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Abstract

We describe a new approach to default, reason-
ing, based on a principle oi indifference among
possible worlds. We interpret default rules as
extreme statistical statements, thus obtaining a
knowledge base KB comprised of statistical and
first-order statements. We then assign equal
probability to all worlds consistent with KB in
order to assign a degree of belief to a state-
ment ¢@. The degree of belief can be used to de-
cide whether to defeasibly conclude ¢. Various
natural patterns of reasoning, such as a prefer-
ence for more specific defaults, indifference to
irrelevant information, and the ability to com-
bine independent pieces of evidence, turn out to
follow naturally from this technique. Further-
more, our approach is not restricted to default
reasoning; it supports a spectrum of reasoning.,
from quantitative to qualitative. It is also re-
lated to other systems for default reasoning. In
particular, we show that the work of |Gold-
szmidt et al., 1990], which applies maximum
entropy ideas to --semantics, can be embedded
in our framework.

1 Introduction

Default reasoning, i.e., reasoning to plausible but. de-
ductively invalid conclusions, has been an important re-
search area in Al for over a decade. Work in this area
shows us how, given that we accept the default "Birds
typically fly" and the fact "Tweety is a bird", we can ar-
rive* at the reasonable (although possibly incorrect) belie!
that "Tweety flies".
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A different reasoning paradigm, which has been stud-
ied for an even longer period, is direct inference. Di-
rect inference is concerned with reasoning to conclu-
sions about particular individuals from general statisti-
cal knowledge. For example, from a knowledge base con-
sisting of the statistical information "90% of birds fly"
and the fact "Tweety is a bird'", theories of direct infer-
ence would allow us to conclude that our degive of belief
in "Tweety files" should be 0.9. Different systems for di-
rect inference that have been suggested include [Bacchus,
1990; Bacchus et al, 1992; Kyburg, 1974; Levi, 1980;
Pollock, 1990; Reichenbaeh, 1949, Salmon, 1971].

Direct inference ana default reasoning share a number
of important characteristics. First, neither is a logically
sound inference system. Neither statistical knowledge
nor defaults about the class of all birds permit us to de-
duce anything for certain about a particular bird such as
Tweety: Both "Tweety flies" and "Tweety does not, fly"
are logically consistent with "90% of birds fly" or "birds
typically fly - Second, both direct inference and default
reasoning are nonmonotonic. If we learn that penguins
do not fly, and that Tweety is a penguin, direct inference
would generate a different degree of belief in Tweety fly-
ing. Similarly, default reasoning systems would retract
the conclusion that Tweety flies. And third, various
properties, such as ignoring irrelevant information and
preferring more specific information, are considered to
be desirable in both default reasoning and direct infer-
ence.

So how deep is the connection between direct infer-
ence and Al default reasoning? Some applications of
defaults seem to have little to do with statistics [Mc-

Carthy, 1986]. But equally often, defaults have .some
basis in statistics. For example, the default "Birds typ-
ically fly" appears to have as one of its justifications

the statistical fact that most birds fly. Thus, it seems
reasonable to adapt techniques from direct inference to
reason with defaults of this type. Cur theme in this
paper is that this plausible connection between direct
inference and default reasoning can be made precise. In
particular, we show in Section 3 that a new method for
direct inference, first introduced in [Bacchus et al., 1992;
Grove et al, 1992b), can provide many of the features
considered desirable in default reasoning. Among other
things, it provides a preference1 for more specific defaults
as well as the ability to ignore irrelevant information.
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This is particularly important as there is a tension
between these, two requirements. Most theories of de-
fault reasoning fail to capture both of them simulta-
neously (sec, for example, [Geffner and Pearl, 1990;
Lehmann and Magidor, 1992; Pearl, 1990; Reiter, 1980]).
What is even more important is that for us these prop-
erties follow directly from an independently motivated
semantics; they are not the result of adopting an ad hoe
theory of irrelevance.

In our method, we presume that there is a knowledge
base that consists of information about the world, in
the form of first-order statements (such as "All penguins
are birds") and statistical information. The statistical
information might be quantitative, e.g., "90% of birds
fly"", or it might be in the form of qualitative default
information. We interpret a default statement such as
"Birds typically fly" as the statistical assertion "Almost
all birds fly", which is given a precise semantic interpre-
tation within our formalism. This interpretation of de-
faults has a number of benefits. The first is simply that
we understand what our knowledge base means. Many
default theories will tell us how to reason with "Birds
typically fly". But, as pointed out by [Neufeld, 1989],
there is far less work telling us when we should adopt
this default in the first place. Specifically, what is there
about the world that makes this a good default? for
us, the true proportion of flying birds offers a guide to
how reasonable our approximation "Almost all birds fly"
really is. In addition, the semantics imposes natural con-
straints on the defaults. For example, in our formalism
the default "Birds typically fly" is inconsistent with both
the default "Birds typically do not fly" and the logical
assertion "No bird flies".

A major advantage of our approach is that it allows
for rich knowledge bases, with arbitrary first-order in-
formation and statistical information. Thus, it can sup-
port both quantitative and qualitative reasoning. In Sec-
tion 4, we demonstrate the advantages of being able to
perform both types of reasoning in a unified framework,
by considering both the Lottery Paradox and the Nixon
Diamond example.

We are certainly not the first to apply a probabilis-
tic semantics to nonmonotonic logic (see [Pearl, 1989]
for an overview). However, while all the other prob-
abilistic approaches we are aware of use the statisti-
cal interpretation as a motivation for using probabil-
ities, none make explicit use of statistical assertions.
Nevertheless, there are close technical connections be-
tween our approach and E-semantics [Adams, 1975;
Geffner and Pearl, 1990]. In particular, we show in
Section 5 that the approach of Goldszmidt, Morris,
and Pearl [1990], which extends e-semantics by apply-
ing ideas of maximum entropy, can be embedded in our
framework. Besides providing further justification for
the use of maximum entropy in [Goldszmidt et al., 1990],
this embedding allows us to use the algorithms they have
developed to calculate degrees of belief for formulas in a
fragment of our full language.
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2 The Formalism

We assume that the knowledge base consists of sentences
written in a formal language that allows us to express
both statistical information and first-order information.
We use the probability logic presented in [Grove et al,,
1992b], which is a variant of logics developed in [Bacchus,
1990: Halpem, 1990].

This logic augments first-order logic by allowing pro-
portion expressions of the form [{4:{x)}|,.. This term de-
notes the proportion of domain elements satisfying
We actually allow an arbitrary set of variables in the sub-
script. Thus, for example, }|Son{x,y)||, describes, for a
fixed y. the proportion of domain elements that are sons
of y; |ISon{.r. 4}{|, describes, for a fixed r, the proportion
of domain elements whose son is x, and ||Son{x, ¥)|I{, 4,
describes the proportion of pairs of domain elements that
are in the son relation. We also allow conditional pro-
portion expressions of the form || («}1#{x}||.. which de-
notes the proportion of domain elements satisfying y
from among those elements satisfying #.! A rational
number is also a proportion expression, and the set of
proportion expressions is closed under addition, subtrac-
tion, and multiplication.

One inportant difference between our svntax and that
of [Bacchus, 1990] is the use of approzunete equabity
to compare proportion expressions. It s not hard to
see that exact comparisons are sometinues tappropri-
ate. Consider a statement such as "90%. of birds fiy™. If
this statement appears inoa database, 11 s alimost cer-
tainly there as a summary of & large pool of data. 1t
v clear that we do not mean that eractly 0% of all
birds flv. Among ather things, this would imply that
the nmmber of birds is a multipie of ten, as buplica-
tion that is sarely not intended, We therefore use the
approach deseribed in [Grove of al. 1992h Koller and
Halpern, 1992] and compare propottion expressions us-
tng (nstead of = and b one of aninfinite family of con-
nectives =2, and <, for ¢« = 1,23 ... {*1-approximate]y
equal” or “rapproximately less than or equal™).® For ex-
ample, we can express the statement “90% of birds fly”
by the proportion formula |{Fly(e)|Biedir)|l, ==, 0.9, The
intuttion behind the semantics of approximate equal-
ity 15 that cach comparison shonld be interpreted us
ing same small toleranee fuctor to acconnt for mweasure-
ment error, ssunple variations, and so on. The appro-
priate tolerance will differ for various picees of for-
mation, so onr logie allows different subseripts on the
“approximately equals” connectives. A formula such as
[[Fiy{r}|Bird(« )], = 1 A |[{Fiy(z}|Bat(x)]}, =2 1 says
that both |[Fiy{.e)|Bird{x}|]; and |[Fiy{z)|Bat{z)]], arc
approximately 1, but the notion of “approximately” may
be different. in each case.

We now bricfly sketeh the semanties of nove] features
of the logic. We evaluate the truth of a forinmla with
respect to a triple (M, 7, V), where M is a finite first-
order structure, ¥ = {7, 72,...}, 7, > 0, is a tolerance

' We discuss the issue of conditioning on an event with
probability zero in the full paper.

%In [Bacchus et al., 1992] the use of approximate equality
was suppressed in order to highlight other issues.



vector, used to give semantics to the connectives ==, and
=<, and V is a valuation, which interprets the free vari-
ables as clements of the domain in structure M. For each
proportion expression £, we can define a rational sum-
ber [£]a which is the mterpretation of € in structure
M under valuation V. For example, |||Son(x, )|, ]am v
15 the fraction of domain clements  which are sons of
Viy). Proportion expressions are deall with using, 7
(M~F~ ",) # E =, {F if |[{]M,l - [6,}1{’\1’,\'1 ': T We write
Eeif (M,7,V)E @lorall (M, 7,17

We want the agent to use the information in the knowl-
edpe base to assigh degrees of bebief Lo various assertions.
Following [Halpern, 1990], we give semantics to degrees
of belief in terms of a set of finite first-order models or
posseble aworlds, together with a probability distribution
over this set. The degree of belief in a seutence s just
the probability of the set of worlds where 2 is trne™ In
particular, piven a knowledge base KB and domain size
N, we consider all the worlds of size & consistent with
KB. Furthermore, sinee we assnme that KB is all the
apent knows™, we view each of these possible worlds as
cqually likely, after all, the knowledge hase does not give
us any reason o prefer one workd over any ather. This is
essentially an application of the principle of wmdeflerenee
due to Laplace [1820]. This method, which we call the
randern-worlds method, wax investigaied o some detail
by Johuson [1932] amd Carnap [1954. 1952].

Formally, given o vocabulary €. s dowwain size N and
atolerance vector 7.owe define

# worlds
l’l'?\"-,-[,-‘]KB} N #_unr ls

Howordds

where #'ﬂlrar'!d.wi,(:,'} i= the nutnber of Bratorder strue
tures M over the domain {1, .., N sneb that (A7) |
.

Typieally, we know neither & nor 7 oexactly AlL we
know ts that N s “lope” and that 7 s “smadl” . Thus,
we wonld like 10 take our degree of befref in - piven KB
to be dim g limy Lo Priv 0 KBY However there s
no guarantee that this it exists. A pecessary condy-
tion for the limit to exist is that the knowledpe base KB
be eventually consistent: thot is, for all sufficiently small
7 oand sufficiently larpe N, #worlds L (KB) ~ 0. Essen-
tally, eventual consistency savs that nol ouly s the KB
consistent, bui that there is nothing in the KB that limits
the domain size (for example, o formala saving 7 domain
clements™). For the remainder of the papet, we assune
that all knowledge bases are eventually consistent. Even
if KB is eventually consistent, the it may not exist.
In many cases, the nonexistence of a limit can be intu-
itively justified. and is sometimes related to the issue of
multiple extensions.  (See Section 4 and [Grove ef al,
]992!)],] However, there are cases where the limit does
not exist for what seem to be the “wrong” reasons For
example, if Prly -(o]KB) vscillales between o + 7, and
rx - 7, {or some ias N gets large, then the Hmit will not
exist, although it “should” be a, since the oscillations
about o go 1o 0 as 7 gets simall,. We avoid such problems

INote that we define degrees of belie! only when anrf
KB arc sentences, i.e., closed formulas.

by vonsidering the lim sup and lim inf, rather than the
limit

Definition 2.1 :

and lim g hmsup, | Priy AwlKB) both exist and
are equal, then the degree of belief i given KB, written
Pri (]KB), is defined as the cammon Hmit; otherwise
Pri(@|KB) does not exist.

W ol liminf v o, Priy 9|KB)

r—i)

3 Default recasoning

As we entioned shove, we interpret default sentences
such as “Birds typically 37 as statistical statements
meaning, “Almost all birds Iy Our formalism pives
s astradghtforwan] way to represent such a default, by
writing, ||Fly(«)|Bird(r}||. =, 1. Note. however, that if
the agent has more exact infornution about the propor-
tione of Hving birds, thew this information can also be
expressed and used during reasoning (see Section 4).

We now review {and slightly extend ) results from [Bace-
chus of ol 1992] showing that this type of translation
does in fact capture several important features of default
reasoning. We stress that all the results in this section
hold for our lapguapge in its full generality: the formu-
lis ean contain arbitrary non-unary predicates, and have
nested quantifiers aud proportion statements,
Proposition 3.1 : The st DMKBY = |y
Priip|KB) 2 1} eontmns KB and s closed under valid
implication {re, f = 6 = o and ¢ € D{KB), then
v € IHKB)

Heneeo onr systemn satishies the minimal requirement
for defanlt reasomng. that it subsume standard deduc-
Hive reasoning,.

The uext proposition shows that our approach goes be-
vond deductive inference to eapture simple default infer-
cuces. In the foliowing propositions. let 7= {0 org }
and = {ers Led ) be sets of distinet variables and dis-
tinct constants, respectively,

Proposition 3.2: Let ;,"l.l‘..:l. L) be formulas, where no
constant m ¢ appenrs w2l or o FY Then

U] e A flelE el =, 0) = o

For example, Prod (Flyi Tweety)} [|Fly(r}Bird{r)i], =, 1A
Bird{ Tweety}) - 1. That is, we can make the stan-
dand inferimee about Tweety, Note that the proposition
also halds when we have guantitative information, i,
it holds for arbitrary o,

Going bevond simple default reasoning, one songht-
after property we obtain is a preference for more specific
defaulis,

For any set S5 ¢ M, the infimam of 8. inf S, is the
greatest lower hound of 5. The & owf of a seguence
is the himit of the infimums, that s, hminfy . en =
Limp ool boa. The lin inf exists for any sequence
Lounded from below, even if the limit does nol, The fon sup
1w cefined anadogously, where sup S denotes the least upper
bound of & I lima .. an does exist, then by g oy =
liminfa .oan = limsupy _0x.

"W remark that, here and below, the actnal choice of sub-
seript for = 1 unimportant, Typically, however, we caplure
different defaults by using different subseripts.  [ntuitively,
the different subscripts corresponed to different measurements
or defaults of different strengihs,
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Proposition 3.3: Suppose KB has the fortn 4(7)
([l E) v (FHiz = o) A (lel@YAD)z =, §) A

Vr.(;.l(j.’) = u(T)), wherr no constant wm & appears m

@, . or i, Then Prl (p(F)KB) = a.

For exampie, if KB is

Penguin{Opus) A |[Fly{x
||Fly ()| Bird (£)]], =,

then I’ (Fly{Opus)|KB*) = 0. That is, we conclude
that Opus the penguin does not fy, even thongh he is
also a bird and birds generally do fly.

Another important property of our approach lies in
s ability to treat as irrelevant some information that
there is no reason to believe is relevant. This is partic-
ularly interesting given the fact it is notoriously hard to
achieve specificity and a correct treatment of irrelevant
information in the same framework (sce the discussion
and referepces in Section 3). There are a number of situ-
ations in which information will be treated as irrelevan
by our approach, but here we restrict our attention to

VPenguin{z)||; =, 0 A
1 AVz{Penguin{;r} > Bird(r))

one special case:

Proposition 3.4: Suppmv KB has the form (&) A
(Il (T WM =, @) A KB, where no constant ire ¢ ap-
pears m @(E) or o(F), and neither v nor KB mention
any symbol in . Then Pr (p(AKB)

For example,

Bird{ Tweety} A

[{Fiy{r iBirdir)]]: =, 1 A
Yellow{ Tweety)

Pro. | Fly{Tweety) 1.

That is, Tweety the vellow Lird continues to fly. There s
no information in KB about any correlation between the
properties “vellow™ and “Hy7; hepee Tweety's vellow-
ness is treated as being irrelevant to his flving abiliy,
Proposition 3.4 also shows that relevance is relative 1o
a particular assertion . A property that is relevant to
one assertion will notl necessarily be relevant to another,
For example, if we know that birds typically have beaks.
we can concinde that Opus, a penguin. also has a beak.
even though penguins tvpically do not fly (while birds
typically do). More precisely, for the knowledge base
KB® above {relating to penpuins, hirds, and fiving), we
have:
" | KB™ A Bird{Opus) A

Pr (Beaked(Opus}‘ ||Beakedir||Birdfri||, ==, |

That 1s, Penguins is an exerptional subclass of binds
with respect to Hying but not with respeet to having
heaks. Proposition 3.4 also allows the agent to ignore
thase parts of KB that do oot concern Tweety at all.

4 Qualitative versus Quantitative

Systemns of direct inference frequently cannot ase guali-
tative inforination such as “birds typically fly", whereas
standard default logics generally cannot use quantita-
tive information such as “90% of birds fly.” Neverthe
less, we often have both kinds of information available.
One significant advantage of onr approach is that it can
use any combination of qualitative and guantitative in-
formation, supporting an eontire spectrum of reasoning,
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Furthermore, in those cases where qualitative defaults
are insufficient, our approach can often pinpoint the ex-
tra information required to reach a definite conclusion,
To demonstrate, we examine two examples that are well-
known to be problematic for pure default reasoning: the
Lottery Paradox [Kyburg, 1961] and the Nixon Diamond
{Reiter and Criscuolo, 1981].

In the Lottery Paradox, the assumption is that a large
number of peaple buy tickets to a lottery in which there
is only one winner. The standard assumption is that
for any particular person ¢ we would like to conclude
by defanlt that ¢ does not win the lottery. This, how-
ever, seems to contradict the fact that someone must win
it. In order to describe the problem in our framework,
we assume for simplieity that the domain consists only
of luttery ticket holders. Our knowledge base KB will
consist of the single statement 3% Winner{r) [i.e., there
is o nnique winner) o we know the size of the lot-
terv, say N, our degree of beliel that the individual
denoted by a pm‘tiruldr constant ¢ wins the fottery is
Priv -(Winner(c)|KB) = 4 Our degree of belief that
somrone wins will ni-\ dously be 1. These answers are
clearly the “right” ones given our information. If, how-
ever, we do not know the exact number of ticket holders,
bt have only the gnalitative information that this num-
ber is “l;uy “, then our degree of belief that o wins the
lottery s J'r! {(Winner{c}IKB} = 0, although, as before,
Pre (dr Wmner FIIKB} = 1. Thus, we conclude by de-
fault that ¢ does not win the lottery for any constant o,
although we siill believe with full confidence that some.
one does win,

A major difficulty with using defaults is that they do
not alwayvs provide suflicient information to reach a con-
clusion. A classical example is the problem of contlicting
defaubls, as demonstrated by the well-known Nexon Dy
wroned. Suppose we have the following, information:

|Pacifist{r}|Quaker(:r}]f, = 1 A
||Pacifist{r}|Republican{x}|l, =z, 0 A
Quaker{Nixon) A Republican{Nixon) .

To simphfy atters, we further asswime that there is
a umgue idividaal who is both a Quaker and a Re-
publican.  We capture this by taking KBy to consist
of the above canpunetion tepether with the formula
Alr (Quaker{x) A Republican{x}). Let @ be the formmnla
Pacifist{Nmxon).

What should be our degree of belief in Pacifist(Nixon),
that is, what is Pr (»2|KB;}? Tt turas out that this lim-
iting probability does oot exist, This s becanse the limit
is non-robust  its value depends on the way in which 7
gowes to 0 Jf 7y @ 7o, so that the “almost all” in the
first conjunct is much closer to “all” than the “almost
none” in the second conjunet is closer to “none”, then
the limit is 1. Intuitively, in this case the mmformation
in the first conjuuet is more precise and hence should he
taken more sceriously than the information in the second
conjunct. Syinmetrically, if 7, 3 7, then the limit is 0.
On the other hand, if 7f = 7, then the limit is 1/2.

The nonexistence of this himit is not simply a technical
artifact of our approach, Rather, the fact that the limit
fails to exist provides important information about the



underlying incompleteness of onr knowledge. It shows
that in the presence of conflicting defaults, we often need
more information abowt the precise nature of “almost
all” and “almost none” to resolve the conflict; our ap-
proach pinpoints the type of information that would suf-
fice to reach a decision. Note that our formalism does
give us an explicit way to state that the defaults have
cqual strength, if we wish; namely, we can use =, to cap-
ture both default statements, rather than using, =, and
=z2. In this case, we get the answer 1/2, as expecied.
However, it is not always appropriate to conclude that
the defaults have equal strength. We can casily extend
onr formalism to allow the user to prioritize defaults,
by defining the relative size of the components 7, of the
tolerance vector,

If we have more quantitative information, then we can
use it. For example, we may have inforiation regarding
the precise proportion of Quakers (resp . Republicans)
who are pacifists. For example, assume that KB. is

[{Pacifist(x }}Quaker(.r)||, = rx A
[Pacifist{r}[Republican{+}||, =« ;3 A
Quaker{Nixon) A Republican{Nixon) A
Atr {Quaker(r) A Republican{ur)) ,

where {ee i} # {01} In this case the limit does exist:
we get Pr% (p|KBy) = -2l
aitd gt

,‘l' = 1 -1
Readlers familtar with Dempater’s rule of combination
[Shafer. 1976] will note that this formaula is precisely the
resilt of combiniug the twe probalality functions that
give probability o and ) respectively, to Nixon being
a Pacifist. H we view the fact that Nixon s a Quaker
as giving, evidence of degree o i favor of Nixon Leing
a pacifist, and the fact that Nixen s a Republican as
giving evidence of degree 3 favor of Nixon being a
pacifist, then our techuigne can be viewed as combining,

cwhere A& - 1 0 o and

these twe pieces of evidenee. Lo the full paper, we show
that our approach also captures more general instances
of Dempster’s mule of combination, and discuss why the
appearance of the role here is not colneidental,
Retnroing ta the formula, notice that i o = 1 and
4 = 0, then the limiting probability 1« 1, while it =1
ad o 1, then the lmiting probability is 0. That
is, as expreted, an Cextreme” value will donnnate, If
« = 43, then the limiting probability is —t— . Thus il
BO0% of Quakers are pacitists and R0%. of Republicans are
pacifists, the vabue of the limit would be arcund 0.594.
This has a reasonable explanation: if woe have two in-
dependent bodies of evidenee, both supporting » quite
strongly, when we combine them we should get eveu
more support for .
5 Maximum cntropy
In this section, we show how the approach of [Gold-
szidt et al., 1990] can be embedded in our frimework.
We hegin by outlining e-semantics [Getfner and Pearl,
1990], on which the framework of [Galdsziidt et al,
1990] is based. Consider a language consisting of propo-
sitional formulas {over some finite set of propositional

variables py, .. ., g ) and default rules of the form B3

(read “#'s are typically C'8"), where B and € are propo-
sitional formulas. Let £ be the set of 28 propositional
warlds, correspending to the possible truth assignments
to these variables. Given a probability distribution p
on 82, we define 1( ) to be the probability of the set of
worlds where [ is true. We say that a distribution g
t-satisfies adefanlt rule B Cif g{C|B) > 1 ~«.

A parameterized probability distribution (PPD) is a
collection {g, }, . of probability distributions over 2,
parameterized by . A PPD {g, }, .o e-satisfies a set R
of defanlt rules i for every ¢, p, e-sutisfies every rule
r € R. A st R of default rules e-entails B — C if for
cvery PPTY that e-satisfies B, lim, o p (C|B) = 1.

As shown in |Geffner and Pearl, 1990, e-entailment
possesses i nuwmber of reasonable properties typically
assoclated with defanlt reasoning, including a prefer-
enee for more specific iuformation.  However, there
are a number of desirable properties that it does not
have. Among other things, irrelevant information is not
ignored.  Pearl's notion of 7-entaidbment [Pearl, 1990
strengthens e-entathnent by allowing it to ignore irrel-
cvant informnation i certain cases.  However, it suf-
lers from the problem that subelasses thal are excep-
tional in one aspect are deemed exceptional in all as-
pects. In particonlar. using l-entailment, we cannot
copclude that Opus the penguin has a beak. Since e-
entailment is equivalent to Lebhmann and Magidor's pref-
erential entadment [Lehmann and Magidor, 1992], and
l-entailment is equivalent to their rational closure, these
approaches 1o default reasoning all suffer from difficul-
ties when trying to combine specificity with irrelevance,
We showed abave that our approach does not suffer from
this problens.

In arder 1o obtain additional desirable properties, e-
semantics is extended in {Goldszmidt ef al., 1090] by an
application of the tarimum entropy principle [Javnes,
1957].  Instead of considering all possible PPD’s, as
above ouly the PPD {4 0}, -0 of maximum entropy is
considered (see [Goldszmidt et al., 1990) for precise def-
initions and techmical details). A rale J - ix an ME-
plaseble consequence ol Riflim, g2} 5 (C1B) = 1. The
notion of ME-plausible consequence 1s analyzed in detail
in [Goldszmidt ef ol 1990], where it is shown to inherit
all the nice properties of -entailment {such as the pref-
erence for more specific information), while successfully
ignoring irrelevant information. Equally importantly, al-
porithing are provided for computing the ME-plausible
('(nl!‘i[’(lllf'nl'l'.‘i l‘l{ HEET l)f rlll[‘ﬁ i]l ('l‘[‘t.ain LALGES

Although no explictt use b= made of maximum entropy
in our framework, there s a close connection between
the random-worlds approach and maximum entropy pre-
wided thet the lunguage vonsists ondy of unary predicates
and constants, as shown in {Grove et o, 1992b]. These
results ean be extended to show that the approach of
|Goldszmidt et al.. 1990] can be embedded in our frame-
worl in @& straightforward manner. We simply convert
all defanlt rules 7 of the form B - C into formulas
of the form 8, =ge foc (g {r)lle =1 1, where ¥y is
the formula obtained by replacing cach occurrence of the
propositional variable p, in 8 with P {r}. Note that the
formulas that arise under this conversion all use the same
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approximately equals relation ==, since the approach of
[Goldszmidt et al., 1990] uses the same E for all default
rules. Moreover, they all involve only unary predicates.
Under this translation, we can prove the following theo-
rem, using techniques similar to [Grove et al., 1992b).

Theorem 5.1: Let ¢ be a constant symbol. Using the
translation described above, for any set R of defeasible
rules, I — (7 is an ME-plausible consequence of R iff

Pro(we{e)l Ao 8 Adple)) = 1

Thus, all the computational techniques and results de-
scribed in [Goldszmidt. et al., 1990] carry over to this
special case of our approach.

It is very encouraging that the results of [Gold-
szmidt et al., 1990] can be arrived at in two quite differ-
ent ways. Our result formalizes a connection between en-
tropy and indifference, well known in other contexts like
statistical thermodynamics, in the context of an agent
reasoning by default. It shows that if one feels that it is
reasonable* for an agent to be indifferent between possi-
bilities left open by its knowledge, then one has an in-
dependent reason for accepting the theory of irrelevance
generated by maximum entropy.

It should also be noted that our approach, which does
not appeal to entropy maximization directly, has the ad-
vantage of being much more general. Most importantly,
it can deal sensibly with languages that have predicates
of arbitrary arity. It is unlikely that an approach that
uses entropy directly could be extended to deal such lan-
guages. Once we have even a single binary predicate in
the language, all connection between our approach and
maximum entropy disappears. As discussed in [Grove et
al., 1992b], we cannot even find a suitable probability
space to take entropy over. Results of [Grove et a/.,
1992a] showing that, with a binary predicate in the lan-
guage, degrees of belief are in general uncomputable sup-
port the conjecture that there is none to be found.

6 Discussion and conclusions

We have shown that a logic that allows statistical and
first-order assertions, together with a principled ap-
proach for obtaining degrees of belief from a knowl-
edge base expressed in this logic, can give a general ap-
proach for capturing many aspects of default reasoning.
Our framework has the added advantage of being able
to deal with both default (quantitative) and statistical
(quantitative) information. Our results demonstrate the
close connection between default reasoning and direct
inference.

We close by briefly discussing two criticisms that have
been made of entropy-based reasoning systems: language
and syntax dependence, and the treatment of causality
[Pearl, 1988]. While the random-worlds method is not
entropy-based, the relationship we observed in Section 5
suggests that similar problems may arise.

With regard to causality, [Goldszmidt et a/., 1990;
Pearl, 1988] and [Hunter, 1989] h ave observed that
knowledge about causal relationships greatly affects our
intuitions concerning the "right" answers to various
problems, and that the naive maximum entropy ap-
proaches do not take this causal information into consid-
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eration. We would argue that this only shows that this
information is not properly captured by the straightfor-
ward encoding of defaults, and that we may therefore
have to include information about causality when ex-
pressing defaults in the knowledge base. [Hunter, 1989]
presents one possibility for encoding causal information
within the maximum entropy approach. In [Bacchus et
al., 1993], we present a more general approach within the
random-worlds framework, and show that it deals with
many of the problematic aspects of causal reasoning.

The language problem is more subtle. Maximum-
entropy methods can draw different conclusions from
knowledge bases that seem to reflect the same informa-
tion about the world. 'Phis is a serious issue, because
the choice of the "right" representation of our informa-
tion is not always clear. In general, we believe that the
form in which our information is written down encodes
knowledge it reveals our biases and expectations. It is
perfectly reasonable that our bias should affect inductive
reasoning. In certain cases, our bias is sufficiently clear
that the choice of representation becomes obvious. In
physics, for example, the choice of language is sometimes
based on the criterion of time-invanance. Moreover, in
physics and in many other applications of maximum en-
tropy, there is an objective "reality check”" -we can com-
pare the answers given by the formalism to reality, and
thus independently verify the reasonableness of our rep-
resentation. In many Al applications, however, there
might not be an obvious representation, nor an appro-
priate reality check. In these cases, we will have to for-
mulate criteria for choosing the right formal knowledge
base, given a natural-language specification of our knowl-
edge. This is an important research problem, which we
intend to investigate. The fact that our approach can
deal with causality leads us to hope that it will be able
to deal with the language problem as well in a satisfac-
tory way.
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