On the Hardness

of Approximate Reasoning

Dan Roth*

Aiken Computation Laboratory, Harvard University

33 Oxford St., Cambridge, MA.

02138

U. S. A.
danr@das.harvard.edu

Abstract

Many Al problems, when formulated, reduce
to evaluating the probability that a preposi-
tional expression is true. In this paper we
show that this problem is computationally in-
tractable even in surprisingly restricted cases
and even if we settle for an approximation to
this probability.

We consider various methods used in approx-
imate reasoning such as computing degree of
belief and Bayesian belief networks, as well as
reasoning techniques such as constraint satis-
faction and knowledge compilation, that use
approximation to avoid computational difficul-
ties, and reduce them to model-enumeration
problems over a propositional domain

We prove that counting satisfying assignments
of propositional languages is intractable even
for Horn and monotone formulae, and even
when the size of clauses and number of oc-
currences of the variables are extremely lim-
ited. This should he contrasted with the case of
deductive reasoning, where Horn theories and
theories with binary clauses are distinguished
by the existence of linear time satisfiability al
gorithms. What is even more surprising is that,
as we show, even approximating the number
of satisfying assignments (i.e., "approximating"
approximate reasoning), is intractable for most
of these restricted theories.

We also identify some restricted classes oi
propositional formulae for which we develop
efficient algorithms for counting satisfying as-
signments.

1 Introduction

Investigating the computational cost of tasks that are
of interest to Al has been argued [Levesque, 1986,
Valiant, 1984] to be essential to our understanding and
our ability to characterize these tasks and to finding
knowledge representation systems adequate for them.
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The problem discussed most extensively in this context
is the problem of propositional satisfiability, the typical
NP-hard problem, which is of special concern to Al be-
cause of its direct relationship to deductive reasoning.
Many other forms of reasoning, including default rea-
soning, planning and others which make direct appeal
to satisfiability, have also been shown to be NP-hard In
practice, there is a fundamental disagreement about the
implications of this. There is no debate that something
has to be given up: restrict the form of the statements in
the knowledge base, settle for approximate output and
so on. One consequence of the intensive research in that
direction is the identification of restricted languages for
which propositional satisfiability can be solved efficiently
(e.g.. Horn).

In this paper we consider a related problem, that of
enumerating satisfying assignments of propositional for-
mulae. We argue that the role played by satisfiability
problems in many Al problems in which deduction is of
special concern, is replaced by that of counting satisfying
assignments when approximate reasoning techniques are
used. To support this argument we show that various
methods used in approximate reasoning, such as com-
puting degree of belief and Bayesian belief networks, as
well as reasoning techniques that, use approximation to
avoid computational difficulties such as constraint sat-
isfaction and knowledge compilation, can be reduced to
solving enumeration problems.

We analyze the computational complexity of counting
satisfying assignments of propositional languages, and
prove that this is intractable even for Horn and mono-
tone formulae, and even when the size of clauses and
number of occurrences of a variable in the formula are ex-
tremely limited This should be contrasted with the case
of deductive reasoning, where Horn theories and theories
with binary clauses are distinguished by the existence of
linear time algorithms for their satisfiability. What is
even more surprising is that, as we show, even approx-
imating the number of satisfying assignments (that is,
"approximating" approximate reasoning), is intractable
for most of those' restricted theories. We identify some
restricted classes of propositional formulae for which we
develop efficient algorithms for counting satisfying as-
signments While we show that our positive results can
sometimes be used to find tractable languages for the
approximate reasoning technique discussed, the Implica-
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tions of our fairly surprising and widely applicable hard-
ness results are not fully clear.

In the next section we briefly give background material
from computational complexity. Section 3 summarizes
and sketches the proofs of our technical results, which
we put in the context of various approximate reasoning
techniques in Section 4.

2 The Computational Complexity of
Counting Problems

We give in this section a brief overview of the computa-
tional complexity of enumeration problems and the re-
lated problems of approximate enumeration and random
generation of solutions. For a detailed discussion con-
sult [Valiant, 1979a; Valiant, 1979b; Carey and Johnson,
1979; Jerrurn et al., 1986].

With a large number of decision problems we can natu-
rally associate a counting problem. For example, count-
ing the number of satisfying assignments of a Boolean
formula, counting the number of perfect matchings in a
bipartite graph and counting the number of cycles in a
graph. Clearly, the counting version is at least as hard
as the decision problem but in many cases, even when
the decision problems is easy, no computationally effi-
cient method is known for counting their number. The
class of #P was introduced by Valiant. [Valiant, 1979a,
Valiant, 1979b] in an effort to explain this phenomena.

In particular, is was shown that counting the number
of satisfying assignments of a CNF formula as well as the
counting versions of many other NP-complete problems
are complete for #P, but counting versions of some prob-
lems in P are also complete for #P. Examples include
counting the number of satisfying assignments of a DNF
formula, counting the number of cycles in a graph and
many other problems [Valiant, 1979a; Valiant, 1979b;
Provan and Ball, 1983].

Problems that are #P-complete are at least as hard
as NP-complete problems, but probably much harder
Evidence to the hardness of problems in #P is sup
plied by a result of [Toda, 1989] which implies that
one call to a #P oracle suffices to solve any problem
in the polynomial hierarchy in deterministic polynomial
time. This may serve also as indication that #P is out-
side of the polynomial hierarchy. It is therefore natural
to consider the problem of approximate counting. The
notion of approximation we use is that of relative ap-
proximation [Karp and Luby, 1983; Stockmeyer, 1985;
Jerrurn et ai, 1986]. We say that M' approximates M
within ¢ iff

MU+ <M <M+

Indeed, approximating a solution to a #P problem
might be easier than finding an exact solution In
fact, it is no harder than solving NP hard problems
[Stockmeyer, 1985]. For example, there exists a poly-
nomial time randomized algorithm that approximates
the number of satisfying assignments of a DNF for-
mula within any constant ratio [Karp and Luby, 1983;
Jerrurn et al., 1986]. It is possible, though, for a #P-
complete problem, even if its underlying decision prob-
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lem is easy, to resist even an efficient approximate solu-
tion. An example for that was given in [Jerrurn et a/.,
1986], and in this paper we exhibit a similar phenom-
ena. We prove, for various propositional languages for
which solving satisfiability is easy, that it is NP-hard to
approximate the number of satisfying assignments even
in a very weak sense.

We note that a related class of problems of interest
to Al, that of randomly generating solutions from a uni-
form distribution, was shown in [jerrurn et al, 1986] to
be equivalent to randomized approximate counting, for
a wide class of problems. (All natural problems consid-
ered here, e.g. finding satisfying assignments of Boolean
formulae and various graph problems are in this class.)
It is therefore enough, from the computational complex-
ity point of view to consider the problems of exact and
approximate counting, as we do here.

3  Summary of Counting Results

Let #{SAT, L) (#(S5AT. L)) denote the problem of
counting {approximating) the nutnber of satisfying as-
signments of a given formula of the propositional lan-
gunge £ Given the problem #(S547,L), a problem
hierarchy s obtained whenever we place additional re-
strictions or relaxations on Lhe allowed instances. Given
propositional languages £, and Ly, define £y € Lo
iF every nstance of £ s also an instance L4, (c.g.,
HORNX C ONF) Clearly, if we can solve the problem
FISAT L) we can solve the problem S AT L)) to
prove hardness resnits 1t s enough therefore to con-
sider the most restricted lauguages. The same argu-
ient holds for the corresponding approxitnation prob-
lei. Fiygure § o sutntarizes our results, 1 presents a o
erarchy of propositional languages along with a classi-
fication according 1o the complexity of #(S5AT, L) and
#ISAT. L) Based on the above comment these results
unply sinnlar results an other, less restricted languages.
The following nolations are used for propositional lan-
guages: SAT - Boolean formulae; MON - Boolean For-
mulae in which all variables are unbnegated [(monotone
formulae); CNF - Boolean formulae i Conjunctive Not-
mal Form, MONCNFEF - monotone CNF: HORN - A
CNY i which clanses have up to one unnegated vari-
able (Horn clavses), 2BPMONCNEF - A 2MONCNE
mowhicl the set of variables capn be divided into two
sets, and every clanse contains one variable from each,
Acyelic-:2MONCNE - A 2MONCUNE with the follow-
ing property: the graph i which nodes correspond to
vanables ad edges counect any lwo nodes which cor-
respond to variables in the same clause, is a tree. [
LANG 15 a class of Boolean formulae, k4, integers, then
ALANG depotes the subelass of fornnilae in LANG o
wliiech a elause consists of up to & Lterals; {p-LANG de-
notes the elass of all LANG formulace in which no variable
occurs more than {innes. {1s the degree of the formulae.
It s noticeable that for various propositional languages
having eflicient algorithins for satisfiability, and even for
very restricted versions of these (c.g., 3p-2HORN), ex-
acl counting is complete for #P. In fact, for the case of
Horn theories, the situation is flly understood, and we
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give an efficient algortthnn for e only possthle case, 24
ZHORN. The situatiom for approxinste counting, s «ven
more surprising: for very restricted classes of Horn the
ries (e, $pe-3HORN ) it s NP-hard v appraseniate the

ninber of satisfying assigitnents even witho oo faeton of

o {See Section 4.1 for the exact, strouger resall
Siilar results hold for 2MONCNE teories, T which
the bounded degree ense is open Our positive pesilts
complete the complexity preture and can beodirectly ap
}Jhl'il e some of the Feasoning tes hlllr[m-s consndered

3.1 Statements of Resulis

We now formally state thee technieal resalts cnthoed
above. We state 1he resatts only Laosome of toaeepor
Cant languages: results for other linguiges can e casly
dedliierd by inclusion, as deseribed in Section 8

Theorem 3.1 [Harduwess of Fraet Counting Tet X2 L
be a proposthronal forminle on novariablos 10 s one of
the fallowsng propesitienal languages, connlong the wan-
ber of sutisfyang assiguments of 3oas complete for oV
(11 L = PMONCNE [Vadeant, 10700

(L = PBPMONCNE [Frocan and Hali 1o

(1)L = 2HORN

{41 L = Jp-2HORN

i) L= A2 MON

Theorem 3.2 [Harduess of Apprormaton] Lot Yo O
be a proposttronal formala on n vareables {f £ s one of
the following proposttronal languages. approromafing the
number of salesfyrng assignments of ¥ Ao thae a factor
of o' Jor every o as NPohard:

(1)L = IMONCNE

()L = S 3HORN

Proof:

following letnma

(Ot line) The man step i the prool s the
I

Lemna 3.3 For auy o apprerauahing the number of

I-r
e pendent scis of nograph vnon vevtices withm 20 18

Nihard.

Proof:  (Outhne) We use the “hlow-up”™ tectnugue in-
trowdiuecd i e ef ad 1986] 10 reduce the prob-
e af approximating the member ol independent sets in
¢t ahe FINDEPENDENTSET probleny {[Garey and
Jobison, 179} Gliven €0V F we construct a graph
GV sueh thiat an approxunaton of The sumber m
dependent sets in G toowithin 277 e be used to solve

FNTHEPENDENT-SET. ]

Torget 13 ran Lenmitia 35 we constract a |-1 correspon-
Adener between 2MONCNT formulac and graphs, sech
that satisfying assiguinent= ol the forpla correspond to
tubepernlent sets of the graph ]

Theorein 3.4 [ Feosibive Hesalis] Let X0 0 be a propo-
sittanal formutn on wovareables 1 s wne of the foi-
ey propesitioned lenguages, there erists an e flicient
wlyorithm ot counting the namber of salisfymg assign-
e tts of 3

PV 22 MONONE
FANL = 2pHORN

(410 s Aeyelie X MONOCNE
t4) L = Aeyele 2 HHORN

W shank AMark derrum for pomnging out to us thal the
Ulow up techingue can be ased to prove this resull, as was
i overed by Sinddair {Sinclan, 1988)0 We nse Oiis same fiech-
migue here withoa shghtly different argument
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4 Reducing Approximate Reasoning to
Counting

In this section we consider various techniques for approx-
imate reasoning and show that in each case inference is
equivalent to solving a counting problem. Thus, the re-
sults in Section 3 apply to all these methods. Due to
space limitations the techniques description and the in-
terpretation of the results are brief. We elaborate only in
the case of computing degree of belief, the underpinning
of approximate reasoning, since the results there have
wider implications.

4.1 Degree of Belief

The inference of a degree of belief is a generalization of
deductive inference, and can be used in case the knowl-
edge base is augmented by, e.g., statistical information,
or as an effort to avoid the computationally hard task of
deductive inference.

Consider a KB consisting of a propositional theory X
and assume we would like to assign a degree of belief to
a particular statement @. This situation is natural in
various Al problems such as planning, expert systems
and others, where the actions an agent takes may de-
pend crucially on this degree of belief. In [Nilsson, 1986]
it is suggested that the kind of reasoning used in expert
system is the following: "we are given a knowledge base
of facts (possibly, with their associated probabilities);
we want to compute the probability of some sentence of
interest. According to probabilistic logic, the proba-
bility of a sentence is the sum of the probabilities of the
sets of possible worlds in which that sentence is true...

Indeed, the general .approach to computing degree of
belief is that of assigning equal degree of belief to all
basic "situations" consistent with the knowledge base,
and computing the fraction of those which are consistent
with the query. Much work has been done on how to
apply this principle, and how to determine what are the
basic situations [Bacchus, 1990; Bacchus et al., 1992].

We consider here the question of computing the de-
gree of belief in a restricted and simpler case, in which
the knowledge base consists of a propositional theory and
contains no statistical information2. Using the above ap-
proach, all possible models of the theory are given equal
weight and we are interested in the computational com-
plexity of computing the degree of belief of a proposi-
tional formula i.e., the fraction of models that are con-
sistent with a propositional query.

Given a propositional theory £, the probability that ¥.
is satisfied, F¢, is computed over the uniform distribu-
tion on a set of n variables.

Py = Prob{E =T} = [SAT(S)|/2"

Given a propositional theory £ and a propositional state-
ment &, the conditional probability of a with respect to

2This problem was considered in the first order case
[Grove et a/., 1992] and it was shown that almost all problems
one might want to ask are highly undecidable. In some cases,
though, it was shown that the asymptotic conditional proba-
bilities exist, and can be computed. The hardness results we
get in the restricted just highlights the computational diffi-
culties in the more general cases.
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L (the degree of belief in o}, Fg)x, is the fraction of sat-
isfying assignments of X that satisfy a:

|ISAT(a A L)
ISAT(D)]

Since |SAT(a)] = Pajpyp for any variable p, we have:

Poir = Probla AL =TIE=T) =

Observation 4.1 Computing  (approximating) the  de-
gree of belief in a propositional statement with respect to
a propositional theory, is equivalent to computing (ap-
proximating) the number of models of the statement.

Based on this observation, our results prove the in-
tractability of computing and even approximating the
degree of belief for restricted propositional languages
such as Horn and monotone formulae of bounded de-
gree and bounded size of clauses. The observation also
implies that the positive results for, e.g., acyclic theories
and theories of degree 2 can be applied directly.

4.2 Bayesian Belief Networks

Bayesian belief networks provide a natural method for
representing probabilistic dependencies among a set of
variables and are considered an efficient and expressive
language for representing knowledge in many domains
[Holtzman, 1989]. We consider here the class of multi-
ple connected belief network, i.e., networks that contain
at. least one pair of nodes (variables) that have more
than one undirected path connecting them. It has been
argued that the expressiveness of these networks is re-
quired for representing knowledge in several domains,
like medicine. For definitions and an elaborate discus-
sion of Bayesian belief networks, the expressiveness of
this representation and the type of inference one can
utilize using it see [Pearl, 1988].

The general inference problem using belief network is
that of calculating the posterior probability P(S7\S2),
where S71 (S2) is either a single instantiated variable
or a conjunction of instantiated variables. The most
restricted form of probabilistic inference, determining
P(Y = T) for some propositional variable Y (with
no explicit conditioning information), was analyzed by
[Cooper, 1990] who proved it is NP-hard. This hardness
results for the exact inference problem shows that one
cannot expect to develop general-purpose algorithms for
probabilistic inference that have a polynomial running
time and therefore there is a need to divert attention
toward trying to construct approximation algorithms for
probabilistic inference. Our results show that this is not
the case; Cooper's argument can be modified and his
results strengthen in the following way: we reduce the
problem of counting satisfying assignments of a proposi-
tional formula (e.g., in 3SAT) to that of computing the
probability that a node in a belief network is true. The
results presented in Section 3 imply:

Theorem 4.2
a Bayesian belief network is true,
Approximating  this  probability is

Computing the probability that a node in
is complete for #P.
NP-hard.

The proof consists of reducing a counting problem to the
inference problem, and is given in the full version of the
paper. We note that based on the results in Section 3,
formulae from restricted propositional languages can be



reduced to an inference problem in a similar way, result-
ing in even stronger results, in which the topology of
the network is further restricted. Recently, [Dagum and
Luby, 1991] have proved that even finding an absolute
(additive) approximation of a solution to the inference
problem is NP-hard.

4.3 Knowledge Compilation

The idea of knowledge compilation was introduced by
[Selman and Kautz, 1991] as a new approach to devel-
oping fast and efficient knowledge representation sys-
tems. In this framework, statements represented in a
general unrestricted representation language arc corn-
piled by the system into a restricted language that al-
lows for efficient inference. Since an exact translation
into a tractable form is impossible in general, the sys-
tem searches for the best approximation of the origi-
nal information. This process is NP-hard and therefore
the technique is called "compilation". The aim is to
use approximations to speed up inference, without giv-
ing up correctness or completeness: computational costs
are shifted from "run-time" to the off-line compilations
process. In particular, in [Selman and Kautz, 1991] it
is shown how propositional logical theories can be com-
piled into Horn theories that approximate the original
information.

Consider a propositional theory X, and let M({¥) de-
note its set of models. The sets . 2, of Horn clauses
are a Horn lower-hound and Horh upper-bound, respee-
tively, of X, iff

.M(EM) g -M(x) g .'M(S-:lu'l]

. T and Epyp, the greatest Horn lower-bound and least
Horn upper-bound, respectively, of X, are called Horn
approrimations of the ariginal theory X,

Horn approximation can be used i the iferenee pro-
cedure by testing if Lo = oo and Ty B o rather than
£ E a. This procedure takes only limear time in the
length of the approximations®

Taking the “counting” approach, as we suggest in this
paper, can shed some light ou the problems in knowledge
compilation. In knowledge compilation, approximation
is defined in terms of ronfainment, and not v terms
of proximity in the number of models. We show, for
example, that it is intractable ta even approxnnate the
utility of an approximation, i.c., 1o deternnne how oflen
will the approximation help in the deduction process.

Since the length of Xy might be exponentially long
with respect fo the original theory [Kautz and Selmau,
1992], which would nullify any gain reasoning swith the
approximation might provide, various techuiques were
considered to evaluate the approximation process, and
abort it when it is good enough. Our approach rules out
the existence of a gencral technique for that*  Ou the

*The implication problem for Horn theories can be solved
in linear time in the combined tengtl of the theory (KH)
and the query. This remains true for even a broader class of
queries such as DNF formulac where each disjunct contains
at most one negative Jiteral and arbitrary CNI formulae,

{Recent results use learning techniques to find a locally-
optimal approximation [(reiner. 1992]. There is no gnaran-

other hand, due to the tight relations between counting
satisfying assignments and the quality of the approxima-
tion, it might be worthwhile to use our positive results
and investigate the question of approximating a theory
by languages for which we can efficiently count satisfying
assignments.

4,4 Constraint Satisfaction Problems

Constraint satisfaction problems {CSP) provide a conve-
nient way of expressing declarative knowledge, by focus-
ing on local relalionships among entities in the domain.

A constraini satisfaction problem [Dechter and Pearl,
1988] involves a set. of n variables z),...zn having do-
mains [2y,...D,, where each D; defines the set of val-
ues that variable r; may assume. An n-ary relation
on these variables is a subset. of the Cartesian product
Dyx Dy x .. ox [, A consiraint between variables s
a subset of the Cartesian product of their domains. The
set. of all n-tuples satisfying all the constraints are the
solutions to Lthe CSP, The problem is either to find all
the solutions, or one solution.

It is clear that these problems are hard since a con-
straint satisfaction 18 a generalization of CNF formu-
lae, b particular, if we consider a network of binary
constraints® over ) = {0,1}, as is usually done, the
probletn can be represented as a 2SAT formula.

The counting point of view taken here gives insight
into several questions in constraint satisfaction problems.
Finding all the solutions is clearly an enumeration prob-
lern, and based on the results i Section 3, it is #P-
complete for almost all non-trivial cases®.

Search techniques were traditionally used Lo solve
('5Ps, and various heuristics for guiding the search
[Dechter and Pearl. 1988] suggest. that one rely on count-
g to evaluate the most probable path to take. Qur re-
sults show that in genetral, even these heuristics are comn-
pitationally intractable. On the other hand, the posi-
tive results, e.g., the result for Acyclic formulae, can be
used to identify domains for which these problems can
be solved efficiently.

5 Conclusions

We have put results on the complexity of counting and
approximating the number of satisfying assignments of
propositional formulae in the context of various approx-
imate reasoning techniques. The significance of this ap-
proach was illustrated by showing that various, suppos-
edly different methods in approximate reasoning can be
reduced to counting.

tee however, that this approximation is "close" to the optimal
one, nor that the optimal one approximates the original the-
ory within any reasonable bound, as our techniques show

"Not every n.-ary relation can be represented by a network
of binary constraints with n-variables [Montanari, 1974].

®We comment, though, that Valiant's results ([Valiant,
1979b], Fact 7) imply that under simple conditions (e.g.,
when finding one solution is easy and the problem satisfies a
form of self-reducibility), enumerating the solutions is poly-
nomial in their number even when the counting problem is
hard. These conditions trivially hold for Horn formulae, and
therefore for subclasses of CSP as well.
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Our hardness results seem to indicate that computing
degree of belief, as well as other approximate reasoning
techniques, are intractable for almost all propositional
languages. Moreover, even an approximate computation
of the probability was proved to be intractable for a wide
class of propositional languages. The fact that most ap-
plications are believed to require much more than propo-
sitional calculus just highlights these computational dif-
ficulties. These results do not rule out the possibility for
efficient algorithms that apply in restricted cases, as our
positive results suggest; identifying more positive results
and investigating how they apply to various techniques
might be one direction to extend this work.

On the other hand, the extent to which the hardness
results apply calls for a more profound investigation of
the implication of these computational difficulties.
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