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A b s t r a c t 

Many AI problems, when formulated, reduce 
to evaluat ing the probabi l i ty that a preposi­
t ional expression is t rue. In this paper we 
show tha t this problem is computat ional ly in-
t ractable even in surpr is ingly restricted cases 
and even if we settle for an approx imat ion to 
this probabi l i ty . 

We consider various methods used in approx­
imate reasoning such as comput ing degree of 
belief and Bayesian belief networks, as well as 
reasoning techniques such as constraint satis­
fact ion and knowledge compi la t ion , that use 
approx imat ion to avoid computat iona l diff icul­
ties, and reduce them to model-enumerat ion 
problems over a proposi t ional domain 
We prove that count ing satisfying assignments 
of proposi t ional languages is intractable even 
for Horn and monotone formulae, and even 
when the size of clauses and number of oc­
currences of the variables are extremely l im­
i ted. Th is should he contrasted wi th the case of 
deductive reasoning, where Horn theories and 
theories w i th binary clauses are distinguished 
by the existence of l inear t ime satisf iabi l i ty al 
gor i thms. Wha t is even more surprising is that , 
as we show, even approx imat ing the number 
of sat isfy ing assignments (i.e., "approx imat ing" 
approx imate reasoning), is intractable for most 
of these restricted theories. 
We also ident i fy some restricted classes oi 
proposi t ional formulae for which we develop 
efficient a lgor i thms for count ing satisfying as­
signments. 

1 I n t r o d u c t i o n 

Invest igat ing the computa t iona l cost of tasks that are 
of interest to Al has been argued [Levesque, 1986, 
Va l iant , 1984] to be essential to our understanding and 
our ab i l i ty to characterize these tasks and to f inding 
knowledge representation systems adequate for them. 
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The problem discussed most extensively in this context 
is the problem of proposit ional sat isf iabi l i ty, the typical 
NP-hard problem, which is of special concern to AI be­
cause of its direct relat ionship to deductive reasoning. 
Many other forms of reasoning, inc luding default rea-
soning, p lanning and others which make direct appeal 
to satisf iabi l i ty, have also been shown to be NP-hard In 
practice, there is a fundamental disagreement about the 
impl icat ions of this. There is no debate that something 
has to be given up: restrict the form of the statements in 
the knowledge base, settle for approximate output and 
so on. One consequence of the intensive research in that 
direction is the ident i f icat ion of restricted languages for 
which proposit ional sat isf iabi l i ty can be solved efficiently 
(e.g.. Horn). 

In this paper we consider a related problem, that of 
enumerat ing satisfying assignments of proposit ional for­
mulae. We argue that the role played by sat isf iabi l i ty 
problems in many AI problems in which deduction is of 
special concern, is replaced by that of count ing satisfying 
assignments when approximate reasoning techniques are 
used. To support this argument we show that various 
methods used in approximate reasoning, such a,s com­
put ing degree of belief and Bayesian belief networks, as 
well as reasoning techniques that, use approx imat ion to 
avoid computat ional diff icult ies such as constraint sat­
isfaction and knowledge compi la t ion , can be reduced to 
solving enumeration problems. 

We analyze the computat ional complexi ty of count ing 
satisfying assignments of proposi t ional languages, and 
prove that this is intractable even for Horn and mono-
tone formulae, and even when the size of clauses and 
number of occurrences of a variable in the formula are ex­
tremely l imi ted This should be contrasted w i th the case 
of deductive reasoning, where Horn theories and theories 
w i th binary clauses are distinguished by the existence of 
linear t ime algor i thms for their sat isf iabi l i ty. Wha t is 
even more surprising is that , as we show, even approx­
imat ing the number of satisfying assignments (that is, 
"approx imat ing" approximate reasoning), is intractable 
for most of those1 restricted theories. We identi fy some 
restricted classes of proposit ional formulae for which we 
develop efficient a lgor i thms for count ing satisfying as­
signments Whi le we show that our posit ive results can 
sometimes be used to f ind tractable languages for the 
approximate reasoning technique discussed, the lmpl ica-
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t ions of our fa i r ly surpr is ing and widely applicable hard-
ness results are not fu l l y clear. 

In the next section we briefly give background mater ia l 
f rom computa t iona l complex i ty . Section 3 summarizes 
and sketches the proofs of our technical results, which 
we put in the context of various approx imate reasoning 
techniques in Section 4. 

2 The Computa t iona l Complex i ty of 
Count ing Problems 

We give in th is section a br ief overview of the computa­
t ional complex i ty of enumerat ion problems and the re­
lated problems of approx imate enumerat ion and random 
generation of solut ions. For a detai led discussion con­
sul t [Val iant , 1979a; Va l iant , 1979b; Carey and Johnson, 
1979; Jerrurn et al., 1986]. 

W i t h a large number of decision problems we can natu­
ral ly associate a count ing prob lem. For example, count-
ing the number of sat isfy ing assignments of a Boolean 
fo rmu la , count ing the number of perfect matchings in a 
b ipar t i te graph and count ing the number of cycles in a 
graph. Clearly, the count ing version is at least as hard 
as the decision prob lem but in many cases, even when 
the decision problems is easy, no computa t iona l ly effi­
cient method is known for count ing their number. The 
class of #P was int roduced by Valiant. [Val iant , 1979a, 
Val iant , 1979b] in an effort to explain this phenomena. 

In par t icu lar , is was shown tha t count ing the number 
of sat isfy ing assignments of a C N F formula as well as the 
count ing versions of many other NP-complete problems 
are complete for # P , but count ing versions of some prob­
lems in P are also complete for # P . Examples include 
count ing the number of sat isfy ing assignments of a D N F 
formula , count ing the number of cycles in a graph and 
many other problems [Val iant , 1979a; Val iant , 1979b; 
Provan and Ba l l , 1983]. 

Problems tha t are #P -comp le te are at least as hard 
as NP-complete problems, but probably much harder 
Evidence to the hardness of problems in #P is sup 
plied by a result of [Toda, 1989] which impl ies that 
one call to a #P oracle suffices to solve any problem 
in the po lynomia l hierarchy in determinist ic po lynomia l 
t ime. Th is may serve also as ind icat ion that #P is out-
side of the po lynomia l hierarchy. It is therefore natural 
to consider the prob lem of approx imate count ing. The 
not ion of approx imat ion we use is that of relative ap­
proximation [Karp and Luby, 1983; Stockmeyer, 1985; 
Jerrurn et ai, 1986]. We say that M' approximates M 
wi th in t iff 

Indeed, app rox ima t ing a solut ion to a #P problem 
might be easier than f ind ing an exact solut ion In 
fact, it is no harder than solv ing NP hard problems 
[Stockmeyer, 1985]. For example, there exists a poly­
nomia l t ime randomized a lgo r i t hm that approximates 
the number of sat isfy ing assignments of a D N F for­
mu la w i th in any constant ra t io [Karp and Luby, 1983; 
Jerrurn et a l . , 1986]. It is possible, though, for a # P -
complete p rob lem, even if its under ly ing decision prob­

lem is easy, to resist even an efficient approx imate solu­
t i on . An example for that was given in [Jerrurn et a/., 
1986], and in this paper we exh ib i t a s imi lar phenom­
ena. We prove, for various proposi t ional languages for 
which solv ing sat is f iabi l i ty is easy, tha t it is NP-hard to 
approx imate the number of sat isfy ing assignments even 
in a very weak sense. 

We note tha t a related class of problems of interest 
to A I , tha t of randomly generat ing solut ions f rom a uni ­
fo rm d is t r i bu t ion , was shown in [ je r rurn et al, 1986] to 
be equivalent to randomized approx imate count ing, for 
a wide class of problems. ( A l l na tura l problems consid­
ered here, e.g. f ind ing sat isfy ing assignments of Boolean 
formulae and various graph problems are in this class.) 
I t is therefore enough, f rom the computa t iona l complex­
i ty point of view to consider the problems of exact and 
approx imate count ing, as we do here. 
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4 Reducing Approx imate Reasoning to 
Count ing 

In this section we consider various techniques for approx­
imate reasoning and show tha t in each case inference is 
equivalent to solv ing a count ing prob lem. Thus, the re­
sults in Section 3 apply to al l these methods. Due to 
space l im i ta t ions the techniques descript ion and the in ­
terpretat ion of the results are brief. We elaborate only in 
the case of compu t ing degree of belief, the underp inn ing 
of approx imate reasoning, since the results there have 
wider imp l ica t ions . 

4 . 1 D e g r e e o f B e l i e f 

The inference of a degree of belief is a general ization of 
deductive inference, and can be used in case the knowl ­
edge base is augmented by, e.g., stat is t ical i n fo rma t ion , 
or as an effort to avoid the computa t iona l l y hard task of 
deductive inference. 

Consider a KB consist ing of a proposi t ional theory 
and assume we would l ike to assign a degree of belief to 
a par t icu lar statement . Th i s s i tuat ion is natura l in 
various AI problems such as p lann ing, expert systems 
and others, where the actions an agent takes may de­
pend crucial ly on th is degree of belief. In [Nilsson, 1986] 
it is suggested tha t the k ind of reasoning used in expert 
system is the fo l lowing: "we are given a knowledge base 
of facts (possibly, w i t h their associated probabi l i t ies) ; 
we want to compute the probab i l i t y of some sentence of 
interest. ... Accord ing to probabilistic logic, the proba­
b i l i t y of a sentence is the sum of the probabi l i t ies of the 
sets of possible worlds in which that sentence is true.. . 

Indeed, the general .approach to comput ing degree of 
belief is tha t of assigning equal degree of belief to al l 
basic "s i tua t ions" consistent w i t h the knowledge base, 
and compu t ing the f ract ion of those which are consistent 
w i t h the query. Much work has been done on how to 
apply th is pr inc ip le , and how to determine what are the 
basic s i tuat ions [Bacchus, 1990; Bacchus et al., 1992]. 

We consider here the question of computing the de-
gree of belief in a restr icted and simpler case, in which 
the knowledge base consists of a proposi t ional theory and 
contains no stat is t ica l in format ion2. Using the above ap­
proach, al l possible models of the theory are given equal 
weight and we are interested in the computa t iona l com­
plex i ty of compu t i ng the degree of belief of a proposi­
t ional fo rmu la i.e., the f ract ion of models that are con­
sistent w i t h a propos i t iona l query. 

Given a proposi t ional theory , the probability that 
is satisfied, , is computed over the un i fo rm d is t r ibu­
t ion on a set of n variables. 

Given a propos i t iona l theory and a proposi t ional state­
ment the conditional probability of a w i th respect to 

2This problem was considered in the first order case 
[Grove et a/., 1992] and it was shown that almost all problems 
one might want to ask are highly undecidable. In some cases, 
though, it was shown that the asymptotic conditional proba­
bilities exist, and can be computed. The hardness results we 
get in the restricted just highlights the computational diffi­
culties in the more general cases. 

( the degree of belief in is the f ract ion of sat­
isfying assignments of tha t satisfy a: 

Since for any var iable p, we have: 

O b s e r v a t i o n 4 . 1 Computing (approximating) the de­
gree of belief in a propositional statement with respect to 
a propositional theory, is equivalent to computing (ap-
proximating) the number of models of the statement. 

Based on this observat ion, our results prove the in ­
t rac tab i l i t y of compu t ing and even approx ima t ing the 
degree of belief for restr icted proposi t ional languages 
such as Horn and monotone formulae of bounded de­
gree and bounded size of clauses. The observation also 
impl ies tha t the posit ive results for, e.g., acyclic theories 
and theories of degree 2 can be appl ied direct ly. 

4 .2 B a y e s i a n B e l i e f N e t w o r k s 

Bayesian belief networks provide a natura l method for 
representing probabi l is t ic dependencies among a set of 
variables and are considered an efficient and expressive 
language for representing knowledge in many domains 
[Ho l tzman, 1989]. We consider here the class of multi­
ple connected belief network, i.e., networks tha t contain 
at. least one pair of nodes (variables) tha t have more 
than one undirected path connecting them. It has been 
argued tha t the expressiveness of these networks is re­
quired for representing knowledge in several domains, 
like medicine. For def ini t ions and an elaborate discus­
sion of Bayesian belief networks, the expressiveness of 
this representation and the type of inference one can 
ut i l ize using it see [Pearl, 1988]. 

The general inference problem using belief network is 
tha t of ca lcu lat ing the posterior p robab i l i t y P(S1\S'2), 
where S1 (S2) is either a single instant ia ted variable 
or a conjunct ion of instant ia ted variables. The most 
restr icted fo rm of probabi l is t ic inference, determin ing 
P(Y = T) for some proposi t ional variable Y (w i t h 
no expl ic i t cond i t ion ing i n fo rma t ion ) , was analyzed by 
[Cooper, 1990] who proved it is NP-hard . Th is hardness 
results for the exact inference prob lem shows tha t one 
cannot expect to develop general-purpose a lgor i thms for 
probabi l is t ic inference tha t have a po lynomia l runn ing 
t ime and therefore there is a need to d iver t a t tent ion 
toward t r y i ng to construct approximation algorithms for 
probabi l is t ic inference. Our results show tha t th is is not 
the case; Cooper's argument can be modi f ied and his 
results strengthen in the fo l lowing way: we reduce the 
problem of count ing sat is fy ing assignments of a proposi­
t iona l fo rmu la (e.g., in 3SAT) to tha t of compu t ing the 
probab i l i t y tha t a node in a belief network is t rue. The 
results presented in Section 3 i m p l y : 

T h e o r e m 4.2 Computing the probability that a node in 
a Bayesian belief network is true, is complete for #P. 
Approximating this probability is NP-hard. 

The proof consists of reducing a count ing prob lem to the 
inference prob lem, and is given in the fu l l version of the 
paper. We note tha t based on the results in Section 3, 
formulae f rom restr icted propos i t iona l languages can be 
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reduced to an inference problem in a s imi lar way, result­
ing in even stronger results, in which the topology of 
the network is fu r ther restr icted. Recently, [Dagum and 
Luby, 1991] have proved tha t even f inding an absolute 
(addi t ive) approx imat ion of a solut ion to the inference 
prob lem is NP-ha rd . 

4 .3 K n o w l e d g e C o m p i l a t i o n 

The idea of knowledge compilation was introduced by 
[Selman and Kau tz , 1991] as a new approach to devel­
op ing fast and efficient knowledge representation sys­
tems. In th is f ramework , statements represented in a 
general unrestr icted representation language arc corn-
pi led by the system in to a restricted language that al­
lows for efficient inference. Since an exact t ranslat ion 
in to a t ractable fo rm is impossible in general, the sys­
tem searches for the best approx imat ion of the or igi­
nal i n fo rma t i on . Th is process is NP-hard and therefore 
the technique is called " comp i l a t i on " . The aim is to 
use approx imat ions to speed up inference, w i thou t giv­
ing up correctness or completeness: computat ional costs 
are shif ted f rom " r u n - t i m e " to the off-l ine compi lat ions 
process. In par t icu lar , in [Selman and Kautz , 1991] it 
is shown how proposi t ional logical theories can be com­
piled in to Horn theories that approx imate the original 
i n fo rma t ion . 

other hand, due to the t ight relat ions between count ing 
satisfying assignments and the qual i ty of the approx ima­
t ion , it might be wor thwhi le to use our posit ive results 
and investigate the question of approx imat ing a theory 
by languages for which we can efficiently count satisfying 
assignments. 

5 Conclusions 
We have put results on the complexi ty of count ing and 
approx imat ing the number of sat isfying assignments of 
proposit ional formulae in the context of various approx­
imate reasoning techniques. The significance of this ap­
proach was i l lustrated by showing that various, suppos­
edly different methods in approximate reasoning can be 
reduced to count ing. 

tee however, that this approximation is "close" to the optimal 
one, nor that the optimal one approximates the original the­
ory within any reasonable bound, as our techniques show 

''Not every n.-ary relation can be represented by a network 
of binary constraints with n-variables [Montanari, 1974]. 

6We comment, though, that Valiant's results ([Valiant, 
1979b], Fact 7) imply that under simple conditions (e.g., 
when finding one solution is easy and the problem satisfies a 
form of self-reducibility), enumerating the solutions is poly­
nomial in their number even when the counting problem is 
hard. These conditions trivially hold for Horn formulae, and 
therefore for subclasses of CSP as well. 



Our hardness results seem to indicate tha t comput ing 
degree of belief, as well as other approx imate reasoning 
techniques, are in t ractab le for a lmost al l proposi t ional 
languages. Moreover, even an approx imate computa t ion 
of the p robab i l i t y was proved to be in t ractable for a wide 
class of propos i t iona l languages. The fact tha t most ap­
pl icat ions are believed to require much more than propo­
si t ional calculus j us t h ighl ights these computa t iona l dif­
f icult ies. These results do not rule out the possibi l i ty for 
efficient a lgor i thms tha t apply in restr icted cases, as our 
posit ive results suggest; ident i fy ing more posit ive results 
and invest igat ing how they apply to various techniques 
m igh t be one d i rect ion to extend this work. 

On the other hand, the extent to which the hardness 
results apply calls for a more profound invest igat ion of 
the imp l i ca t i on of these computa t iona l dif f icult ies. 
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