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Abstract:
We present a set of axioms that justify the use of belief
functions to quantify the beliefs held by an agent Y at
time t and based on Y's evidential corpus. It is essentially
postulated that degrees of belief are quantified by a
function in [0,1] that give the same degrees of beliefs to
subsets that represent the same propositions according to
Y's evidential corpus. We derive the impact of the
coarsening and the refinement of the frame on which the
beliefs arc expressed. The conditioning process is also
derived. We propose a closure axiom that asserts that any
measure of beliefs can be derived from other measures of
beliefs defined on less specific frames.

1. Introduction.

Uncertainty induces beliefs?, i.e. dispositions that guide our
behaviour. It sounds natural to try and quantify them on a
numerical scale. These quantified beliefs manifest
themselves at two levels: the credal level where beliefs
arc entertained and the pignistic level where beliefs are
used to take decisions (pignus = a bet in Latin, Smith
1961). Usually these two levels are not distinguished and
probability functions are used to quantify beliefs at both
levels. The justification is usually linked to "rational" agent
behaviour within betting and decision contexts (DeGroot
1970). The Bayesians have convincingly showed that if
decisions must be "coherent", our beliefs over the various
possible outcomes must be quantified by a probability
function. This result is accepted here, except that such
probability functions quantify our beliefs only when a
decision is really involved. That beliefs are necessary
ingredients for our decisions does not mean that beliefs
cannot be entertained without any revealing behaviour
manifestations (Smith and Jones, p. 147).

In this paper, we present a set of axioms that must be
satisfied by the funcuon that should be used to quantify the
beliefs held at the credal level. We call that function a
credibility function. It will be shown that the credibility
funcuon is a belief funcuon. The resulting model is the
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transferable belief model (Smets and Kennes, 1990, Smcts,
1990a, Smcts, 1988).We accept all over that degrees of
beliefs at both the credal and the pignistic levels are
pointwisc defined, degrees of beliefs satisfying a total order.
Ail beliefs entertained by an agent Y at time t and their
degrees arc defined relative to a given evidential corpus
(ECY") i.e., the set of pieces of evidence in Y's mind at time
t. Our approach is normative, the agent Y is an ideal rational
agent, the evidential corpus is deductively closed and it
induces unique degrees of belief. One source of modification
in EC," is updating: it results from the adjunction to the
corpus of a new piece of evidence assumed to be true and
compatible with EC,'. The updating is similar to the
expansion process considered in Gardenfors (1988). Only one
agent Y is considered in this paper, and time t is unique
except when updating will be studied.

This paper summarizes the major results. Details and proofs
are presented in Smets (1992b). We present successively the
propositional space on which credibility functions ared
defined (section 2), the principle axioms characterizing the
credibility functions (section 3), the dynamic of the
credibility functions after non-informative coarsening
(section 4) and refinement (section 5) of the frame of
discernment and adfter updating of the evidential corpus by
an expansion process (section 6). A closure property is
presented that implies that credibility functions are belief
functions (section 7).

Lengthy discussions about the use and appropriateness of the
belief functions to quantify beliefs can be found in two
special issues of the International Journal of Approximate
Reasoning (volumes 4(5): 1990 and 6(3): 1992). These
problems are not tackled here. We only try to find axioms
that justify the use of belief functions for quantifying
beliefs.

2. The Propositional Space,

This section defines the domain on which the agent Y will
express his beliefs at time t. These beliefs arc quantified by a
function Cr that we derive in this paper.

Our presentation is based on possible worlds (Carnap,
1956, 1962, Ruspini, 1986, Bradley and Swartz, [979). Let
L be a finite propositional language. L.el 42 = {w1,
w3, ...0n1 be the set of worlds that correspond to the



interpretations of L. We call 2 the frame of
discernment (the frame for shont). Propositions ideniify
the subsets of £2. Let T be the tautology and 1 be the

contradiction. For any proposition X, let { X1<Q be the sct
of worlds identificd by X. Lel A be a subset of €2, then f4 is

any proposition that identifies A. So A=[f4D, @=I L] and
Q=[Th. The domain of Cr are sets of worlds in . By

definition the actual world @ is an element of 2. VA< (),
Cr(A) quantifies Y's beliefs at time 1 thal GBe A,

In L, two propositions A and B are¢ logically equivalent,
denoted A=B, iff [ AN=[B}. Beside the logical propertics,
there is another concept of equivalence related to the
evidential corpus ECY of Y at time t. This property is
qualified as doxastic in order 10 contrast it from its logical
counterparnts. Let [ ECY B represents the set of worlds where
all propositions deduced on Q from ECY are true. All the
worlds in Q not in [ ECY 1 arc accepted as ‘impossible’ for

Y at time t. Two propositions A and B are said to he
doxastically equivalent for Y at time {, denoted AsB,

if [ ECY B IAT = [ ECY InIBE. For AS€2. A denotes
the set of worlds tn [ ECYInot in A,
A=[ECY Inl- f4].

hence

Let Il be a partition of £, Given the c¢lements of the
partition I1, we build K, the Boolean algebra of the
subsels of £ based on T1. Each sct of worlds in £2 that is an
clements of the partition I1 on which the algebra R is based
1s called an atom of K. Given R, the number of atoms in a
set Ae R ig the number of atoms of R that are included in
A. We call the pair (2. R} a propositional space.

3. The Credibility Function.

Let Y be an agenl. Let ECY be Y's evidential corpus al
time 1. Let € be the frume of discernment on which Y
entertains his beliels conceming the answer @ 10 4 quesuon
of intcrest, i.e. Y allocates his beliels at ume t to the
elements of R, an algebra defined on 2. 11 is postulated tha
the beliels heid by Y are quantificd by a point-valued
“credibility” funcuon Cr which maps R into [0, 1], 18
uniquely defined by (ECY .Y, 1), is monotonic for inclusion,
reaches its tower limit for @ and iws upper himit for Q. The
riple (2, R, Cr) is called a credibility space. The index
in (Q, R, Cr) ¢y denotes the evidential corpus on which Cr
is based.

The first axiom assumes that propositions that arce
doxasticaly cquivalent for Y at ume t receive the same
beliefs (Kyburg, 1987a).

Axiom Al: Equi-credibility of
equivalent propositions. _
Suppose two credibility spaces (€, R;, Cr;), 1=1,2 induced
by ECY. Let Aje Ry, Aze Ry Letfa; and f4o be any
proposition that identifies Aqj and Aj. Lctf,q}.-;f,\z. Then
Cri(A)) = Cro{Ap).

doxasticaly

Next, in Smets (1990b} we prove thal the set of credibility
functions defined on a propositional space (Q, R)is a
convex set, i.e., if Crq and Crz are iwo credibility function<
defined on K, then a.Cry + (I-a).Cra, ac [0,1), is also a
credibility function on K. We also derive the pignistic
transformation, i.e., the transformation that permits the
construction of the probability function needed for decision
making. We prove that probability functions are credibility
funclions {(Smets 1992b).

4.  Coarsening.

We study the impact that would result on Y's beliefls from a
change of the algebra on which Cr is initially defined. These
changes of alpebra are said ‘uninformative’ in that they
do not induce a change in the evidential corpus ECY on
which Y's beliefs at t were based. Two types of change are
considercd: the coarsening and the refinement (see section 5).
Intuiuvely the lirst corresponds o a grouping together of the
atoms of R whercas the second corresponds 1o a splitting of
the atoms of R.

Let (€2, R, Cr) be the credibility space induced by ECY . Let
C be a mapping from R to R, an algebra defincd on the
samc frame £2, such that one to several atoms of R are
mapped into one atom of R and each atom of R is mapped
inte one and only one atom of R'. Let C(w) be the atom of

R’ on which the atom w of R is mapped, and YV Ae R, C(A)
= {uC(w) : we A). The mapping C is called a coarsening.
For A’¢ R, C}(A") is the union of the atoms of R which
arc mapped by C onto an atom of A’. Let Cr’ be the
credibility function induced on R’ from ECY. The same
evidential corpus ECY induces both Cr and Cs*, the only
difference being in the granularity of the algebras. Hence Cr

and Cr’ are strongly related. That relation between Cr and Cr'
15 immediate thanks 10 axom Al

Theorem 1. Let the credibility space (€, R, Cr) Ecy be
derived from (€, R, Cryecy through the uninformative
coarsening C. Then for A€ R: Cr(A") = Cr(C-1(A").

Thanks to thcorem 1, the granularity of €2 in (Q, R, Cr)
becomes cssentially wrrelevant. The only constraint induced
by R on Q is that cach clement of & is inciuded in one
atom of R and each atom of R contains at lcast one clement
ol €. So on¢ has full freedom to change Q provided € is
compatible with R (i.c. sausfy the constraints induced by
Ry

5, Refinement,

Let (£2, R) be a propositional space. Suppose a mapping R
from (£2, R} 1o another propositional space (§2', R where
R’ is an algebra such that cach alom of R is mapped into
one or several atoms of R’ and each atom of R’ is derived
from one and only one atom of K. The siructure of the
framcs of discernment £2 and £2' 1 not importamt for our
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presentation provided they are compatible with R*. Therciore
£ and LY can both be re-defined such that they are equal (and
denoted Q*) and their elements correspond (o the atoms of
R, Let R(A) be the image of Ae R in R, and let R(@)=0.
The mapping R is called a relinement.

Let (2, K, Cr)kcy be acredibility space based on ECY and
fet (€2*, R’} be the propositional space derived from ({2, R)
by the uninformative refinement R. Adapt €2 of the first
credibility space into €*, so both credibility spaces (the
oncs before and afier relinement) share the same {3*. We
must determine what is the credibility function Cr' induced
on R' by ECY, ic. by Cr. As VA€ R, fA=frea). then
Cri(R(A)) = Cr(A) by axiom Al. But Cr' is not defined on
the elements of R that are not the image of some clements
of R under R. Thus we must define the credibility Cr' on %K'
for these elements of R’ given the credibility Cr on R and
the uninformative refinement R,

In order o explain the consiruction of Cr', consider the
following illustrative cxampie. Let @ be Paul's age, £2 = [0,
=}, and w] = [(,20), w2 = [20, 40), w1 = [40), e} be the
three atoms of K. Let Cr quaniifies Y's beliefs on K hased
on ECY. Let Py, P2 and P3 be three propositions. Y docs
not know what are these three propositions, he only knows
that onc and only one of them is true. Let a refinement R
from R 10 R* with R{(w1} = w1y, R{m2) = @?, and R(w3)
= {X1, X2, X3} where X; ="'w3 and P

The problem s to determine Cr' given the evidential corpus
ECY that leads 10 the construction of Cr on R and the

knowledge of the refinement R. Consider the value of
Cr'(wywX;). The uninformativeness of R is tanslated into

the requirement:
Cri{wpuXy) =CrliwwXs) = Cr(ouXa).

Supposc now that onc uses another uninformative
refinement R™ from (§2*, R) to (2%, R™) such that R™{w 1)
= w1, R™(w2) = w2, and R"(3) = {Y), Y2) where fy =fx,
S1,Efx, 0K, - The credibility Cr™ aver R" is such that
CrifwoY ) = CrijmpuYa),
By axiom Al:
Cri{wyuY )= CriimpwuXy).
CrifewYs) = CrilmpwXauXs).

Therefore one dblains: Cr{imiuXsg) = CrimjuX ) =
Cr(wy WY 1) = Cr(miuYs) = Cr{iwuXquXa) Su
Cr'lw1wX) is equal for all XcR(w3) (where XCY means
that X<Y but X#Y). The impact of an uninformative
refinement is formalized by axiom R1 where we must only
postulate the equalities on the atoms, as the other equalitics
ar¢ deduced from axiom A1l and the samc argument as the
one just presenied.

Axiom R1: Let (2, R, Cr)Ecy be a credibility space and

et R be a refinement from (€2, K) 10 (', R"). Let w be a
given alom of R and Be X' where BNR(w) = B. Let X;:
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i=1, 2...n be the atoms of R’ included in R{w). Let (€)', R’,
Cryscy be the credibility space induced from (Q, K,
CryecY by R on (', R"). Then:

Cr{BuX;) = Cr'(Bqu) Vige(l, 2..n).

The next theorem just formalize the intvitive proof detailled
before introducing axiom R1,

Theorem 2: Under axiom R1 conditions, for any we ),
any Be R’ and with BNR{w)=@, Cr'(BwX) is constant for
all XcR(w).

The property represents a serious departure from what is
encountered in classical probability theory. That departure
reflects the difficulty for probability theory 1o deal with
states of total ignorance as those encountered with the Py's.
In fact, in probability theory, on¢ cannot accept
simultancously axiom R1 for any uninformalive refinement
R and axiom Al. In probability thcory, the introduciton of a
uninformative refinement is accompanied by the introduction
in ECY of the information that tells for each atoms © of R
how the probability given 1o ® is distributed among the
new atoms of R{w). Often an equidistribution of the
probability given (o @ among the atoms of R{w) is
assumed, but any distribution is acceptable. The information
about that distribution is linked to the refinecment, therefore
ECY is updated, and thus the refincment is not
uninformative as requircd. The uninformative refinements we
consider in axiom R1 are those that comrespond only Lo a
change in the granularity of the algebra on which our
credibility function is build, without changing the evidential
corpus ECY on which Y's beliefs are based.

Another axiom must be assumed o determine Cr' after
uninformative refinement. Let AR and let n distinct atoms
®;, =1, 2.n of R, nonc being included in A, Let
XjcR{w,), 1i=l, 2.n. We postulate that
Cr(R(A)uXjuXj...wXy) depends only on the beliefs
Cr(AwB) given to the union of A with cach subsel B of
WY WU Ity

Axiom R2: Let (€, R, Crycy be the credibility space
based on ECY. Let R be a uninformative refinement from
(€2, R) 10 (€2, R'). Let (€, R, Cr'yEcy be the credibility
space induced from (€2, R, Cryecy by R on (€2, R'). Let
AeR . Let w;: i=1.2..n, be n diffcrent atoms of R with
Arwm; = @. Let X be any clement of R strictly included in
R{w;): i=1,2..n. Then there is a g function such that:

CrR(A)UX1..UXy) = g({CHAUB): Be R, BCwy..um,])

In fact, axiom R2 could be simplificd by requiring only that
CriR(ApXyuX3...uX,) does not depend on Cr(X) when
XN(Auw)u apu.uwy) = @. Intuitively that property is
of the same nature as the one underlying Axiom Al:
irrelevant credibilities should not interfere with the other



credibilitics. Given that requirement, axiom Al permits o
deduce axiom R2. The gain is not worth the needed proof.

From axioms R1 and R2, it is possibie o prove that Cr'
must sausfy one of the following three relations:
CriR(AYUXUXs...0X ) = Cr(A)
Cr{R(A)UX | UXs..UX ) = CrlAUL| U WU Uwy)
CrR(A)UX10X7...0Xp) = max(Cr(A), Cr(w ), ..Crlty))
The first solution is the onc encountered when Cr s a belicf
function, and the second is the one encountered when Cr is g
plausibilty function. The third solution will not satisly the
conditioning axioms (but find an application in possibitity

theory).

6. Updating.

Let ECY be the evidential corpus held by Y at time ( and
let (§2, R, Cr)rcY be the credibility space characicrizing
Y's beliefs at ime 1 about which subsets of worlds of €2
among those in R include the actual world ®. Suppose Y
expends ECY by adding the evidence Ev s compatible with
ECY that implics that all worlds in A < €2 are impossible,
i.c. thal the actual world &3 is not in A, or equivalently that
f4=T. How docs Y update his beliefs given the addition of
Eva to ECY? Let Cry be the conditional credibility function
that results from the addition of Evg o ECY. Bt is
postulated in axiom M1 that Crg is derived from the
credibitity Tunction Cr based on ECY .

Axiom MI1: Let (€2, X Cr)pcy be a credibility space
based on ECY. Let Evy bhe an evidence compatible with
ECY that implies that f4=T. Let (€, R, Cra)icru{EvA)
be the credibility space based on ECY{Eva ). Then Cry
dcpends only on Crand A,

To derive the conditioning process, we will use the wea of
itcratcd conditioning. For A BCQ, let f4, fp and fa ~p be
the propositions that denotes the sets of worlds A, B and
A~B. Suppose you learn 1) that f4=T and then that fp=T,
or 2) that fp=T and then that f4=T, or 3) directly tha
fang=T. The final conditional belicl should be the same in

these three cases. This requirerment introduces enough
constraints to derive the mathematical structure of the
updating process.

We prove that the conditional credibility Tunction Cra(B)
depends only on some of the elements of K.

Theorem 3: Let (2, R Cr)rcy be a credibiliy space
based on ECY. For Ae R, let Evy bc an cvidence
compatible with ECY that implics that f4=T. Let ({2,
R, Cra)ECYwU{EvA} be the credibility space based on
ECYU{Eva]. Then there is a f function such that Cra
satisfies:

1: Cra(B)y=0

and VBe R

2: Cra(B) = Cra(BrA)

3: Cra(B) =  (Cr(BNA), Cr(BnA), Cr(A), Cr(A),
Cr{(BnAYUA), Cr{(BMnAYUA), Cr((2))

VYBC A, Be®R

The tollowing thcorem formalizes the idea that refining one
atom w of R into two new atoms w) and w2 in R' and
conditioning then on @y will leave the credibility function
unchanged (cxcept the algebra has changed). To iHustrate the
undcrlying idea, consider the following cxample dealing with
Paul's age ©. Consider Y's beliefs aboul @, im particular
Crgap(®<20). Then consider a refinement R from (€2, K)
o (, R with R([0,20)) = {0,20), R([20,40)) =
({120,400, ([20.40),—Q) ], R([40,00)) = [40,20), where Q is
& proposition unknown o Y (like the Pi’s propositions of
section 5). Y builds his credibility function Cr' on R'. Than
Y learns that Q is rue. Whalt is Y's beliels about <20
given ((B<20) or (20<m<40 and Q)). We feel it has to be
cyual o Y's previous belief Crgeqo(@<20) about B<20
goven (O1<20 or 20<@<40). Indecd the Q story becomes
irrclevant to Y's beliels on @, and this is what thcorem 4
confirms. Formally one has:

Theorem 4: Let (€2, R, CryEcy be the credibility space
based on ECY . Let a uninformative refinement R from (€2,
R} o (€F, R such that cach atom of R is mapped onto
itself in R', except one atom @ of R that is refined into
amd w2 by R. Let Cr' be the credibility function derived
from Cr on R' by R. Suppose the conditioning of Cr' on
wy then VAe R Cr'az(R(A)m @q) = Cr(A)

We introduce two other axioms. The first (M2) eliminates
degenerated solontions, The sccond (M3) says that if fotr
XYeR, X, YTAe R, XnY=0, Cr{XuwY)=CrHX) + Cr(Y)
then the conditional crfedibivlkty function Crp obeys
CralXuY) = Cra(X) + Cra(Y) (just as in probability
theory), We do not require that normalization is preserved, as
it will correspond 10 a particular case of our conditioning
operator. The axioms M1, M2 and M3 combined with the
axioms ahout refinement are sufficient w derive the explicit
structure of the conditional credibility Tunctions.

Axiom M2: Non-degenerated solutions. Cra(B} is

not constant for all Ae R.

Axiom M3: Additivity preservation. Lei ({2, R .Cr)
be a credibility space. If the credibility funcuon Cr s
additive, then addiuvity s preserved after conditioning.

Theorem 5. Let (2, R, Cr)rcy be the credibility space
based on ECY . Let {w], @9, ..o, be the set of atoms of
K. Let a uninformative refinement R from (€2, R) o (€2,
K Ler (€2, R, Cr)ecy be the credibility space derived
from (Q, R, Cryecy by R. Let 1< (1.2,..n]. For 1€, let
X;cR(w)). Let Ae R and w;nA=0, Viel. The refinement

and the conditioning process admit only two solutions:
The minimal solution 1s:

Smets 601



_CrBUA) - Cr(A)
CaB) =" @) - cra) AW
Cri(R(A} U '(é—fxi)) =Cr(A)

The maximal solution is:
CriAnB
Cra®) = SEA0 cram)

Cr(R(A} v (uX))) = CrlA U (uy))
iel il

The qualification of the solutions as minimal and maximal
rcsults from the fact they correspond to the extremal
solutions among Lhe possible solutions. Indecd the
following incqualitics are required by the monotonicity for
inclusions and axiom Al:
Cr{A) <« Cr'{(R{A) v ,(L,;xi)) <CriA v 1;.){(1)9).
1€ 1

The minimal and the maximal solutons of theorem 5 are in
fact dual. We define the co-credibility function CeCr on R
induced by a credibitity function Cron R by:
CoCr(A) = Cr(£2) - Cr(A) YAeR

If the credibility function satisfies the minimal solution, its
related cocredibility function satisfies the maximal solution,
and vice versa. Therefore there is in practice only onc
credibifity function, as the other solution is always ils dual.
That duality relation is the one encountered between the
belicf functions and the plausibilty functions.

The solutions for Cra(B) depend on the valuc of Cra¢A).
Three particular cases meril consideration.

Cra(A) = 1: the solutions are thosc obtaincd by the
normalized Dempster's rule of conditioning, i.e. the
solutions described in the transferable belief model under
closed-world assumption.

Cra(A)y = Cr{S2) - Cr(A) in the minimal sofution and
Cra(A) = Cr{A) in the maximal solution: the solutions are
those obtained by hc unnormalized Dempsier's rule of
conditioning as described in the transferable behef model
under open-world assumption.

Cra(A) = Cr(£2): the solutions corresponds to those obtained
by a partially renormalized Dempsier's rule of condisoning.
It fits with the idea that the belief nitially given w £1s
preserved by proportionaly reallocating the behiel given
initially to A . The nature of such a solution is ncvertheiess
not very clear to us exceptf Cr{Q)=1 in which casc it is
eguivalent 1o the first solution.

If inivally the belief is quantified by a probability function,
and if one accepts Cra(A} = 1, then both the maximal and
the minimal solutions of theorem 5 are wdenucal and
correspond 10 the conditioning rule encountered in
probability theory,

Gardenfors (1988) proposcd two compelling propertics for
probabilistic revision functions, that arc not stnultancously
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satisfiable in probability theory. In the context of the
minimal solution, they translate into:

Homomorphisme:

If Cr(K)CCr(Q) and Cr = p.Cr' + (1-p).Cr", pe10,1], then
Cra=p.Cra + (1-p).Cr'4.

Preservation:

If Cr( A }<Cr{€2) and Cr(B)} = Cr(2), then Cra(B) = Cra(A).

Homomorphisme is satisfied only by the unnormalized
Dempster's rule of conditioning. 1t fails whencver a
normalization facior is introduced through a division.

Preservation is satisfied by both solutien for conditioning.
One could have considered that Cra(B) = Cr(Q) would be
required by the preservation. But in order to sausly both
homomorphisme and preservation, ene would have 1o require
that: Cra(B)} = Cra(A) = Cr(£2) - Cr(K). These equlities are
satisfied in the ransferable behef model for quantified belicfs
where conditioning is performed by the unnormalized
Dempster's rule of conditioning (Smets and Kennes, 1990).
In that case, the prerequisitc Cr{ A )<Cr(£2) can even be
relaxed, but if Cr{ A )=Cr({}). then Cra(B)=0 ¥Be R, so
even Cra{f2)=0, a belief that describes a state of complete
contradiction not dissimilar 1o the one encountered in logic
when onc simultancously knows something and \s contrary.
This problem is studicd in Smets (1992).

7. Credibility and Belief Functions.

The aim of this paper was to determine which propertics are
required in order to justify that beliefs should be quantificd
by belief functions. Up to here the credibility functions are
not restricted 1o being belicf functions. To achicve our aims,
we introduce a closure property that reduces the credibility
functions to beliefl functions,

Let a propositional space (£}, R), The only relevam
information in R w define the sci of alt credibility functions
defined on R is the number r of atoms in R (r = IR} s0 we
wrile ¥ for the set of credibility functions defined on an
algebra with r atoms and that sausfy to the minimal
selutions of theorem 5. Let Ty be the ‘vacuous’ credibility
tunclion on {€2, R} where Io{X)=0 ¥X <, X2, and
Io(2)=1.

Let B, be the set of belief funclions defined on an algebra
with 1 atoms. ., 15 closed under conditioning. Furthermore
all cicments of &, can be gencraied from the vacuous
credibility function Igye 87 by appropriatc conditioning and
simplex combinations {a simplex combination is a convex
combination ¢xcept that the sum of the weights may be in
10, 1] instead ol being 1).

Lct #8, be the set of refinements R; | i=1, 2..., from (£2, R)
to ({2, R') where Rt = r and IRl = r+1, i.e. onc and only
one atom of R has been refined into two atoms of R'. For
Cre %7, Rje 7B, let Ri(Cr)e B, be the credibility function



defined on R’ after aplying the refinement R; by using the
minimal solution given in thcorem 5.

Let Exi(¥7) be the sci of credibility functions on R’ that can
be obwined by convex combinations of the credibility
functions generated on R' by the application of the
refinement operators in %8, on the credibility functions in
¥7- Let Z(Exu($7)) be the closure of Ext(%7) (hat contains
all the credibility funcuons that can be obatined from these
in Ext(%7) through conditioning (by the minimat sofution of
theorem 5) and simplex combinations. Formally:

Ext(®7) = {Cr: Cre &, (,Cr = EuiRi(Cri), Crie 7,
1

Rie B, a2}, Yo =1}
1

DEXFY)) = {Cr: Cre B4y, Cr =2 aiCria, 0,20,
i

Eai =1, Cria s the (mimmal) conditioning on Ajc X
i
of Crye Z(Ex )

The problem is to decide if 5,y = Z(ExFT)) or not? We
cannol prove it, bul we fecl it can be postulated. We {ecl
reasonable 1o assume that any credibility function in ¥,
could be derived from some credebitity functions in B,
through refinement, conditioning and simplex cominations,
The Closure Axiom : & = (EED

This axiom has the immediale consequence that B, = %7,
1.e. every credibility function in ¥ is a beliet function.

Theorem 6.

1.8, =867

2: credibility functions that satisfy the minimal solution for
conditioning and refinement arc belief functions.

3: credibility functions that satisfy the maximal solution for
conditioning and refinement are plausibilty functions.

8. Conclusions.

We have shown under which conditions beliefs arc quantified
by belief functions at the credal level, i.e. where beliefs are
entertained. These conditions seem acceptable, and therefore
they provide a justification for the transferable belief model
to quantify some one's beliefs (SmeLs and Kennes, 1990).

One might be tempted to consider some of the axioms as
unreasonable. It happens most if not all that the axioms are
satisfied in probability theory (except for the simultaneous
satisfaction of the homomorphism and the preservation
properties). Therefore the rejection of our axioms might lead
to a simultaneous rejection of probability theory! In fact
probability functions are special cases of normalized belief
functions.

The nature and use of the transferable belief model is detailed
in Smets and Kennes (1990). In Smets (1990b) we show and
explain what is the probability function that must be used to
make decisions given the beliefs entertained at the credal
level. In Smets (1990a) we show what is the justification
of the Dempsters rule of combination (see also Klawonn
and Schwecke, 1992, Klawonn and Smets, 1992). The
concept of distinctness is described in Smets (1992c). The
meaning of Cr(§})<1 is analysed in Smcts (1992a). The
combination of the belief functions induced by two non-
distinct pieces of evidence are already tackled in Kennes
(1991) and Smcts (1986).

References.

BRADLFY R and SWARTZ N. (1979) Possible worlds Basil Blackwell, Oxford,
UK

CARNAP R (1956) Meaning and Necessity. University of Chicago Press,
Chicago, lllinois

CARNAP R (1962) logical Foundations of Probability University of Chicago
Press, Chicago. lllinois.

DFGROOT M.H (1970) Optimal statistical decisions. McGraw-Hill, New York.
GARDFNFORS P (1988) Knowledge in flux
epistemuic slates MIT Press, Cambridge, Mass
KFNNFS R(1991) Evidential Reasoning in a Categonal Perspective
Conjunction and Disjunction of Belief Functions in D'Ambrosio B.D., Smets P.,

Modelling the dynamics of

and Bonissone P.P eds. Uncertainty in Al 91,Morgan Kaufmann, San Mateo, Ca,
USA. 1991, pg. 174-1 81

KLAWONN F. and SCHWECKF E. (1992) On the axiomatic justification of
Dempster's rule of combmatior Int. J Intel Systems 7:469-478.

KLAWONN | and SMFTS Ph. (1992) The dynarnmic of belief in the transferable
belief model and specialization-generah/ation matrices in Dubois D,. Wellman
MP, d'Ambrosia B and Smets P Uncertainty in Al 92 Morgan Kaufmann. San
Mateo, Ca, USA. 1992. pg. 130-137.

KYBURG H (1987a) Objective probabilities 1JCA1-87, 902 904

RUSPINI F.H. (1986) The logical foundations of evidential reasoning. Technical
note 408. SRI International. Mcnlo Park, Ca

SHAFFR G (1976) A mathematical theory of evidence Princeton Univ. Press
Princeton, NJ.

SMFTS P (1986) Combining non distinct pieces of evidence Proc NAF1P86,
New Orleans, 544-548.

SMFTS P (1988) Belief functions in SMCTS Ph. MAMDANI A.. DUBOIS D
and PRADF H ed Non standard logics for automated reasoning Academic Press,
London pg 253-286.

SMFTS P. (1990a) The combination of evidence in the transferable belief model
IFFF-Pattern analysis and Machine Intelligence, 12.447-458

SMFTS P (1900b) Constructing the pigmstic probability function in a context of
uncertainty Uncertainly in Artificial Intelligence 5, Hennon M., Shachter R.D.,
Kanal IN and Lemmer J.F eds. North Holland, Amsterdam, , 29-40.

SMFTS P (1992a) The nature of the unnormali/.cd beliefs encountered in the
transferable belief model in Dubois D , Wellman M P, d'Ambrosio B and Smets
P Uncertainly in Al 92 Morgan Kaufmann, San Mateo, Ca, USA, 1992, pg.292
297

SMFTS P. (1992b) An axiomatic justifiaction for the use of belief function to
quantify beliefs IRIDIA 1R 92

SMFTS P (1992c) The concept of distinct evidence IPMU 92 Proceed ings.pg
789-794.

SMFTS P and KFNNFS R (1990) The transferable belief model IRIDIA-TR-90-
14/2. to be published by Artificila Intelligence

SMITH CAB (1961) Consistency in statistical inference and decision J Roy
Statist Soc. B231-37

SMITH P and JONES OR (1986) The philosophy of mind, an introduction.
Cambridge University Press. Cambridge

Smets 603



