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Abstract

Since Konolige's translation of default logic
into strongly grounded autoepistemic logic, se-
veral other variants of Moore's original auto-
epistemic logic that embody default logic have
been studied. All these logics differ signifi-
cantly from Moore's autoepistemic logic (stan
dard AEL) in that expansions are subject to ad-
ditional groundedness-coriditioris. Hence, the
question naturally arises whether default lo-
gic can be translated into standard AEL at
all. We show, that a modular translation is
not possible. However, we exhibit a a faithful
polynomial-time translation from propositional
default logic into standard AEL which is non-
modular. It follows that the expressive power
of standard AEL is strictly greater than that of
default logic. Our translation uses as import-
ant intermediate step an embedding of Marek's
and Truszczyriski's nonmonotonic logic N into
standard AEL.

1

Reiter's default, logic [16] and Moore's autoepistemic lo-
gic [14] are among the most relevant formalizations of
nonmonotonic logic. A first investigation into the re-
lationship between default and autoepistemic logic was
carried out by Konohge [8].

Konolige [8] encountered some groundedness-problems
in Moore's original version of autoepistemic logic (stan-
dard AEL), which impeded a straightforward transla-
tion of default logic into standard AEL. In particular,
the autoepistemic theory A that would mast intuitively
correspond to a given default theory T in many cases ad-
mits some additional stable expansions that do not cor-
respond to any default extensions of T. These additional
expansions are weakly grounded in the initial premises in
the sense that they contain sentences p whose inclusion
is merely based on the agent's belief in p. Consequently,
Konolige has defined a more restrictive version of au-
toepistemic logic that we will here call strongly groun-
ded autoepistemic logic (SGAEL). In SGIAEL, only spe
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cific strongly grounded expansions are admissible. Each
strongly grounded expansion is a stable expansion in the
sense of standard AEL, but not vice-versa. Konolige
succeeds in showing that SGAEL exactly corresponds to
default logic and exhibits bidirectional translations bet-
ween these two formalisms [8]

SGAEL differs significantly from standard AEL. In
particular, in SGAEL it may be the case that two lo-
gically equivalent but syntactically different sets of pre-
mises Y, and X, have a different semantics, i.e., diffe-
rent respective sets of SGAEL-expansions. Further, all
strongly grounded extensions of a theory Y. are stable-set
minimal ~ for Y., which is not the case in standard AEL.

The second major approach of translating default logic
into variants of AEL has been taken by Marek, Schwarz,
and Truszczyriski [12; 20; 19] Their approach is based
on the concept of nonmonotonic modal logics as introdu-
ced by McDermott [13]. They show that default logic is
faithfully embeddable in a wide range of different nonmo-
notonic modal logics. The simplest of these logics is the
nonmonotonic counterpart of the pure logic of necessita-
tion N the modal logic consisting of propositional cal-
culus augmented by the necessitation rule We will make
intensive use of this logic in the present paper. Note that
just as SGAEL, nonmonotonic N is considered a stron-
ger logic than standard AEL, since each N-expansion of
a set of premises X is also a standard AEL-expansion of
Y, but not vice-versa.

In [17] it is shown that standard AEL corresponds to
the nonmonotonic version of the modal logic KD45 ba-
sed on the modal axioms K, 4, 5, and D : L¢ — =L ¢
Unfortunately, the proposed translations schemes which
allow the embedding of default logic into a large num-
ber of other nonmonotonic modal logics fail to apply to
nonmonotonic KD45, hence they are not applicable to
standard AEL.

Other methods for translating default logic into forma-
lisms close to AEL have been developed by Nierncla [15J,
Lin and Shoham [9], Siegel [18], and Kaminski [7]. Each
approach introduces a different version of AEL which
captures default logic. Each of these logics is more re-
strictive than standard AEL in the sense that, in general,
a set ¥ of given premises in these logics admits fewer ex-
pansions than in standard AEL.

In summary, all previous methods translate default
logic into formalisms that are different from standard



AEL- The reason seems to be that standard AEL allows
for expansions that are not sufficiently grounded in the
premises. Consequently, these approaches are based on
more restrictive formalisms that admit less expansions

The question whether default logic can be translated
into standard AEL has remained open so far In the
present paper, we solve this problem by giving both a
negative and a positive’ answer.

First (in Section 2), we show that there exists no mo-
dular translation between default logic and AEL This
means that after adding a new fact F to the formula set
W of a default theory (D, W), a complete recomputation
of the translation becomes necessary. An exception are
prerequisite-free default theories, which are modularly
translatable to standard AEL.

In Section 3, we show that it is possible to polynomi-
ally translate general default theories to standard AEL
if one gives up on modularity. Section 4 concludes the
paper with a philosophical interpretation of our transla-
tion.

In this paper we limit ourselves to consider proposi-
tional default logic and AEL. Note that the impossibi-
lity result for modular translations extends trivially from
propositional default logic to the more general first order
case. We assume that the reader is familiar with default
logic and AEL and do not redefine these concepts.

2 Impossibility of Modular Translation
Let us first define the concept of faithful translation.

Definition 2.1 A faithful translation from default Io-
gic to AEL is a mapping tr which transforms each de-
fault theory D into an autocpistcmic theory tr('P) such
that the objective parts of th( autocpistcmic expansions
of tr(V) arc identical with the default extensions of D

The concept of modular translation in the context of
default logic was introduced by Tomasz Imielinski in [tij.
Loosely speaking, a translation scheme is modular if ad
ding new facts (not defaults) to a default theory is re-
flected by the translation through adding these new tacts
to the result of the translation, Imielinski [6] considered
translations between default logic and circumscription.
We adapt his formal definition of modularity to the con-
text where AEL is the target system as follows

Definition 2.2 A translation tr from default logic to
AEL is modular iff for each default set ) and each

W C £ ol holds that (r{{2,W)) = ir{{{. 0} UW"

As Imielinski points out, modular translations are
highly desirable both from the conceptual an]d the com
putational point of view. Indeed, changes to a default
theory (D, W), due to changes in the underlying "real
world", will in most cases affect W but not D, as the de-
fault rules in D usually represent time-invariant, proper
ties. With a modular translation, when W is changed,
we do not have to recompute the result of the transla-
tion, but we may just add the new elements of W to the
old result.

Note that both Konolige's translation from default, lo-
gic to SGAEL [8] and Truszczyriskrs translation T from
default logic to nonmonotonic N are modular. In the

rest. of Lhis seclion, we will show that a faithful modu-
lar translatien from defauit logic 1o standard AEL is not
poasible. In particular, such a translation is not possible
even if the defanlts are restricted Lo very sinple classes
such as normal defaults. We will, hawever, identify one
important ¢lass of defaults admitting a faithful medular
translation to standard AEL, natuely the prerequisite-
free defaults.

Theorem 2.1 There exist no farthful medular trensie-
tin from default togre into standard AL, Such a trans-
lation does not extst even of the defaults are restricted to
be normel.

PROOF. Considet the pormal  default  theories
{0, W), (I W) and (D, W), where W, = 8, W, =
{a}, Wo = {a — 4}, and

D:{a—»b:Ma‘ath

a [ }

Fach of these three default theories has exaclly one ex-
tensian. {f), WU) has as unique extension cons(@), while
{1217 and (D W) both have the set cons({a,b}) as
unique extension. Here cons{ X)) denotes {$|X E ¢].

Assume that there exists a modular fathful transta-
tion i+ from default logic Lo standard AEL. We will show
that this assumption implies that cons{{a,b}) is an ex-
tension of (L), Wy). an obvious contradiction.

Let te{({2 Wl = Y Sinee fr s modular, it must
hotd that tr({D, Wi = XU {e}. Since tr s faithful,
the unique stable AE-expansion A ol YU {a} 18 A =
Fi{a b)) By the definition of stable expansion we thus
have

A=comstCU{a}ULAU-LA). (1)
Since b € AN follows that
YuUfa)ULAU-LA b (2)

By applyving the deduction throrem, we get
MULAUSLA fra b ()
It ather words,
@ —b € consiBULAUALAY (4)
It thus holds that

cons{SULAU-LA) = cons(SU{a — b} ULAU-LA).
(5)
Now, sinee #r s modular, it mpst hold  that
tr({D, W)y = YU {a — b} Furthermore, since
{1 W) and (12, W,) both bave the same unique de-
fault extension cons({a. b)), their respective translations
(r{{D, W) and $0{{{).W}) both have the same unique
stable expansion A, Tn particular, since A s a stable
expansion of fr({I, W3} = Y U {a — b}, it holds that

coms(XU{a — b} ULAU ~LAY=A. {6}
By Fquations (5) and (6). it follows thal
cons{LULAU~LA) = A, (7}

But this means that A is a stable AE-expansion of of X
By the faithfulness of tr, it follows that cons({a,b}) =
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ANL s a default extension of {1, W), which is ohvi-
ously nol true. Contradiction. A modular and faithful
vranslation from default logic to standard AFL is thus
wnpossible. O

Note that the above negative result also holds for the
class of justificaiion-free defaulls, e, defaulls with em-
ply justifications. ‘To see this, just replace %JM“ by
a—ib. a Mé

and by & in the ahove proof  Note that
justiﬁcat.im:-f';'ev defaulls are ordinary inference rules.
Hence, even ordinary rule systems cannot be faithfully
translated into autoepistenic logic. This shows where
the real problem lies and hints at how we may restrict
default theories in order to obtain modular translatabi-
lity: to prerequisile-free defaults.

For prerequisite-free defanlts, we may constder Kono
lige's most intuitive translation-scheme r:

: 31, ... M3,
( Mp,. M} ] = AL AL A-L-3, —
7
and (D WY = W U U {r(d)}.
dg
Theorem 2.2 r is a faithful, modular, and polyno-

mial translation from the class of prerequisite-jree default
theories to standard AEL.

PROOF. (Sketch) The proof follows directly from pre-
vious results (Theorems 4.1.2 and 4.1.4) by Marek and
'IYuszczirisky [11]; the result is also implicitly present in
the work of Lin and Shoharn [9]. D

Some authors argue that prerequisite-free defaults are
the only natural defaults. Delgrande and Jackson [I], for
instance, define P-Dtfault Logic based in prerequisite-
free defaults. By the above result, P-Default Logic is
modularly translatable into standard-AEL.

Note that in Definition 2.2 we defined a rather weak
concept of modularity. Stronger types of modularity
would require that each single default be separately
translatable. Since we proved that even weakly modular
translations in the sense of Definition 2.2 are impossi-
ble, the impossibility of any stronger type of modular
translation follows.

3 The Nonmodular Translation

In this Section, we present a faithful polynomial time
translation from default logic to standard ALL. By the
results of the last section, such a translation must be
nonmodular. In fact, our translation is rather involved
and is based on sophisticated propositional coding tech-
niques. It heavily exploits the self referential introspec-
tive capabilities of AEL. For space limitations, we must
omit most of the formal details and proofs and can only
present the main ideas. The full development can be
found in the extended report [4] which is already availa-
ble from the author.

We start by giving an informal rationale of the trans-
lation.

572 Knowledge Representation

3.1 Rationale* of the Translation

Marek, Schwarz and Truszczyhski [12; 20; 19] have exhi-
bited different faithful polynomial translations from de-
fault logic to nonmonotonic N, a variant of AEL which
we will define below. We will use a translation t from
default logic to nonmonotonic N as an intermediate
step in our development. The translation t we use is
just a slightly modified version of the translation intro-
duced by Truszczyhski in [20], Our modification just
makes sure that the translation also works for the in-
consistent expansion, which is disregarded in [12; 20;
19]

Since default logic is translatable via t to nonmono-
tonic N, it suffices to establish a faithful translation h
from nonmonotonic logic N to standard AEL. Then, our
desired translation ¢ from default logic to standard AEL
is obtained by composing / and h, i.e., ¢ — hot. This is
illustrated in Fig. 1.

Default ['heory Nonmon.-N Theory AEL Theory

(DWyY—— b (D Wh—L LD W)

r=hot

Figuee 1: Sehema of transformation composition

Nonmonotonic N is stronger than standard AFL n
the following sense. Fach N-expansion of a set of preri-
sex ¥ s alse a standard-AEL-expansion. On the other
hand, ¥ may have several addinonal standard-AEL ex-
pansions which are not N.expansions. These additional
expansions are i a certain sense weakly grounded and
sheuld be chpunaded . In order to get rid of these unde-
sired expansions, we define, for each theory ¥ a fonmula
(X}, the so called groundmyg formuln, In the context
of a particular standard-AEL expansion, G{X) has the
following wtuitive meaning:

G(Y) = “l am an N-expansion of 7.

In other terms, in the context of each ARL-expansion £
of ¥, thie fortnuafa G{E) s true if £ s a N-expansion, and
fatse of 2 is not an N-expansion, 1.6, if E is a weakly
grounded expansion.

It is now easy to cut off the undesired weakly groun-
ded expansions. The trick is to add the formula LG(E)
to . LG(E) will be a tautology wn the context of an N-
expansion of £ and therefore harinless. In the context
of a consistent weakly grounded expansion of X, howe-
ver, LG(E) evaluates Lo L false, which is inconsistent
and forces the expansion Lo vamish. [t therefore holds
that the N-expansions of 3 exaclly correspond Lo the
standard- AEL-expansions of £ U {LG(Y)}. Our trans-
formation h is thus simply obtained by adding LG(X) to
-

We are thus able 1o enforce groundedness by just ad-
ding a single belief LG(X) to a theory, where LG(L)
informally states “l believe that 1 am a grounded (i.e.,
N-} expansion of X", This sirong power of beliefs has



interesting philosophical interpretations that we will dis
cuss in Section 4. 1n the rest of Section 3, we will outline
the formal development of the translation.

3.2 Formal Preliminaries

Let £ be an ordinary propositional language over a coun:
tably infinite alphabel of propusitional variabies, the
syntactic operators =, A, V, —, —_ T, and 1 (where
T is a constant for truth and 1 is a ronstant for fal-
sity). The classical propositional logic over £ is denoted
by PL{£). The language £, of autoepistemie logic ex-
tends £ by a unary modal nperator 1. T'he classical
propositional logic over the langnage £; 15 denoted by
PL(Ly). For S C L, S denotes the set of all subfor-
tulas of the form Lo of vach formwla of N 1f o e £,
then ¢% =4, {8}*.

The (monotonie) madal logic N is defined over the
samec language £ as standard AEL. N is defined by
the axioms of propositional caleulus, inodus ponens and
the necessitation rule ¢/ L. N can be considered as the
simplest modal logic. A detailed study of N s earried-
ont in [3], where also an appropriate Krpke setiantios for
this logie is defined. The consequence relation aceording
to N is denated by The conseguence set operalor
conspy of N 18 defined 1o the usual way, (05 O £y
then consp(S) = {¢|S *N ¢} Clearly, vomapg s &
monotonic operalor.

The nenmonolonte version of N (also called wterataee
AELY is defined from monotonic N oaccording to Me
Dermott’s general definition scheme for nonmonotonie
madal logics [13]. The basic concept is the one of an
Neexpansion. A € Ly 15 an N-expansion [also called
iterative expansion} of X fl A satisfies Che fixed pomn
equation & = conspg{X U —-.’,K}. I was shown w [12]
that cach N-expansion of a set ¥ C £y 15 also a stable
AL lL-expansion of Y. The converse does not hakd

The kernel A of a stable expansion A of 3 detined
hy

A= A0{Ls. Lo

Lo s subformula of 2}

The following proposition shows that N-cxpansions can
he characterized by special properties of their kernels:

Proposition 3.1 ([5: 10]) Let A be a stable «rpansion
of ¥ oand et A be the kerned of A A ts an N-crpansion
of ¥ ff BUAT }ﬁ At where AT = {oLo| e €AY

and AT = {L¢ | Lo € A}

For the sake of a sunpler notation, we will sometines
imuplicitly identify finafe sets and conjunitions of propo
sitional formulas.

3.3 Expressing N-inference in PL(L)

In this subseclion we outhne how inference problems o
nurdal logic N can be polynomially transformed into the
prablem of Ltantology-checking b ordinary propostliional

logic.

Definition 3.1 Let 5 C Ly be a finale set formulus and
let € L1 be o formula. A sel K C SEUgh 15 called 5-
g-closed f SUN [ ¢ and for cach Ly € (stueh)- K.
SUK £ .

vg D gl

Lemnma 3.1 85 F] ¢ iff there 1s no 5-¢-closed sel.

In order to translate N anto classical propositicnal lo
gic, we proceed 1 Awno steps. In the first step we con-
struct a forrmula FH{S ¢} over the language £ such
that &~ lﬁ ¢ iff FY(5, ) is a propositional tautology in

PL(L;). Inthe second step, we transform #4(5,9) by a
simple renaming of variables into an ordinary propositic
nal fortnula F(5, @) (over tanguage £) such that FILS, @)
15 A tautology in PLILY F FH{S @) is a tautology iu
PL(L))

Sinee we will need a number of additional propositio
il variables for constructing P4 (S0 ), let us adopt the
following convention  If p € £ 15 an ordinary proposi-
tional variable, then for cach formuta 4 € L, p¥ deno-
tes 1 new distinet propositional variable from £, For
¢.7 € L, ¢ denotes the formula obtained from ¢ by
uniforinly replacing each occurrence (at all levels of L-
nesting) of any ordinary propositional variable p in ¢ by
Pt WS C Lo oa finite set of furmulas and 7 € £,
Lthen S — Au"é-\' (N

Ddfinition 3.2 Let S ¢ £ be fintte and ¢ € Ly, For
cach Ly € CLEY r;}". et ty denole o new disfinct pro-
posdronal variable . Lot = be a propesitional rariable not
veenrrmng i S or d Then FY(S @) s defined te be the
Sformulu

[hy — LTy — ¢’ v

“a A

I8 uu.e_-_;l. le‘J'

\/ wu A | [ 57 A /\

fvesd ueth

fuy — Le’)| -1

Intnively, thes fonmula states that for each truth va-
lue assigniment. 1o the wg, e, for each sabsel K of
!

SEGe! ) A least one disjunct must be true, hence K

15 not S-g closed.
Theorem 3.2 5 kN o ff FY{5 @) s a taulology
PLiL)

tinally, we trapsform FH{S, @) into a formula F(5, ¢)
which does not contain any modal atonss. 1 Ly s a mo-
dad atoin, then [Lg] denotes anew distinet propositional
vanable from L. 1F 8 s o formula of PL{L, ), then [IF)
s the formula obtained froan 7 by uniformly replacing

cach occurrence of any subformula of the forin Ly of U
not appearing in the scope of some L operator by [Ly).

Definition 3.3 F{N, @) s defiued to be lhe formuls
[FHI89)).

Note that F(S.@) € £, sinee Lhis formula s obtained
from # 1 (S, 9) by uniformiy replacing all atoms Ly by
ordinary propositional atoms [Lv].

Theorem 3.3 8 Lﬁ o off F(S @) s a tantology m
PL{L).

Remwark: The size of F(S, @) 1s al most quadratic in
the size of § plus the size of ¢. Thus, deciding § }ﬁ ¢ is
coNP-complete.
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3.4 Translating Nonmonotonic N into standard
AEL

Our aim s, given a sct of premises £, Lo find a formula
G(X) such that the consistent stable AE-expansions
of ¥ U LG(E) exactly coincide with the consistent N-
expansions of L. The formula (7(X) wilk enforce any
stable AE-expansion to be grounded. More specifically,
G(ZY will make sure that for each stable expansion A
of © U G(E) with kernel A it holds that YU A~ II_Q At

hence, by Proposition 3.1, A 1« an N-expansion.

For any premise set ¥ C £; we denote by CEXP{X)
the set of all consistent standard-AF-expansions of X
The following theorem - fundamental to our transfor-
mation - elucidates the relationship between CEXI(Y)
and CEXP(X U {La})} lor autoepistemic formulas o of
a certain type. In particular, the theorem shows, how
by adding Lo to ¥ certain expansions of X can be sup-
pressed.

Theorem 3.4 (Expansion Cutting Theorem)
Gioen a st ¥ C £ and a formula o € £; such tha!
Lo ¢ BL and any atem of o 1s either @ propositronad va-
riable not occurring tn ¥ or an afom Ly € B8 o holds
that

a) CEXP(X U {Le}) C CEXP(Y)

b.) Let A € CEXP(Y) be a stable AJ-erpansion of 1
with kernel A, Let «q be the propesitional formula
obtained from o by replacimg cack atom Lo of o
by T of Ly € A and by L o =Ly € A Then
A € CEXP(X U {La}) off ap 18 a propesthonal
tautology.

We are now ready lor defining the groomdmng formula
Y.
Definition 3.4 {Grounding Formmla) Let Y ¢ £y
be a finife set of premuses. Assume that - s oa propo-
stlional variable nof ocrurmmg tm Y. Then (G(X) s the
formula displayed in Figure 2.

It the proof (given in []) of the next theoren, the foi.
lowing 1s shown. In the context of cach partcular ARL.
expansion of ¥ with kernel A, the grounding fornila
(Y] becomes equivalent to the formula F(OLIAT AT
Thus, by Theorem 3.3, (7{3) 1s valid T XU A” ﬁ At
re, Hf the expansion corresponding to A is an N
expansion.  FThe Expanrsion Cutting Theorem {Thin
J.4) then guarantees that the theory ¥ U LG(E) has as
standard A EL-expansions exactly the N-expansions of

[N
e

Theorem 3.5 Let X C Ly be a finabe sel of premuses.
Then A 1s a cousistent N-crpansion of ¥ ff A s @ con-
sistent stable AE-erpansion of XU {LG(Y)}

We have thus established a polynomal-time Lransla
tion from Nonmonotome N to Standard AEL.

3.5 Translating Default Logie to standard AEL

Our transformation ¢ from default logic Lo nonmonotonic
N is as follows.

Definition 3.5 Lef (1)WY be a default theory, Let v
be a propositional variable from £ which does nel oc-
eur an {D W), For cach defaull i d € 1) of the
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Jorm o - MB), M3z, ..., MB.[w, let t(d) denole the
auteepistemic formula (~+Lv A Lo A L-L=f A L0 A
I—~L-8,) — w. Define the transiation t({(D,W)) by
t{DWH=Wultd) : de D}.

This translation is a slightly modified version of
Truszezynski’s translation [20). It handles properly the
inconsistent expansion which is disregarded in [20}. By
resulls in [20], it is easy to sec Lhat this translation is
indeed a fathful embedding of default logic into non-
maonotonic N. We now preseni the definitive translation
function ¢ between default logic and standard AEL.

Definition 3.6 [f (D W) 15 o default theory then
c({{D WY = 1({DWHHU [LGU{D, W]

Theorem 3.6 (Faithful Translation) The
catenstons of a default theory (D, W) are grven by the
sels ANL, ve., the obpechive parts of A, where A 15 a
stable Ab-expansion of ({0, W)).

Theorem 3.6 establishes a faithful polynonual trans-
fation from defanlt jogie into standard AEL. 1t 15 easy
to see Lthat a faithful trauslation in the opposite direc-
tion is not possible.  Just consider the auntoepistesmic
theory ¥ = {Lp - p}. T bas two stable AE-expansions
whose ohjective parts are respectively () = cons(9)
and ) = cons({p}). Obwviously, G C ;. However,
it 15 well known (and follows easily from the delinition
of default-extension [16]) that no extension of a default
theary (0. W) can be a subset of any other extension
of (1.1}, Thus, the stable AF-expansions of X do not
correspond to the extensions of any default theory. If
the expressive power of 4 nonmonotome logic stands for
15 capacity of expressing sets of propositional theores
{1, sels of alternative epistenne states) through sets of
premses, Lhen the expressive power of standard AEL s
strictly higher than that of default logic.

4 Philosophical Remarks and
Conclusion

Our translatability result adunt a somewhat specnlative,
but nevertheless very appealing and intriguing philoso-
phical interpretation.

KReeall that standard AEL 1s a logic for expressing be-
liefs, and that a sel of premises ¥ s coneceived as Lhe
set of initial beliefs of an ideally rational agent. Henee,
the addition of the formula LG;(3) to a theory £ can
beinterpreted as the belief of the agent that its own
behiefs (wort. T} muost be sufficlently grounded in X
We have shown in this paper that the addition of this
fortmula effectively enforces all beliefs based on X to be
sufficiently grounded in ¥, Hence, we delivered a ma-
thematical proof for the fact that (polynomially many)
beliefs 10 groundedness-principles about a theory may
control the way of reasoning ou the basis of that theory.
In particular, if we agree that more strongly grounded
expansions are “hetter” (e, more rational or more sci-
entific) than weakly grounded expansions, then our re-
sult may be paraphrased as follows: an auloepisiemic
agent van rmprove ifs way of reasonmyg by believing in
better principles of reasoning.



G(3) =

LyeLt

V -y A

Lyg X

E3A A Cle—-wha A (-] — A Lv—ly ]| v

Ly LE

LyeL*

LA A (Sl = AL A A {uwe = [L¥"D | — 1]

Ly €t

Figure 2: The Grounding Formula G(X)

A yel different interpretation or use of our results con-
cerns the problem ol communicating knowlrdgr 10 an au
toepistemic agent. If we tell a story © to such an agent,
we must be prepared to the possibility that Lhe agent
bascs weakly grounded beliefs on X and acts according
to such beliefs. In order to restrict the agent’s phantasy
and put its feet back on the ground, it is sufficient 10
add the formula LG{E)Y to the intended information ¥

When we spoke about groendedness in this scction, we
teferred to the type of groundedness inherent i default
logic and in the McDermolt-style nonmonotonie logics,
This kind of groundedness basically s the “Jump™ (o
new pnonrmonotonic conclusions to such sentences which
ate obtained by negative introspection. o our opinon,
this 15 a very natural type of groundeduess. A more
complex {and in our opimon shghtly less natural) con-
cept of groundedness underlies the definitin of modera-
tely grounded autoemstemic erpanston introduced i [8].
A moderately grounded expansion Foof XMos oan AR-
expansion of L whose objective part ob {2} s e
mal in the [ollowmg sense
stable set containing X whose objective part s stoetly
included in obj(£). Reasomng with moderately groun-
ded expansions is extensively studied in {2] where 1 is
shown that the main reasoning tasks in ths formalism
are one degree harder in the Polynonual tune Hierarehy
than the analogous reasonng tasks m AEL or defaul
logic. For example, checking whether a set of premises
has a moderately gronnded expansion is Y4 -complete {2,
while the analogous reasoning tasks i standard AFL
and in defanlt logic are B3 complete 6] Thus, anless
the Polypomial-time Hierarehy collapses, there cannol
exist any polynomial-tinie etbedding (modular or not)
of moderately-grounded AFL into standard ALL

there does not exist any
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