);

(i) (A D) hamme (As 1),
(IB(“4,") D 1B(*A;"), ¢);

(v} of {By, £ busiga, (Be. B Jor any | <7< n,
suck that I} and By ave Lp -wlf. then e,
(EB(“H,") D EB(*1."). ¢},

(v) of 2, = 0, then of hyyiga, (EB(°IL7), o) then
hubiecs) (IB(*B"), ¢).

Temi (i) says that all classical tautologies are implicitly
believed. ftem (i) says that implicit belief is closed un-
der implication. Item {iii) says that inplicait belief sim-
ulates (in ) deduction in f. [tem (iv) states the samwe
propecly as {iii) for explicit belief. ltem (v) says that
explicit beliefs are implicitly believed. This is in fact a
cousequence of the fact that T CTy, with 1 € 7 € n.
However, from the point of view of ¢, there 1s no apparcent
refation between E's theorems and s, ¢ can be made
aware of this relation by adding a new set of bridge rules
cach connecting a frame £, to { saying that a foronda
can be derived 1o [ because of it has been detived in E;.

Definttion 3.4 (MDBIE’(n)) MBIE{n) is an MO sys-

tewn pbiained from MBIE(u) by adding, for all frames E;

the following bridge rule:
(A, £}
(A, 1)

A D

then bynipin

£21

Adding E,21 models the intuition that ¢ knows that
£ believes a subset of s belicfs and that explicitly uses
vhis information to buld prools i o Adding B, 27 does
vol change what is believed by  and F. Nowever in
MBIE (n), EB{("A") D 1B(*A"} is a theoremn of ¢ {while
this ts not the case for MBIE(n)).

Lg, -wff A,

Proposition 3.2 For each
Fumptea; (EB{*A”) D IB(“A”), r).

4 Some important instances

[i is now interesting Lo specialize definition 3.3 of
MBIE(n) to consider MC systems where each form of
lack of logical omniscience is taken 1n solation. This ai-
lows us to define interesting MC systems sune of which
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can be proved equivalenl to the various systems defined
in the past (for instance all those in [Fagin and Halpern,
1988; Levesque, 1984; Konolige, 1984)). In the follow-
ing we study, the situation of lack of awareness. Lel us
consider the following MC system.

Definition 4.1 (MLL, MLL") Let MLL (MLL") ke
an MC system obtained from MIEB(1) (MIEB'(1)) by
impesang Pg < Pr and Ap = A,

The intuition behind MLL and MLL’ is very similar to
that behind Fagin and Halpern’s logic of general aware-
urss (called LAW frot now on} [Fagin and Halpern,
1988]. tn LAW an agent explicitly believes a subset of the
formuliw he is aware of. This is oblained by extending
the modal language with a modal operator of awareness,
AW. An agent explicitly believes a if and only if he 15
aware of o and implicitly believes it, in formulas

EBa = [Ba A AWa (1)

(1) is in fact an axiom schema of LAW. Suitable axioms
define the set of formulas of which the agents are aware
of, ¢ g there may be axioms stating that awareness is
closed with respect to certain subformulas. MLL, MLL'
and LAW can be proved to prove exactly the same set
of mmplicit and explicit beliefs (by taking the obvious
translation where modal operators are translated 1oto
unary predicates. For any modal formula A, we write
At to mesa its first order translation)

Theorom 4.1 Let LAW a system for general awareness
such that all the arioms yvelving AW bul (1) are of the
Jorm AWa, AL A AWa, D AWa withn 2 0. Then,
Jor any Lo-wfl A, Fupy {A, ©) (rure (AL o)) of end enly
fhaw AT,

(The condition on the axionms involving AW does not
involve anything deep and could be hifted away. We have
improsed L to guarantec nol circular defimtions of MO
I praciple one could use AW 1o detine £
in terms of Tg) However the inverse of theorem 4.1
catunot be proved, ne. LAW cannot be proved egquivi
lent to MLL ner to MLL'. Notice that w theoreny 4.1 we
quantify over L,-wils and not over the wifs in LAW. The
problem is that LAW's language contains the modal op.
crator AW which does not have any counterpart in MLL
or MLL". This cau be easily solved by wdding a monadic
awareness predicate AW to 1, and by making sure that
the formulas of the kind AW (“a"} belong to T¢, subject
to the restriction that e is a formula of L. This step
makes the translation of oue direction of axiom (1}, Lhal
is EB{“A™) D IB("“A”) A AW("A”) a theorem of MLL®
(bul not of MLL). However thus is not the case for the
other direction, that s IB{("A")AAW(HA™) D ED{“4").
This eflect can be obtained by adding MLL" the axiom
AW(A") = IR(“A") 3 FB(*A”) and a new bridge rule,
called {25, which allows to derive A in E whenever A
has been derived in 1, subject Lo the restriction that A
isawflin Lg.

S¥SLetis

2 All the modal systems cousidered in this paper are given
semantically. In comparing a semantically presented modal
system 51 with an MC system M5, we say Lhat 5, and
M5y are equivalent, e, Ay, . A, H'l A i and ouly f

(AT, ), ... (A}, ) bus, (AT, o)



Definition 4.2 (MLAW) Let MLAW be an MC sys-
tem oblained from MLL' by extending L. wilh the
monadic predicate AW, Q. with the aziom AW(“A") =
IB(“A”) D EB{"A") and by sdding the following bridge

rule:
(A D)
N

Restriction: A is an Lg-uff.
Theorem 4.2 LAW and MLAW are equrvalent.

In order to gel the cquivalence result with LAW we
had to extend MLL in various ways. However it should
be clear that MLL (and not MLAW) satisfies all and
only the minimal structural properties of agents with
lack of awarcness, that is the fact that Ly C L. The
extra conditions satisfied by MLAW do not change the
beliefs of 7 and £ (theorem 4.1). Their effect is to allow
¢ Lo prove more and more [acis about the lack of fogical
ommniscience of E (proposition 3.2, theorem 4.2). How-
ever, while the addition of AW to L, and of £,2/ to
the set of bridge rules of MLL has an intuitively plausi-
ble interpretation, this is not the case for 12K 12K says
that an implicit belief which can be expressed in the lan-
guage of Lp s also an cxplicit belief. As a conseguence,
it allows derivations {in general nol possible otherwise)
where explicit beliefs are first proved i J and then ex-
ported to E. However we do not find derivations of this
kind intuitively plausible as we think that £7s deductive
capabilities should not explow 's. Finally, the axiom
added Le MLL' Lo oblain MLAW scerns Lo exist maiuly
for technical reasons.

As a general observation, the advantages over a single
theory approach should pow be clear. In MO systems,
tocalization {of the language, of the axioms, of the de-
ductive machinery) is intrinsic e the logie, namely in
the fact that we have distinet contexts. The properties
of an agent can be direetly nnposed on the contexts rep-
resenting 1t and not, as ib s the case In g single theory
approach, m some global theory of the world {playing
the role of ¢). This allows for vasier (to do and to ander-
stiand) formalizations where cach agent is locafly defined
tmdependently of anything else.

5 Example

Let us consider MBIE(2), that is the MC system that for-
malizes the beliefs of an agent with two frames of mind.
The following wif is provable in MBIE(2).

(EB(“A™ ) A ER“H8™ )y A ER(CT)) D
(EB(“AA B }v EBaa(™)vEBIACT)) o)

Intuitively it says that if A, 12 and " are explicit beliefs,
then there s a frame where one among AAH, AAC and
HAC 18 provable. Notice thal | as a consequence, at least
two among A, B and  are formulas of this frame. The
proof is given in figure 5. Notice that inside each context
we use Natural Deduction and soine deciders, £.g. the de-
cider for propositional logic TAUT [Giunchiglia, 1992].
‘The proof in figure § can be summarized as follows, We
proceed by contradiction and assume in context ¢ the
hypothesis , i.e. EB(*A"YAEB(*B")AEB(*C") {line 4)
and the negation of the conclusion, te. ~EB("A A B™).

—=EB(*A A C"} and -~EB(“B A (™) (hue 5).  Assumn-
ing # in £, (line 2), from the fact that EB(*A"} and
—EB(“AA B”) are derived in ¢ (lines 6, 7) and fron, the
fact that there are only two frames, we conclude that A
is derivable in F3. (line B). The hypothesis EB{*(™}
(line 11) and the fact that there are two frames implies
that ¢ must be derivable in E; or in £5. 1n the first case
we have BAC 1n £ (line 14) which implies EB{(*BAC™)
in ¢ but this leads us to a contradiction (line 16). Ex-
actly the same argument can be given for £y and AA ¢
(lines 10, 12). This allows us to infer 4 in (line 17) and
then AA B i £ (line 29). Reflecting up A A B (Line 30}
allows us to derive the goal by propositional reasoning
in ¢ (line 34).

A first observation is that the agents' contexts are used
to prove theorems which are then reflected up (e.g. line
30). This is a practical consequence of the fact that
agents are not simulated in ¢ but are rather "used" to
extract what it is proved in their contexts. In this per-
spective reflection down is used as a means to impose a
set of facts into a context (e.g. lines 8, 13, 17). Notice
that all the applications of reflection down are above all
the applications of reflection up. This is in fact the gen-
eral way of performing reasoning with MC systems for
belief: (i) first some conjectures are made in c; (ii) then
these conjectures are "imposed" on the reasoners (via
reflection down); (iii) then the reasoning capabilities of
the reasoners are used io compute the consequences of
the conjectures; (iv) finally the result is exported back to
c via reflection up. Some amount of propositional rea-
soiling can be performed in ¢ before step (i) and after
step (iv).

6 Conclusion

In this paper we have proposed a new approach to the
formalization of reasoning about belief where agents are
modeled as sets of interacting contexts. In this frame-
work the properties of each agent can be directly formal-
ized by imposing local suitable conditions on the theories
modeling it (that is, on the language, on the axioms, on
the deductive machinery, on the bridge rules).
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