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Abstract

The Dempster-Shafer theory gives a solid ba-
sis for reasoning applications characterized by
uncertainty. A key feature of the theory is
that propositions are represented as subsets of
a set which represents a hypothesis space. This
power set along with the set operations is a
Boolean algebra. Can we generalize the theory
to cover arbitrary Boolean algebras ? We show
that the answer is yes. The theory then covers,
for example, infinite sets.

The practical advantages of generalization are
that increased flexibility of representation is al-
lowed and that the performance of evidence ac-
cumulation can be enhanced.

In a previous paper we generalized the
Dempster-Shafer orthogonal sum operation to
support practical evidence pooling.

In the present paper we provide the theoretical
underpinning of that procedure, by systemat-
ically considering familiar evidential functions
in turn. For each we present a "weaker form"
and we look at the relationships between these
variations of the functions. The relationships
are not so strong as for the conventional func-
tions. However, when we specialize to the fa-
miliar case of subsets, we do indeed get the well-
known relationships.

1 Introduction

Uncertainty is a feature of our experience and observa-
tion of the world. Finding suitable means of represen-
tation and manipulation of uncertainty of information
and knowledge [Bell 1992] is a challenge which will have
to be met if computerized decision-making based on im-
perfect input is to be contemplated. An understanding
of the effect of uncertainty on evidence appraisal, and
ultimately on the behavior and properties of agents is
essential. This paper contributes to this understanding
and to the practical handling of evidence. It addresses
the extension, in both practical and theoretical terms, of
a numerical system which enables computer applications
to reflect some aspects of uncertainty.

592 Knowledge Representation

CBFM23@UK.AC.ULSTER.UJVAX

The theory of evidence which originated with Demp-
ster and Shafer underpins a method which has been
shown to be a promising tool for making judgements
when confronted with uncertainty in numerical evidence.
It generalizes Bayesian theory which is itself a popular
theory of uncertainty.

The generalization of evidence theory in turn is the
subject of this paper. It involves moving away from
the standard finite set based derivation of theoretical
and computational results underpinning the Dempster-
Shafer approach. Conventionally propositions are rep-
resented as subsets of a collection of all possible values
of a target variable. This particular representation of
the hypothesis space, is not the only way to represent
propositions. Most obviously we can think of leaving the
propositions as they are, avoiding their transformation
into subsets. This is of immediate interest in reasoning
applications, because propositions are familiar and can
be used to represent arguments, hypotheses, etc.

If this were done we would still be dealing with a struc-
ture which has an important similarity to the previous
space — both are Boolean algebras. This leads to the
question: can we generalize evidence theory to general
Boolean algebras ? If we can, this allows us to choose a
representation — we can use subsets, propositions, and
other means to represent hypotheses and their relation-
ships, as appropriate, in the hypothesis space. It can
also allow us to establish a theory which covers infinite
hypothesis spaces and evidence spaces by this extension.

This representational and theoretical advantage of the
generalization is our focus of attention in this paper.
However we have argued elsewhere [Guan & Bell 1993a],
and supported our arguments by defining operations,
that many applications can achieve improved perfor-
mance through using more appropriate representations.
We demonstrated that by generalizing the orthogonal
sum operation so that hypotheses could be represented
directly as propositions, such a performance enhance-
ment could accrue. Using this representation, all the
subsets of the hypothesis space 8, i.e., 21 subsets, need
not be considered (as they would in standard Dempster-
Shafer theory). By focusing on relevant propositions
only, the time complexity may be reduced to well be-
low the previous O(2!®) time.

To these advantages of representational and manipu-
lative flexibility and efficiency for applications, we can



add the advantage of developing a theory which covers
infinite hypothesis spaces and evidence spaces, and ex-
tending our understanding of the Dempster-Shafer tech-
nique.

In section 2 we define evidential functions which are
based on Boolean algebras. In particular we introduce
weak versions of Bayesian functions, belief functions, and
other evidential functions. We establish relationships be-
tween these weak functions and the familiar correspond-
ing functions from evidence theory, showing that the re-
sults for power sets do not carry over to Boolean algebras
in the general case. In section 3 we discuss nested eviden-
tial functions. We show in section 4 that we can obtain
familiar relations for the particular case of the power set.
The well-known inversions between the most conspicu-
ous evidential functions are derived. Then we complete
the paper by summarizing the relationships between the
weak evidential functions obtained.

2 Evidential functions

In evidence theory, evidence is described in terms of evi-
dential functions. There are several functions commonly
used in the theory — mass functions, belief functions,
commonality functions, doubt functions, and plausibil-
ity functions. Normally they are defined over finite sets.
Here we generalize evidential functions to Boolean alge-
bras. The significance of this is that conventional eviden-
tial functions are defined over the power set of a frame
of discernment, but Boolean algebras include other in-
teresting spaces, such as the space of propositions.

Let < .U, u, N, &, ¥ > he a Boolean algebra, where .\’
is the space of discernment; U is the union operation; M
is the intersection operation; ' is the negation operation;
& 15 Lthe zero clement, the leasl element in .1 under the
partial ordering refation C; ¥ is the identity element,
the greatest element in .’ under .

Let {1, 1] denote the unit interval of real numbers.

A function bay : X" -+ [0, 1] is called a weak Bayestan
{probabilistic) function if y1) bay(P) = 0, y2) bay(¥) -
1, ¥3) bay( AUB) = bay{A)+bay(B) whenever ANH = ¢,

THEOREM 1. Let bay be a weak Bayesian function.
Then (1) bay{ A) + bay(A") = 1. (2) bay{A} < bay{B)
when A . B; i.e., bay is non-decreasing.

A function bay : A''— [0, ]| is called a Bayestan func-
tion if y1) bay(®) = 0, v2) bay(¥} = 1, ¥3' bay(AUB) —
bay(A) + bay( B} — bay(A N B).

A Bayesian function is a weak Bayesian function since
v1), ¥2), and y3' imply y1}, ¥2}, and ¥3).

THEOREM 2. Suppose bay is a function bay : 1" —
[0, 1] and it satisfies y1) bay(®) = 0, y2) bay(¥) = 1.

Then the following assertions are all equivalent:
¥y3. bay is a Bayesian function. y3' bay{4A U B) =
bay(A) + bay(B) - bay(A M B). y3” For any collection
Ay, Az, ..., A, (n > 1) of subsets of ¥, bay(A; UA2U.. U
An) = Zig{l‘l‘"_‘“}_,ﬂ{—1)““‘bay(ﬂ.”A.),

A function bel : X - (0,1 is called a weak
belief function if i satisfies bl) bel(®) = 0, b2)
bel(#}) = 1, b3) for any collection A4,, 42,..., An (
nn > 1) of subsets of ¥, bel(4; U Az U .. U An) >

E:; { 1,:,...,n},f;u(" DI+ 3 bel(r, 1 4,).

THEOREM 3. Let bel be a weak belief function,
Then (1) We have bel{ AU B) > bel{ 4) 4 bel(B) - bet( AN
B) for all A,B € Y. (2) bel is non-decreasiag: i.r.,
bel(A) < bel{ B) when A C B. (3) bel(X) + bel(.X7) . L.

Given a weak belief function bel, the functien
dou(A) = bel{4') is called a doubl function and Lhe
function pis(A) = 1 — dou({A} = 1| — bel(A') i5 called
a plaumbilily funclion. It is easy to see that dou(?d) =
1, dou(¥) = 0; pla($) =~ 0, pis(¥) = L

THEOREM 4. A doubt fupclion dou is non-
increasing; i.e., A C B implies dou( A) > dou(B).

THEOREM 5. (1) A plausibility function pls is non-
decreasing; ie., A C B imples pls(A} < pls(B). (2)
pls(X) + pls{X') > 1, bel(X) < pls(X) forall X ¢ .1

A function m : U - [0, 1] i8 called a mass function i it
has non-zero value only at a fintte number F of elements
Ay, Az, ... Ap in .Y (i.e, subsets C ¥) and i satisfes
mi) m($) = 0, m2) Lycy m(X) =~ 57, m(A) L.

Notice that X ¢ ¥ if and only if X ¢ .V'. Also, notice
that m har non-zero value anly at a finite number of
subseis X C ¥, 80 3 4y makes sense.

A subset A of & frame ' is called a focal element of &
mass function m over X' if m(A) > 0. Thus, the number
of focal elements of a mass funciion is finite. The union
C of all the focal elements nf a maas function is called its
core: (' = Uxea,mix)>oX, where Uy v makes sense as
the number of focal efemcnt.s of a mass function Is finite.

A function bel on .U is called a belief funciion if 1t can
be expressed in terms of a mass function m: bel{ A} =
Yoacxm(X) forall Ae X

THEOREM 6. Let m be a mass function. Then the
function be! defined by the following expression bel{ 4) -
Y xcamX) for all 4 C ¥ is a weak belief function

A function com : X' — [0,1] is a commonalily func-
tron if there is a mass function m such that com{A) —
Sacym(X)forall 4 C ¥

-

3 The nested evidential functions

A function ben on X' such that ben : .U — [0,1] is
said to be a weak nested belief function if it satisfies
nl) ben(®) = 0; n2) ben(¥} = 1, n3) ben(A N B) =
min{ben{4), ben(B)} for all A, B C ¥.

THEOQREM 7. Let ben be a weak nesied belief func-
tion on < A, 0, &, ¥ >; i.e., ben is a function such
that ben : ¥ -+ [0, 1] satisfying nl) ben{d) = & n2)
ben(¥) = 1; n3) ben( A4 M B) - min{ben{ 4), ben(H)} for
all A, B C ¥. Then ben is a weak belief function.

THEOREM B, Let < .V, u,n,/,®, ¥ > be a Boolean
algebra. Let ben, pls, dou be functions .1' — [0, 1|, and
let pls{A) = 1 —ben{A'), ben(A) — 1 — pla{A"); dou(A) =
ben{A'), ben{ A) = dou(A’) for all A C ¥. Suppose ben
satisfies nl1) ben{®#) = 0; n2) ben(¥) = 1. Then the
following assertions are equivatent.

n3. ben is a weakly nested belief function.

n3) ben{A N B) = min{ben{4), ben{ B)}
forall A, B C ¥.

p3) pls(4 U B) = max{pis( A), pls( B)}
for all A, B C ¥.

d3) dou(A U B) = min{dou(A), dou{B)}
for ali A, B C ¥.
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THEOREM 9. Let < .¥',U,Nn,,®, ¥ > be a Boolean
algebra.

Let ben be a weak nested belief function on U, and
let pls be ita plausibility function on .\': pls{4) = 1 —
ben(A'}, ben(A) = 1 ~ pis{A’) for all A C .

Then we have the following.

(1) min{ben{A), ben(A4')} = 0 for all A C ¥.

(2) max{pls(A), pls(A’}} = 1 for all A C ¥.

{3) pls(A} < 1 implies ben{A) = 0 for all A C ¥; i.e,

interval( A) = [ben( A}, pls( 4)] = [0, pls{ A))
when pls(A} < 1;
ignorance(A) = pls(A) — ben{A) = pls(A) -

when pls{A) < 1for all A C V.
(4) ben(A) > 0 implies pls{A) = 1 for all 4 C ¥; i.e,

interval(4) = {ben(4}, pls(A}] = [ben{A), 1]
when ben{4) > 0,
ignorance(A) = pis(A) - ben{A4) = 1 - ben(4)
when ben(4) > 0 for all A C ¥

Define bel(X|B) = SHEUEA 2P for all X C @
and all B C ¥, bel(B') < 1. Also, define pis(X|B) -
1 — bel(X'|B),bel(X|B) = 1 - pls(X'|B) forall X C ¥
and all B C ¥, bel(B') < 1,pls(B} > 0,

THEOREM 10. Let < t,un/,¢,¥ > be a
Boolean algebra. Let bel, pls be functions ' — [0, 1],
and pls(A} = 1 — bel{A"), bel(A} — 1 — pls{A’) for all
A € ¥. Suppose bel satisfies nl) bel($) = 0, n2)
bel(¥) = 1; 13} bel is non-decreasing; i.e., A C B implies
bel{ A} < bei(B) for all A, B C ¥. Then, the following
assertions are all equivalent.

(1) Fer function bel, min{bel{ 4} B}, bel{A'|B)} = 0 for
all AC ¥ and all B C ¥ such that bel{ B') < 1.

{2) For function pls, max{pls{(4|B),pls(A'|B)} = |
for all A C ¥ and all B C ¥ such that pls(B) > 0.

(3) Again max{pls{A M B), pls( 4’ " B)} = pis(B) for
all A C ¥ and all B C ¥ such that pls{B) > 0.

{4) And, max{pls(A N B),pls( A’ N B)} = pls{B) for
all A,BC V.

(5} Alse, pls(D U E) = max{pls(D), pis(E}} for all
D ECY.

(6) bel is a weak nested belief function.

Suppose m 1s a mass function on the Boolean al-
gebra < Y, un', &, ¥ >. m is said to be nested if
its focal elements 4,;7 = 1,2,..., F; F > 0 can be ar-
ranged into an increasing chain of supersets: & C A, C
Az C ... C Ap C ¥, where m{4,), m{A4;z), ..., m(Ap) >
0; Zf:l m{d4,)=1.

We also say the belief function, plausibility funciion,
and doubt function bel, pls, dou are nested when the mass
function m is nested.

THEOREM 11. Let < A,u,n/, &, ¥ > be a
Boolean algebra. Let m be a mass function on .V, and
let bel be its belief function: bel(A4) = 3" yr , m(X) for
all 4 (. ¥. Suppose m is nested. )

Then bel is a weak nested belief function. That is, (by
definition) bel satisfies nl) bel($) = O; n2) bel(¥) = 1,
n3) bel{A N B) = min{bel(A), bei{ B)} for all A, B C V¥.

= pf.![A)
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4 THE SPECIAL CASE WHERE
SETS ARE FINITE

In this section we show that the generalized theory pre.
sented in earlier sections reduces to familiar results when
we are dealing with finite sets and subsets.
Let < A',1,n,/, ¢, ¥ > be a Boolean algebra as hefore.
Earlier, we showed that

{ Bayesian functions } € { Weak Bayesian functions };

{ Bayesian functions },{ Weak nested belief funciions },
{ Belief functions } C { Weak belief functions };
{ Nested belief functions }
C { Weak nested belief functions }.

In thie section we will prove that for finite set 2© these
C relations become equalities:

{ Bayesian functions } = { Weak Bayesian functions };

{ Belief functions } = { Weak belief functions },
{ Nested belief functions }

— { Weak nested belief functions }.

4.1 BAYESIAN FUNCTIONS

‘This subsection shows that Bayesian functions and weak
Bayesian functions are identical for finite sets.

THEOREM 12. Let < t,un' ¢ ¥ ==«
29 U,N," 9,0 >, where © is a finite set. Then all weak
Bayesian functions are Bayesian functions.

PROOF.Suppose bay is 2 function bay : 29 . [0,1]
and it satisfies y1) bay({Q) = 0, ¥2) bay{©) = 1. Consider
the following assertions:

¥3) bay is weak Bayesian; i.c., bay(A U B) = bay( 4} 4
bay(B) whenever AN E — 6.

¥3} bay(A) = ¥ 4 bay({z}) forall 4 C ©.

¥3' bay is Bayesian; ic., bey(d U B) — bay(A) 4
bay{ B) — bay(A N B).

Woe prove this theorem as {ollows: y3} implies y3}, v3}
implies y3',

(i} ¥3) implies ¥v3}. i 4 = 0, then y3} bay(#) —
Sses boy({z}) 8 true from y1) bay(®) = 0 and from

convenlion
Z bay{{z}) = 0.
zE#

iIf A #£ 0, then we may write 4 = {a,,az,...,a,}, where
a;,az,...,an are distinct and n > }. Applying y3) re-
peatedly, we find that bay(A4) = bay({a;, az,...,a.}) =
bay({a:}) + bay({az,...,an}) = bay({a,}) + bay({a:}) 4
bay({as,....on}) = ...... = bay({a.}) + bay({as}) + ... +
bay({an}) = 3. ¢4 bay({z}) since {a1} N{az,..,an} =
0,{az} N {as,...,cn} = 0, ...... »{en-1}N{an} = 8. Thus,
¥3) implies y3}.

(i1) y3} implies y3’. From y3}, bay(A U B) —
Y ceavm boy({z}) = 3 e 4 bav({z})+3 ¢ p bay({z}) -
Y ccans bay({z}) = bay(A) + bay(B) — bay(A N B). So

y3} implies y3'. | QED |



4.2 BELIEF FUNCTIONS

In order to prove that in the case where X' is the power
set of a finite set @, all weak belief functions are belief
functions, we need the following Mobius inversion.

MOBIUS INVERSION. Suppose © is a finite
set, f and g are functions on 2°. Then f(4) =
Yoxca9(X) for all A C © if and only if g(A) =
Yacal-DAXf(X) forall AC ©.

As usual, if m is a8 mass function, then the function bel
defined by {BM) bel(A) = 3y ,m{X) forall AC O is
said to be the belief function of m.

THEOREM 13. When © is a finite set, all weak
belief functione are belief functivns. That is, if bel iz a
weak belief function, then there exists a mass function m
guch that the function bel can be given by m as follows:
{BM) bel(A) = Xy am(X)} forall AC O,

PROOF. Suppose bel is a weak helief function; i.e.,
bef is a function bel : 2% — [0, 1] satisfying the three
conditions h1), b2), b3).

Define a function m on 29 by (MB) m(A4) =
Y xe a{=NA-Flbel(X) for all 4 C ©.

Then we have (BM) bel{4) = 3 v, m(X)

for all A ¢ © and bel can be expressed in terms of m
by Mobius invergion.

In order to prove that m ie a mass function, we need
Lo establish m1), m2), and m : 2% -+ [0, 1}, t.e., D <
miAd) < lforall A ¢ 6.

From {MB) and bl) we have ml}) m(@) =
Zvco( - Xlpet( X) = (—l)”bel(@) = 0, and from
(BM) and b2) we have m2) Poxce™ ) = bel{@) = 1.

Now we only need to show thal 0 < m{d) <
l1forall A € ©&. Let us prove first that m{A) >
Oforall A £ 0, 4C O

I |A] » 1, then let A — {e;,az....,6n}, where
n > | and ay,a3,..,8, are distinct. Denote 4, =
A—{a,}fori=12,.. ,nso0that Ay, A, ..., A, are pre-
cisely Lhe subsets of A4 that omit exactly one respective
element a;,az, ...,an of 4 and 4 — A, L 4, U ... U A,
Then every proper subset X of A can be uniquely ex-
pressed as an intersection of the 4,. That is, for every
X ¢ 4, thereis an I € {1,2,...,n}, 1 # @ such Lhat
X = MNyerA and A — X = {a,|1 € I}.

Conversely, for every 1 € {1,2,. n} I # @ there is an
X ¢ Asuch that X = H‘E;A and A - -{a,i ¢ T},

In other words, there is a one-to-one correspondence
between the proper subsets X of @ and the non-empty
subsets 7 of {!,2,...,n} such that X = N, ; 4, and 4 -

X ={alic I}
Thus by b3) m(A4) = ZYLA( l)u Ylb“l( o

JIPFPIES b i '”bef(X) b Txca(-DA Ybel(X) =
(-~ 1)!"bei( )

PTEIRI n}‘ua(—1)H“‘l'Embe(”:cIAJ = bel(A)
et araesl— D bel(Nies AL) = bel(A U AU
)~ ch,'u.z,,.,.n},un(‘ 1YW+ Y bel(n, ¢ 1 A) > 0.

And if A = {a}, ther from {MB} m{{a}) =
Exc{a}(—l)H“}'X‘bcI(X) = (=1HMbel(d) +
(~1)®ibet({a}) = bel({a}) > O ( because bel(d} = O

C o+ o+

by b1) and bel is a function bel :
bel({a}) > 0 ).

Sumrmarizing, we have m{4) > 0 forall A # 0. AC O
and from m1)}, we have m{(A) > D forall A C O.

Also from m2), we have th em(X) = 1. So
m(X) < 1forallsubsets X ¢ ©, and 0 < m{X) <
1 for all subsets X ¢ ©, which is what we set out to
show. QED

29 — [0, 1] therefure

4.3 NESTED BELIEF FUNCTIONS

Let < .¥,u,n/, &, ¥ >=< 22 U,N, #© > as before.
We can prove that weak nested belief functions are
nesied belief functions.

We have pfs(A) = 2oxnage ™X) for all 4 C ©:
pls(A) = - bel(d) = 1 - Y gm(X) - 1 -
L xnazs m(X) ng_@m(x) - Txnaza ™) =
Exml;eﬂ m(X}.

Also, we have the following pis-com inversion (theo-
rem 2.4.5, p.59, Vol.l, Guan & Bell, 1991): pls{d) =
b, pls(A) — L“Axﬂ(—l)u'“com(l for all non-
empty A C ©, and com(®) — l,com{Ad) =
3 xe A_Xﬂ(—])i‘““pls()f) for all non-empty 4 ¢ @.
Now we can prove the following.

THEOREM 14. Let <« A,un/,$d ¥ =g
29 U, ,8,©® >, where © is a finite set. Let m be a mass
function on 29 and let bel, pis, com be its corresponding
belief function, plausibility function, and commonality
function, respectively. Then the following assertions are
all equivalent.

(1) bel is nested.

(2} bel is weakly nested; i.e.,

bel{A N B) = min{bel(4), bel( B)}

forall A,BC @

(3) ph(A U BY = max{pls(A4), pls(B)} for all A, B C

(4) pls(d) = maxgea{pla({z]})} for all non-empty
AC .

(5) com{A) = ming a{com{{z}})} for all non-empiy
AC O,

PROOQF. We proceed as follows: (1) implies {2}, (2)
implies (3), (3) implies (4), {4) implies (5), {5) Unplics
1).
( )(I) We prove (1) implies (2). Since m is a nested masa
function on 22, its F focal elements can be arranged
into an increasing chain of supersets: 0 C 4; C Az
. C Ap C @, F > 0 where m{A;), m{A43),...,m(AFr) >
0; Z:‘F:l m{4,} ~ 1. We want to prove that bel(4 N B} =
min{bel{4), bel(B)} forall 4, BC ©

Denote Ay == @, Given two subseis A, B { ©,let. ! > 06
be the maximum integer such that 4, C A: Ap ¢ 4, C
Ay C .. C A; ( A A g A: e, I = max{i}(l < 1 <
F, A; C A}; and let n > 0 be the maximum inleger such
tha.tA C B: AOC Al CA:C <..CA“9 B,An|1 g

B:ie,n=max{tl0 <1< F A, C 4}. Then
1. A, CAfor1=0,1,2,....,Fifandonly tf 0 € 2 < [,
2.4, CBfori=0,1,2 .. . Fifandonly if 0 <1 < n.
3. 4 C AnBfori = 0,1,2,.,F if and only if
g < i< min{i n}.
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Therefore we find that bel{ ANB) = 3~y 4n g M{X) =
Y acanBa=1,2,.. F™Ai)since A;i= 1,2, .., F are all
the focal elements of m at which m has positive values,

8o bel( AN B)
A, 0<1<min{l,n}

A, CANB;=0,1,2,... . F

SR>

+=0,1,2,..., min{in}
since e{Ap) = m(@} = 0 and by 3 above,

= min{ Z m(A,), Z m(4,)}

1=0,1,2,...1 +=0,1,2,...,n

= min{ Z Z m{A4;)}

A,,0<i<] A,0<1<n

= min{ Z m{4,}, x

A CAn=0,1,2..,F ACRa=012,. F

= min{ Z

ACAx=132,.. F

since mf{Aa) = m(@) = 0,

=min{ Y~ m(X), I m{X)} = min{bel(A)

Xca XCH

m(A;)

m( A;)

mi 4, )}

by 1 and 2 above,

m{A,), Z

AL Ba=12_ F

m{4:)}

 bel( B} }

again since A4,;1 = 1,2, ..., F are all the focal elements of
m at which m has positive values.

(ii) (2) implies {3). Suppose belfA 1 B) =
min{bel(A), bel( B)} for all A, B C ©&. We want to prove
that pls{AUB) = max{pla(A) pla(B)) for all 4,B C ©.

Indeed, we find that pls(AU B) = 1 - bel{AUB) =

bd(AﬂB) = 1 - min{bel(A), bel(B)} = max{l -
bel(A),I-beI( )} = max{pls(A), pls(B)} forall A, B C
e

(iii} (3) implien (4). Suppose (3) holds: plsfA U B) =
max{pls{A), pls(B)} for all 4, B C ©. We want to prove
the assertion pls(X) = max.¢x{pls({c}}} for all non-
empty X C O.

Use mathematical induction on |X|. When |X| = 1:
X = {z},z € © the assertion is true since pla{{z}) =
masec oy pis({2])} = maxiplatiz ) = pla(i]) for ol
T E Q.

Suppose the assertion is true when {X| = n and now
(X =n+1, X = {z5,22, .-y Ty T4t }- Then we find
that pls(X) = max{pls({zy, 23, ...,z }), pls({zn41}}}
from (3}, = max{max{pls({z.}}, pls({z1}), ...,
ple({z=})}. pis({zn+1})} by induction hypothesis since
I{zllzis eyl I =n,

= max{pls({z:}), pls({z2}), .. pls({2n} ), PIs({Zns2 })}

= maxeex {pis{{z}}}. That is, the assertion is true when
|X| = n+ 1 and the mathematical induction is com-
pleted. The assertion is proved.

(iv)} (4) implies (5). Suppose assertion (4) holds:
pis(X} = maxee x {pls({z})} for all non-empty X C ©.
We want to prove that com{X) = minge x {com({z})}
for all non-empty X C ©.
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Notice that the plausibility function pls and the
commonality function com are equal at all singletons:
com{{z}) = pls({r}) for all z € O since com{{xr}) =
Z{:}t_:x m(X} = z{s}nx,u m(X) = pls({z}).

Let X = {z1,z3,...,2a} and let pis{{z})
pls{{z2}} < ... < pls({z,.}). Then

1. Non-empty subasets ¥ of X are in one-to-one corre-
spondence to non-empty subsets I of {1,2,..,n}: VY C
XY £8,Y = {z,|i €1} ——1C {1,2,‘..,71},1 0

2. We have

max{pls({z:})} = 3

i=rmmx{7|7 €T}

tA

pls({z:})-

3. We have i = max{j]j € I} if and only if / C
{1,2,..,i}and i€ I

4. We have pls({z,}) = min,¢ x {pls({z})}.
So we find Lthat com{X)

= Eygx“f#.(_l)lyl+lp‘.‘(}.) by the pls-com inversion,

=Y ()T pls({zlic 1Y)

IC{1,2,..n},Ix#

=Y (0 maxpis({z))
1C{1,2, .n} 248 rel
by assertion (4),

(_])If|+l Z

tz=max{;j7€!}

pls({z.})

- ¥

1C{1,2,..n}, [0

- z pis({z.}) Z (-1

1€{1,2,...,n} JC{1L2,.abee ]

3 pe({z}) 5

l'__ I)U;_i{rlnlal

w{l,2...m} F=Ju{n}, JC{1,2,...v- L}
= 3 ps{z}) Y (=1 =pis({ni})
ww{l,2,.., n; JC{1.2,..., -1}

by the subsel formula (formula 1.2.1, p.11, Vol.1, Guan

& Bell, 1991),
> (-pV

JC{1,2,...0-1}

when 1 = 1;2.e,{1,2,...,
otherwise.

i—l}:'@

oy

Thereby we conclude that assertion (5) holds:
com(X) = pis{z1)) = mineexipls({z} =
minge x {eom({{z})} for all non-empty X C ©.

(v) (5) implies (1). We want to prove that com{X) =
minge x {com({z})} for all non-empty X C & unplies
that m is nested; i.e., its F focal elements can be ar-
ranged into an increasing chain of superseis: @ C A, C
Az C ...C Ap, F > 0 where m{A1),m(Aa),.... m{Ar) >
6L m(A) = 1

Suppoae m is not nested; i.e., there exist two focal ele-
ments A, B C ©suchthat A€ B,B ¢ A;m{A),m{B) >
0. So there exist two elements a, b € © such that
a€ Aa¢ B;bec B,b ¢ A. We want to prove thal as-
sertion (5) does not hold; i.e., there exists a non-empty
D C © such that eom(D) # mingep{com({z})}.



Let D = {a,b}. 1t suffices to prove that com({a, b}) <

com({a}), com({b}).
Indeed, we find that com({a})
= Yxcox2{a) ™X) 2 m(4) + Tycp x5 ™(X)
since {X € ©[X 2 {a}} D {X ¢ ox
{a,b}}, A D {a}, A 2 {a, b} Thus, we have com({a})
m{A) + Zxce,xj{a X)) >3y, X3{ap) THX)
com({a, b}) since the focal element A makes m(4) > 0.
Also, we find that com({}}) = Exge,xg{b} m(X) >
m{B}+ 3 xCo,x24a,8) ™(X ) since {X C O1X D {3}} D
{X € ©lX D {a,b}},B D {4},8 2 {a,b} Thus,
we have com({b}) > m(B) + nge‘x;_:{n.b} m(X) >
2 xce,x2{ap} ™X) = com({a, b}} since the focal ele-

ment B makes m(B) > 0. [QED]
5 SUMMARY

Most important spaces in artificial intelligence are
Boolean algebras, for example, power sets and propo-
sition sets. The Dempster-Shafer theory originally ad-
dressed only the power sets. This paper generalizes the
theory to Boolean algebras.

We investigate all the most important kinds of belief
functions on an algebra to enable us to choose the most
suitable belief function to represent evidence, according
to the particular situation presented. The generaliza-
tion enables us to choose the most suitable algebra to
represent knowledge and reason efficiently.

We introduce weak Bayesian (probabilistic) functions,
Bayesian (probabilistic) functions, weak belief functions,
and belief functions. We show that Bayesian functions
are weak Bayesian functions; and Bayesian functions and
belief functions are weak belief functions.

Mass functions, commonality functions, plausibility
functions, and doubt functions are also introduced.

In the case where .t = 2% and @ is a finite set, we
show that weak Bayesian functions are Bayesian func-
tions and vice versa. Moreover, weak belief functions are
then belief functions and vice versa, and weak nested be-
lief functions are nested belief functions and vice versa.
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