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A b s t r a c t 

This paper provides a search-based algorithm for com­
puting prior and posterior probabilities in discrete 
Bayesian Networks. This is an "anytime" algorithm, 
that at any stage can estimate the probabilities and give 
an error bound. Whereas the most popular Bayesian net 
algorithms exploit the structure of the network for effi­
ciency, we exploit probability distributions for efficiency. 
The algorithm is most suited to the case where we have 
extreme (close to zero or one) probabilities, as is the case 
in many diagnostic situations where we are diagnosing 
systems that work most of the time, and for common-
sense reasoning tasks where normality assumptions (al­
legedly) dominate. We give a characterisation of those 
cases where it works well, and discuss how well it can be 
expected to work on average. 

1 I n t r o d u c t i o n 

This paper provides a general purpose search-based tech­
nique for computing posterior probabilities in arbitrarily 
structured discrete1 Bayesian networks. 

Implementations of Bayesian networks have been 
placed into three classes [Pearl, 1988; Henrion, 1990]: 

1. Exact methods that exploit the structure of the 
network to allow efficient propagation of evidence 
[Pearl, 1988; Lauritzen and Spiegelhalter, 1988; 
Jensen ct a/., 1990]. 

2. Stochastic simulation methods that, give estimates 
of probabilities by generating samples of instantia­
tions of the network, using for example Monte Carlo 
techniques (see [Henrion, 1990]). 

3. Search-based approximation techniques that search 
through a space of possible values to estimate prob­
abilities. 

At one level, the method in this paper falls into the ex­
act class; if it is allowed to run to completion, it will have 
computed the exact conditional probability in a Bayesian 
network. I t , however has the extra feature that it can 
be stopped before completion to give an answer, with 
a known error. Under certain distribution assumptions 
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All of the variables have a discrete, and here even finite, 

set of possible values. 

(Section C) it is shown tha t convergence to a smal l error 
is quick. 

Wh i le the efficient exact methods exploi t aspects of 
the network s t ruc tu re , we instead exploi t extreme prob­
abi l i t ies to gain efficiency. The exact methods work well 
for sparse networks (e.g., are l inear for singly-connected 
networks [Pearl, 1988]), but become inefficient when the 
networks become less sparse. They do not take the 
d is t r ibu t ions into account. The method in the paper 
uses no in fo rmat ion on the s t ruc ture of the network, but 
rather has a niche for classes of problems where there 
are "no rma l i t y " condi t ions that dominate the probabi l ­
i ty tables (see Section 6). The a lgor i thm is efficient for 
these classes of problems, bu t becomes very inefficient as 
the d is t r ibu t ions become less extreme. Th is a lgor i thm 
should thus be seen as having an or thogonal niche to the 
a lgor i thms that exploit s t ruc ture for efficiency. 

2 B a c k g r o u n d 

2.1 Probability 
In this section we give a semantic view of probab i l i t y 
theory 2 and describe the general idea behind the search 
method . In some sense the idea of this method has no th-
ing to do w i t h Bayesian networks — we just have to 
commi t to some independence assumptions to make the 
a lgor i thm more concrete. 

We assume we have a set of r a n d o m v a r i a b l e s (wr i t -
ten in upper case). Each random variable has an associ­
ated set of va lues ; vals(X) is the set of possible values 
of variable X. Values are w r i t t en in lower case. An 
a t o m i c p r o p o s i t i o n is an assignment of a value to a 
random variable; variable X having value c is w r i t t en as 
X = c. Each assignment of one value to each random 
variable is associated w i t h a p o s s i b l e w o r l d . Let be 
the set of all possible worlds. Associated w i t h a possi­
ble wor ld w is a measure w i t h the constraint tha t 

2This could have also been presented as jo int distribu­
tions, with probabilistic assignments to the possible worlds 
corresponding to jo int distributions. If that view suits you, 
then please read 'possible worlds1 as 'elementary events in a 
joint distr ibution' [Pearl, 1988, p. 33]. 
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2.2 S e a r c h i n g p o s s i b l e w o r l d s 

For a finite number of variables w i t h a f in i te number 
of values, we can compute the probabi l i t ies direct ly, by 
enumerat ing the possible worlds. Th is is, however, com0-
puta t iona l l y expensive as there are exponent ial ly many 
of these ( the p roduc t of the sizes of the domains of the 
variables). 

The idea behind the search method presented in this 
paper is mot iva ted by considering the questions: 

• Can we est imate the probabi l i t ies by only enumer­
a t ing a few of the possible worlds? 

• How can we enumerate just a few of the most prob­
able possible worlds? 

• Can we est imate the error in our probabil i t ies? 

• For wha t cases does the error get small quickly? 

• How fast does it converge to a small error? 

This paper sets out to answer these questions, for the 
case where the d i s t r i bu t ion is given in terms of Bayesian 
networks. 

2.3 B a y e s i a n N e t w o r k s 

A Bayesian network [Pearl, 1988] is a graphical repre­
sentat ion of ( in)dependence amongst random variables. 
A Bayesian network is a directed acyclic graph where 
the nodes represent random variables. If there is an arc 
f rom variable B to variable A, B is said to be a par­
ent of A. The independence assumpt ion of a Bayesian 
network says tha t each variable is independent of its non-
descendents given i ts parents. 

Suppose we have a Bayesian network w i t h random 
variables X1 , . . . , Xn,. The parents of A', are wr i t t en as 

Associated w i t h the Bayesian network are condi t ional 
probab i l i t y tables which gives the marginal probabi l i t ies 
of the values of X i, depending on the values of its parents 

3This search tree is the same as the probability tree of 
[Howard and Matheson, 198l] and corresponds to the se­
mantic trees used in theorem proving [Chang and Lee, 1973, 
Section 4.4], but with random variables instead of comple­
mentary literals. 
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Partial description (v1, • • • , Vj) corresponding to the 
variable assignment 

There is a one to one correspondence between leaves 
of the tree and possible worlds (or complete assignments 
to the variables). 

We associate a probability with each node in the tree. 
The probability of the partial description (v1, ...,vj) is 
the probability of the corresponding proposition: 

This is well defined as, due to our variable ordering, all 
of the parents of each variable has a value 
in the partial description. 

The following lemma can be trivially proved, and is 
the basis for the search algorithm. 
Lemma 3.2 The probability of a node is equal to the 
sum of the probabilities of the leaves that are descendents 
of the node. 

This lemma lets us bound the probabilities of possible 
worlds by only generating a few of the possible worlds 
and placing bounds on the sizes of the possible worlds 
we have not generated. 

3.3 Searching the Search Tree 
To implement the computation of probabilities, we carry 
out a search on the search tree, and generate some of the 
most likely possible worlds. There are many different 
search methods that can be used [Pearl. 1984]. 

Figure 1 gives a generic search algorithm that can be 
varied by changing which element is chosen from the 
queue. There is a priority queue Q of nodes, and a set 
W of generated worlds. We remove a node (e.g., the 
most likely); either it is a leaf (if j = n) in which case it 
is added to W or else its children are added to Q. 

Note that each partial description can only be gener­
ated once. There is no need to check for multiple paths 
or loops in the search. This simplifies the search, in that 
we do not need to keep track of a CLOSED list or check 
whether nodes are already on the OPEN list (Q in Figure 
1) [Pearl, 1984]. 

No matter which element is chosen from the queue at 
each time, this algorithm halts and when it halts W is 
the set of all tuples corresponding to possible worlds. 

4 Estimating the Probabilities 
If we let the above algorithm run to completion we have 
an exponential algorithm for enumerating the possible 

worlds that can be used for computing the prior proba­
bility of any proposition or conjunction of propositions. 
This is not, however, the point of this algorithm. The 
idea is that we want to stop the algorithm part way 
through, and determine any probability we want to com­
pute. 

We use W, at the start of an iteration of the while loop, 
as an approximation to the set of all possible worlds. 
This can be done irrespective of the search strategy used. 

4.1 P r i o r Probab i l i t ies 
Suppose we want to compute P(g). At any stage (at 
the start of the while loop), the possible worlds can be 
divided into those that are in W and those that will be 
generated from Q. 
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W h a t is in terest ing about this is that the error is in­
dependent of g. Thus when we are generat ing possible 
worlds for some observat ion, and want to have poste­
r ior estimates w i t h i n some error, we can generate the 
required possible worlds independent ly of the proposi­
t ion tha t we want to compute the probabi l i ty of. 

5 Search Strategies 

The above analysis was independent of the search strat­
egy (i.e., independent of which element we remove f rom 
the queue). 

We can carry out various search strategies, to enu-
merate the most l ikely possible worlds. For example, 
[Poole, 1993] discusses a mul t ip l icat ive version of A*[Pearl, 1984], w i t h confl icts used to refine a heuristic 
func t ion . 

In th is paper the search strategy we use is where the 
element of the queue w i t h highest pr ior probabi l i ty is 
chosen at each stage. Th is paper does not study various 
search strategies, but analyses one. I make no claim that 
this is the best search strategy (see Section 7), but it 
forms a base case w i t h which to compare other strategies. 

6 Complex i ty 
The problem of f ind ing the posterior probabi l i ty of a 
proposi t ion in a Bayesian network is NP hard [Cooper, 
1990]. Thus we should not expect that our algor i thms 
wi l l be good in the worst case. Our a lgor i thm, when 
run to comple t ion , is exponent ia l in comput ing the exact 
pr ior and poster ior probab i l i t y of a hypothesis. 

Because of the the "any t ime" nature of our a lgor i thm, 
which trades search t ime for accuracy, we should not 
consider run t ime independent ly of error. It is interesting 
to est imate how long it takes on average to get w i th in 
some error, or how accurate we can expect (or guarantee 
as as asympto t i c behaviour) to be w i th in a certain run 
t ime. 

As we have probabi l i t ies it is possible to carry out an 
average case complex i ty analysis of our a lgor i thm. 

If we make no assumptions about the probabi l i ty dis­
t r ibu t ions , the average case of f ind ing the most likely 
explanat ion or pr ior probabi l i ty w i t h in error is ex­
ponent ia l in the size n of the Bayesian network [Provan, 
1988]. Th is can be seen by not ic ing tha t the size of com­
plete descr ipt ions are l inear in n and so the probabi l i ty 
of explanat ions is exponent ia l ly small in n. This means 

tha t we need to consider exponent ia l ly many explana­
t ions to cover any f ixed p ropor t ion of the probabi l i ty 
mass. 

Th is is not always a reasonable d is t r ibu t ion assump­
t ion , for example, when using this for diagnosis of a sys­
tem tha t basically works we would like to assume that 
the under ly ing d is t r ibu t ion is such tha t there is one as­
signment of values (the "norma l values") t ha t dominates 
the probabi l i ty mass. Th is also may be appropr ia te for 
commonsense reasoning tasks where normal i t y assump­
tions (allegedly) dominate (i.e., we assume tha t abnor­
mal i ty is rare [McCarthy, 1986]). 

For our analysis we assume tha t we have extreme prob­
abil i t ies for each condi t ional probabi l i ty given. For each 
value of the parents of variable A \ , we assume that one 
of the values for X i is close to one, and the other values 
are thus close to zero. Those tha t are close to one we 
call normality values; those tha t are close to zero we call 
faults: 
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6.3 P o s t e r i o r P r o b a b i l i t i e s 

As discussed in Section 4.2, at any stage th rough the 
loop in the a lgo r i t hm of F igure 1, we can est imate the 
poster ior p robab i l i t y of g given obs w i t h an error tha t is 
independent of g. 

To make the poster ior error less than E, we require 

this occurs when 

which can be ensured if we make sure tha t 

We can use the analysis for the pr ior probabi l i ty , but 
mu l t i p l y i ng the error bound by a factor t ha t is an esti­
mate of P(obs). As it is unl ikely t ha t the observations 
have a low probabi l i ty , it is unl ikely to have a s i tuat ion 
where the error te rm required is dominated by the prob­
ab i l i ty of the observat ion. Th is observat ion is reflected 
in Theorem 6.5 below. 

The fol lowing theorem gives a PAC (probably approx­
imate ly correct) character izat ion of the complex i ty 4 . 

T h e o r e m 6.5 In the space of all systems, to compute 
the poster ior p robab i l i t y of any propos i t ion (of bounded 
size) given observation obs, we can guarantee an error of 
less than for a t l e a s t o f the cases i n t ime 

See Append ix A for a proof of th is theorem. 
Note t ha t in this theorem we are considering "the 

space of al l systems". For diagnosis, th is means tha t 
we consider a random ar t i fac t . Most of these have no 
faul ts; and presumably would not be the subject of d i ­
agnosis. Thus the space of al l systems is probably not 
the space of al l systems tha t we are l ikely to encounter 
is a diagnostic s i tua t ion . A more realist ic space of sys­
tems by which to judge our average-t ime behaviour is 
the space of al l broken systems, t ha t is those t ha t have 
at least one fau l t 5 . We are thus excluding all bu t b of 

4 This has the extra property that we know when we are 
in a case for which we cannot guarantee the error; when we 
have run our algorithm we know our error. 

5 It could also be argued that this is also inappropriate; we 
would rather consider the space of systems that exhibit faulty 
behaviour. This would be much harder to analyse here, as we 
have no notion of the observable variables developed in this 
paper. The space of broken devices seems like a reasonable 
approximation. 
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7 Refinements 

There are a number of refinements that can he carried 
out to the algorithm of Figure 1. Some of these are 
straightforward, and work well. The most straightfor­
ward refinements are: 

If we are trying to determine the value of . we can 
stop enumerating the partial descriptions once it can be 
determined whether a is true in that partial description. 
When conditioning on an observation we can prune any 
partial description that is inconsistent with the observa­
tion. 

We do not really require that we find the most likely 
possible worlds in order, as we are just summing over 
them anyway. One way to improve the algorithm is to 
carry out a depth-first depth-bounded search. We can 
guess the probability of the least likely possible world we 
will need to generate, use this as a threshold and carry 
out a depth-first search pruning any partial description 
with probability less that this threshold. If the answer 
is not accurate enough, we decrease the threshold and 
try again. This is reminiscent of iterative deepening A* 
[Korf, 1985], but we can decrease the bound in larger 
ratios as we do not have to find the most likely possible 
world. 

We can use conflicts [de Kleer, 1991] to form a heuris­
tic function for a multiplicative version of A* [Poole, 
1993]. 

See [Poole, 1993] for a Prolog implementation that 
incorporates these refinements. 

8 Comparison w i t h other systems 

The branch and hound search is very similar to the 
candidate enumeration of de Kleer's focusing mecha­
nism [de Kleer, 199l]. This similarity to a single step 
in de Kleer's efficient method indicates the potential of 
the search method. He has also been considering cir­
cuits with thousands of components, which correspond 
to Bayesian networks with thousands of nodes. It seems 
to be very promising to combine the pragmatic efficiency 
issues confronted by de Kleer, with the Bayesian network 
representation, and the error bounds obtained used in 
this paper. 

Poole [1992a] has proposed a Prolog-like search ap­
proach that can be seen as a top-down variant of the 
bottom-up algorithm presented here. It is not as efficient 
as the one here. Even if we consider finding the single 
most normal world, the algorithm here corresponds to 
forward chaining on definite clauses (see [Poole, 1992b]), 

which can be done in linear time, but backward chain­
ing has to search and takes potentially exponential time. 
The backward chaining approach seems more suitable 
however when we have a richer language [Poole, 1992b]. 

D'Ambrosio [1992] has a backward chaining search al­
gorithm for "incremental term computation", where he 
has concentrated on saving and not recomputing shared 
structure in the search. This seems to be a very promis­
ing approach for when we do not have as extreme prob­
abilities as we have assumed in this paper. 

Shimony and Chamiak [1990] have an algorithm that 
is a backward chaining approach to finding the most 
likely possible world. The algorithm is not as simple 
as the one presented here, and has worse asymptotic be­
haviour (as it is a top-down approach —- see above). It 
has not been used to find prior or posterior probabilities, 
nor has the average-case complexity been investigated. 

This paper should be seen as a dual to the TOP-N 
algorithm of Henrion [1991]. We have a different niche. 
We take no account of the noisy-OR distribution that 
Henrion concentrates on. 

9 Conc lus ion 
This paper has considered a simple search strategy for 
computing prior and posterior probabilities in Bayesian 
networks. It is a general purpose algorithm, that is al­
ways correct, and has a niche where it works very well. 
We have characterised this niche, and have given bounds 
on how badly it can be expected to perform on average. 
How common this niche is, is, of course, an open ques­
tion, but the work in diagnosis and nonmonotonic rea­
soning would suggest that reasoning about normality is 
a common task. 

A Proo fs 
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