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Abstract

The difference between Bayesian conditioning and
Lewis' imaging is somewhat similar to the one
between Gardenfors' belief revision and Katsuno and
Mendelzon' updating in the logical framework.
Counterparts in possibility theory of these two
operations are presented, including the case of con-
ditioning upon an uncertain observation. Possibi-
listic conditioning satisfies all the postulates for
belief revision, and possibilistic imaging all the
updating postulates. Lastly, a third operation called
"focusing" is naturally introduced in the setting of
belief and plausibility functions.

1 Introduction

Numerical formalisms for the representation of uncertainty
usually describe stales of knowledge in terms of possible
states of the world e €2, These states w are supposed to be
mutually exclusive and usually €1 is assumed to gather all
the possible states of the world. Both in probability theory
and in possibility theory, to each state w is attached a degree
d(w)e [0,1] which estimates the extent to which co may
represent the real state of the world. These states can be put
in correspondence with the models used in logical
formalisms. By convention, d{®)=0 means that we are
completely certain that co cannot be the real slate of the
world. But the meaning of d{w)=1 is completely different in
probability theory where it means that co is the real state
(complete knowledge), and in possibility theory where it
only expresses that nothing prevents co from being the real
state of the world.

In these two formalisms, the change of the current state of
knowledge (called 'epistemic state' in the following), upon
the arrival of a new information stating that the real world is
in Ac{l corresponds to a modification of the assignment
function d into a new assignment d\ This change should
obey general principles which guarantee that i) d' is of the
same nature as d (preservation of the representation
principles); ii) A, which denotes 'not A', is excluded by d',
ie., Ve A, dioa=0 is observed is held as certain
after the revision or the updating); iii) some informational
distance between d' and d is minimized (principle of minimal
change). Counterparts to these principles are also at the
basis of revision and updating in logical formalisms [12].

The probabilistic framework offers at least two ways of
modifying a probability distribution upon the arrival of a
new and certain information: the Bayesian conditioning, but
also D. Lewis [21]'s 'imaging' which consists in translating
the weights originally on models outside A to models which
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are their closest neighbours in A. This paper shows that the
existence of these two modes, which can be also defined in
the possibilistic framework, is analogous to the distinction
between belief revision based on Alchourrén, Gardenfors and
Makinson (AGM) postulates [12] and updating based on
Katsuno and Mendelzon [18]' postulates.

The paper is organized in three main parts. The next
section surveys basic results on probabilistic conditioning
and imaging. Section 3 introduces these two operations in
the possibilistic framework and provides new results and
justifications for them. Section 4 briefly considers belief and
plausibility functions and then emphasizes the existence of a
third operation, called 'focusing', in this setting.

2 The Probabilistic Framework

In this setting, an epistemic state is rcpresented by a
probability measure P on the set £ of possible worlds,
{assumed finite for simplicity), such that

VA,BCQ, AnB#{0= P(AUB)=P(A)+P(B).
Complele knowledge is represented by P({wq})=1 for some
wg. An epistemic state is characterized by the distribution

| p(w).0e Q) from which P(A)=%.c A P(®) can be computed.

2.1 Probabilistic Conditioning

Upon learning that event A has occurred, i.e. we are certain
thal A is true, the a priori epistemic state P is revised by
Bayes thcorem into the conditional probability

P(BIA)=P(BNA)/P(A)=P(AIB)-P(B)/P(A) (1)
where P(B) is changed ino P(BIA). It is not defined if A is a
priorn judged to be impossible. Minimal requirements are
satisfied by (1). namely 1) P(AlA)=1, when P(A)>0 (priority
to the input information); ii) P(A)=1=>P(-IA)=P (an already
known mnput information does not modify the epistemic
state). This form of revision via a scaling factor is not so
natural {except if one considers that P(BIA) should be a
relative frequency) and needs some justification. Several
exist.
- Numerical justifications: (1) is the only possibility il for
any B,Cc A, P(BIAYP(CIA) should be equal to P(B)/P(C),
i.e. there is no relative change. Another justification is
given in [12] where conditioning is proved to be the only
rule such that:

AnA=0 = P(BIAUA)=AP(BIAM(1-)P(BIA" 2
where A=P(A)/P(AUA"=P(A}(P(A}+P(A"). This result
assumes that P(AlIA)=1, and P(-K2)=P,

-~ Algebraic justification: Cox [1) and his followers (e.g.
[14]) have proved that Bayes rule, as well as probability
theory itself can be justified through consistency between
the Boolean structyre of the subsets of  ang three simple



axioms for the measure of uncertainty g, and the conditioned
one g(A), i.e. (A is the complement of A)

2) g(BNA) = f(g(BIA),g(A)): b) g(A)=s(z(A)), YACL;

¢) fis a continuous stricily monotonic function in both

places; s is a continuous, strictly decreasing function.
Then g should be a probability measure and f the product.
This is more a justification of conditional probability than
of revision itself. See [14)] for a Coxian-like justification of
conditional probability as actually performing a revision.
- ion- ic justification: the information
content of a probabilistic epistemic state is Shannon entropy
S(P)=-Xgue o P{@)Logp{w). The less ambiguous P, the
smaller S(P); particularly S(P)=0 if P is a complete episte-
mic state and S(P} is maximal if{ p{w)=p(e", Yo, 0'c Q.
Kuiback & Leibler informational distance is then defined by
KP,P)=+Z e o P'w)Log(p(@)/p(@)) )

The conditional probability P'=P(-IA) minimizes I(P,P")
under the constraint P'(A)=1, see |29},

Note that the understanding of Bayesian conditioning as a
revision process (as above) is challenged by many Bayesians
who view conditioning as a mere change of reference class
reflecting the available evidence, i.e. a "focusing process”.
However because of the existence of a single conditioning
rule, there is no way 1o distinguish between both views.

2.2 Probabilistic Tmaging
Another path in the problem of updating probabilities is the
onc followed by Lewis [21]. Assume that € is such that for
any world we 2, and for any set ACQ, 3w 4 such that wp
is the closest world from o, that belongs 10 A. Then the
principle of minimal change can be expressed as an advice Lo
move probability weights as litlle as possible away from the
worlds that become impossible upon learning that some
evenl AgQ) has occwited. This is formally expressed as
Ve A, pPAW)=Ly=q, PO)- 4)
This rule is called ‘imaging’ because p is the image of p on
A obiained by moving the masses p{w) for W& A 10 WAE A,
with the natural convention that wa = if we A, This rule
comes from the study of conditional logics. It has been
generalized by Gérdenfors [12] 10 the case when the set of
worlds in A closest 10 a given world @ contains more than
one element. If A{w)CA is the subset of closest worlds from
®, p(®) can be shared among the various worlds w'e A{w)
instead of being allocated to a unique world. Gérdenfors has
proved that general imaging is the only updating rule that is
homomorphic, i.c. (P is the measure based on py)
(AP+(1-A)P)A=APA+(1-A)P' 5. {5)
It expresses invariance under convex combination. Imaging
can tum impossible worlds into possible ones, c.g. one may
have pa (1)>0 while p(w4)=0. As a consequence a sure
fact B a priori, i.e. such that P(B)=1 may become uncertain,
i.e. P5(B)<1. This is not the case with Bayesian conditio-
ning. However as with the Bayesian rule, P(A)=1=oP 5 =P.

2.3 Illustrative Example (inspired by Morreau)

A box contains either an apple (a) or a banana (b). Lel 0,
©9,3,004 denote the states where anb is true, as—b is true,
—anb is true, —aa—b is true respectively. Our epistemic state
is represented by p(@))=p(14)=0, p(w2)>0, p(w3)>0. For
instance pw7)=0.7, p(w3)=0.3, i.c. an apple is more proba-

bly present than a banana in the box. Upon the occurrence of
A={w3,w4} (no apple) Bayes rule yields p{w3lA)= 1 ie.
there is a banana in the box (Girdenfors’ revision leads 10 the
same result in the logical setting). Let us now apply Lewis”
imaging. The closest "neighbour” of w9 (& A) in A is Wy
(both agree thal b is falsc). Then moving plug) 10 W) 5=ty
{and w3 4=w7 since w3 is in A) gives the update
PA(14)=0.7; pa(e3)=0.3; i.c. the most probable situation
is that the box is empty. This is in agreement with a
reasoning by case: either Lthe box was containing an apple or
a banana; if the apple (if any) has been taken out of the box,
¢ither the box is now cmpty or there is still the banana.
This agrecs with Katsuno and Mendelzon {18] approach 1o
updating. In Bayes rule, A is understood as "there is no
apple” (static world}, while with imaging, A rather means
"there is no longer any apple” (world change).

2.4 Uncertain Inputs
The Bayesian setting has been extended to the case of
uncertain inputs. An uncertain piece of evidence corresponds
10 an event A along with a probability ¢ that this event
did happen. The updated probability measure P(BI(A, o)) can
be computed using Jeffrey [177's rule as
P(BHA.0))=0P(BIAY{1-)P(BIA) ©®)
where P(BIA) and P(BIA) are obtained by regular
conditioning. In the case of a set of possible observations,
one of which is the true one, which forms a partition
{Ay,....Aq]) of €1, (6} is extended into
P(BI{(A00)}io1 p)=Eicy » @iP(BIA)) M
where the probability that A, is the actual observation is @,
with Za;=1. In a strict Bayesian view of (6) and (7). g is
interpreted as a conditional probability P(A;IE) where E
denotes the (sure) event underlying the uncertain
information. Then (7) assumes that P(BIA;)=P(BIA;NE), i.e.
that for all A;, E is independent of B in the context A; (e.g.
[23]). (6) and (7) have been justified by Witliams [29] on the
basis of the distance I{P.P'} under the constraints P'(A=a;.
{7) can be also justified a1 the formal level by the fact that
the only way of combining the conditional probabilitics
P(BIA;) in an eventwise manner (i.c. using the same
combination law for al) events B) is 1o use a linear weighted
combination such as (7) [19]. Lasily, pushing (7) 1o the
limit by assuming Q={w),....@q} and choosing the finest
partition Aj=(w;}, and then letting o;=P7({w;)), Jeffrey’s
rule (7) comes down to a simple substitution of Py by P.
The new piece of evidence totally destroys the epistemic
state. Priority is given to the new information.

3 The Possibilistic Framework

A possibility distribution n is a mapping from £l to a
tolally ordered se1 V containing a greatest element (denoted
1) and a ieast element (denoted 0), e.g. V={0,1]. However
any finite, or infinite and bounded, chain will do as well. A
consisient epistemic state x is such that x(w)=1 for some
w, 1.¢. at least one of the worlds is considered as completely
possibie in £2. Let x and 1’ be two possibility distributions
on £} describing epistemic states. If n<x’, x is said o be
more specific than x' [30], i.e. the epistemic state described
by ® is more completle, contains more information than the
one described by &', If Jwge Q, r(wg)=1, and n(w)=0 for
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w0, T comesponds (o a complete episiemic state.

Interpreted in this framework, the three basic forms of
belief dynamics described in [12], namely expansion,
contraction and revision can easily be depicted. The result of
an expansion, that siems from receiving new information
consisient with a previously available epistemic state
described by =, is another possibility distribution n' that is
more specific than m. Note that n', by definition, is also
such that n'(w)=1. Hence if we let C{n)={win(w)=1) be the
core of m (i.e. the set of preferred worlds in a given
epistemic state), we have C(n)»@ and C(x)cC(n). A
contraction, i.e. the result of forgetting some piece of
information among those thal form an episiemic state, will
be expressed by going from nt 10 a less specific possibility
distribution n'2r, The term revision will be interpreted as
any other belief change which is neither a contraction nor an
expansion. Namely, it is when from 7, we reach n’ where
neither m2x' nor w'<x hold. More specifically we may speak
of "strict” revision when C(r)~C(x"=@.

Similarly to the probabilistic case, a possibility
distribution generates a set function [T called a possibility
measure [31} defined by (for simplicity V=[(0,1])

[T(A)=max g, o ®(W) @®)
and satisfying [T(AUB) = max(I'1(A),J1(B)) as a basic axiom,
[T(A) evalvuates to what exient the subset A of possible
worlds is consistent with the epistemic state x. [1(A)=0
indicates that A is impossible. JI(A)=1 only means that A is
consistent with 7, and it may happen that [T(A)X=[T(A)=1 (A
is the complement of A). in which case, it expresses
ignorance about A. The degree of certainty of A is measured
by means of the necessity function N(A)=1-TI(A), whose
characteristic axiom is N{AMB)=min(N(A),N(B}}. A is
considered as a sure fact in an epistemic state 1 whenever
N(A)=1. If S(x) is the support {win{w)>0} of x, then
N(A)=18(m)gA, while N(A)>0=Cin)cA (£ finite)
means that A is credible.

3.1 Possibilistic Conditioning
If the new information A is such that TI(A)=1, i.e. A is
consistent with the epistemic state m, & is expanded into n'
Vo, t(@)=rt s (0)=min(i 5 (®),x(w)) ®
where W a is the characteristic function of the subset A.
When [T(A)#1, n is revised into n' defined through
conditionalization. Revision in possibility theory is
performed by means of a conditioning device similar to the
probabilistic one, obeying an equation of the form {15]

VB, [TIANB)=TT(BIAYTI(A), if [T(A)>0. (10)
Possible choices for * are min and the product [4]. In case of
*=min, choosing the least specific solution (i.¢. the solution
with the greatest possibility degrees in agreement with the

constraint {10)) yields,
[KBIA) =1if [KANB)=TT(A)>0
=1 (AmB) otherwise.

In particular TT(BIA)=0 if AnB=@, The conditional necessity
function is defined by N(BIA)=1-TT(BIA), by duality. The
possibility distribution underlying the conditional
possibility measure TT(-|A) is defined by

n(wlA) =0if we A ; n(wlA) = 1 if x{w)=[I(A), e A ;

m(wiA) = n{w) if T(w)<[I(A), me A (a1
When *=product, the corresponding expression is
VB, [I(BIA) = [I(ANB)TI(A) 12)
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provided that [I(A)»@. This is Dempster rule of
conditioning, specialized to possibility measures, i.c.
consonant plausibility measures of Shafer [25]. The
corresponding revised possibility distribution is
n(wA)=n(w)TI(A), Voe A ; ©(wlA)=0 otherwise. (13)
This rule is much closer to Bayesian conditioning than the
ordinal rule (11) which is purely based on comparing
numbers; {12) requires more of the structure of the unit
interval (a product operation}. In both cases the set function
itself remains ordering-based. (12) makes sense if Q is a
continuous universe, if ® is continuous and revision is
required to preserve continuity. Both (11) and (13) satisfy
» N(A)=1=n(-1A)=r (no revision if A was already certain)
» [I(A)=1=>w(-|A)=min(jL 5 )=n* 4 (revision=expansion in
case of consistency)
» N(AlA)=1 (priority 1o the new information).
Counterparts of the other AGM [12] postulates for revision
hold as well with the two definitions; see [9] for a detailed
study of the possibilistic counterparts of expansion,
revision, and contraction. Especially (11) embodics a
principle of minimal change. If ® and n' define two real-
valued possibility distributions on a finite £ then the
Hamming distance between xt and n' is defined by H(n,n")=
ZmE q Im{w)-m'(w). Then we have the following result [9}:

n(-1A) is Lthe possibility distribution the closest to « that
complies with counterparis of Gardenfors' postulates, as
long as there is a single world @ where (w4 )=TT(A).
H(m:r(-1A)) is thus minimal under the constraint N(AlA)=1.

It is worth noticing that the revision rule (11) satisfies the
counterpart of (2) for probabilistic conditioning with respect
to the disjunction. It can be checked that

FI(BIAUAY=max(min{o, T I(BIA)),min{od JTT(BIAY)  (14)
with a=IT{(A"Y>TI(A) and o'=]T(A)—>T{A") where — is the
multiple-valued implication a—b=1 if a<b and b otherwisc.
The function from 10,112 to [0,1] defined by My o(x.y)=
max{min(c,x),min{e'y)). where max{a,a")=1 is the
possibilistic counterpart of the weighted arithmetic mean (or
copvex mixture) in probability theory. Condilion
max(a,a)=1 is indeed verified in (14). The behavior of the
product-based definitions of Ti(BJA) with respect to a
disjunction of input is similar to the min-based definition:
(14) remains true when AmA'=@ provided that we define o=
TI(AY>TI(A) and a'=[T{(A)—>TI{A") with the implication
a-sb=min{1,b/a) and min is changed into product.

While (13) looks as & more natural counterpart of
probabilistic conditioning, N(BIA) stemming from (11) is
more closely akin o the concept of "would counterfaciual”
following Lewis [20], and denoted AD—B, which is intended
1o mean "if it were the case that A, then il would be the case
that B". Lewis proposes to consider AO-—B as true in world
o if and only if some accessible world in A n B is closer o
w than any world in AnB, if there are worlds in A. Let us
interpret "closer to world w" as "preferred” in the sense of
possibility degrees (@ thus denote the "ideal world"). Let us
notice that we do have when [T(A)>0,

VB, BNA=B N(BIA)>D < [TBNA)STHBAA) (15)
where N(-|A) is the necessity measure based on n{-|A). The
latier inequalily means that there is a world in B » A which
is more possible than any world in BnA. Hence N(BIA)>0
agrees with the truth of AD—B. The counterpant of Lewis'



"might conditional” A0—»B is of course [1(BIA) in the sense
of (10) with *=min,

3.2 Possibilistic Imaging

It is easy to envisage the possibilistic counterpart to Lewis'
imaging since this type of belief change is based on
mapping each possible world to the closest one that
accomodates the input information. As in Sec. 2, define for
any we {}, and non-emply set AgLl the closest world
wA€ A to «. Then the image of an epistemic staie n in A is

1:"A((.o')=max‘:l,-=(,,,A (@) if WeA; n°5(0')=0if w'e A.(16)
If there is more than one world w4 closest to ®, then the
weight w(w) can be allocated to each of the closest worlds,
forming the set A{w), and the above updating rule becomes
oA (W) = maxg T} if W'eA; 7°4(w)=0if w'e A.(17)
w'e Aw)

If we define R4 as the relation that to cach @ assigns its
closest neighbours in A, the above updale formula is
nothing but Zadeh [31]'s extension principle tha
characterizes the fuzzy image of the fuzzy set whose
membership function is m, via relation R 4.

It is easy to check that the updating rule (16) satisfies all
postulates of Katsuno and Mendelson [18]'s updates namely:
Ul) n°A<Up iy U2) rpp=—=n®p=n;

U3) if A#»@ and = is normalized then #n° 4 is normalized ;
Ud) A=B=>1T°A=1'I:°B i US) min{n®s up)SR®aA~B:

UG) n°ASHR. T°BSKA=STA=T"R ;

U7) n maximally specific = min(n°®s,x°g)sn°sA R

U8) Imax(r,n0]° 4 = max(n®s m°A).

Defining A(w) precisely as {@'In(w)=IT(A)=max{x(w),
e A)) then #t° o=n(-IA), i.c. we recover tLhe revision based
on conditioning. Clearly in this setting, we see that Katsuno
and Mendclzon's approach subsumes the AGM framework.
In the seuing of possibility theory, the difference between
Katsuno and Mendelson framcwork and the AGM approach
are patent. While the AGM approach tries to use the input
information so as to reduce incompleteness, the update view
tries to carry the incompleteness of the epistemic state to a
new cpistemic state that agrees with the input inflormation,
assuming that the shift of the "rcal world" is minimal,

When A(w) is a fuzzy subset of A, (17) reads
n° A(m')=maxmu(m)*uA(m)(m‘) ifw'e A; n°3 (0)=0if w'e A
where *=min or producl; we have to assume Uy A(m,m‘)=1
if w=w'e Supp(A)={we A A (0)>0}, and 0 if w'e Supp(A).
It can be easily checked that this updating is invariant under
weightcd max-combination, i.e., the counterpart of (5) reads:

Imax; (h;*m;))° g=max; A;*(m;)° 4 with max; A;=1.
Clearly U8 is a particular case of this invariance under max-
weighted combination, ’

The possibilistic framework would enable us to deal with
the apple and banana example in a way similar to the
probabilistic solution, although in a more qualitative way.
The example is really o elementary to cxhibit significant
differences between the two approaches.

3.3 Uncertain Inputs

Belicl change can be extended to uncertain inputs of the form
N{A)=ct. The main question here is how to interpret such an
uncertain input. Two interpretations make sensc [9):

1) N(A)=a is taken as a constraint that the new epistemic
state must satis{y; it means that if €' is obtained by
revising n with information (A,ot), the resulting
necessity measure N must be such that N'(A)=cx; )

ii) N{A)=0 is interpreted as an extra piece of information
that may be uscful or not useful 10 refine the current
epistemic state; in that case @ is viewed as a degree of
reliability or priority of information A.

Interpretation i) is in the spirit of Jeffrey's rule. Clearly

N(A)=1 will lead 10 an expansion of n into x* 4 ora

revision n(-1A), while N(A)=0 will force a contraction. In

contrast, i1} corresponds to either a revision or an expansion
but is never a contraction, since if o is (00 low, the input
information will be discarded.

The input information is not modelled in the same way
whether it is a constraint or an additional information. In the
first case (i), N(A)=a is interpreted as [T(A)=1 and [J(A)=
1-@, and the belief change rule is of the form [9]

n(ol(A,0)) =n(wlA) if we A
= (l—apn{wlA) if e A (18)
where #=min or product according to whether m{mlA) is the
ordinal or Baycsian-like revised possibility distribution.

Note that when a=1, r{ol{A,a))=n(wlA), but when

=0, we obtain a possibility distribution less specific than

7t such that the associated necessity of A is zero,

In the second case (ii), the additional information N(A)=a
is represented by a fuzzy set F with membership function
HF

pp(w) =1 if we A ; up(w) = 1-a¢ otherwise,

Letting Fa={wlup(w)zi}, each Fy is viewed as the (non-

fuzzy) repular input information underlying F, with

guarantced possibility A and the revised episiemic state

n(-IF) is defincd by analogy with Jeffrey's rule as {6]

n(wlF)=maxj¢ (0,1) Asn(wlFy)

where the convex mixing is changed into the weighted

maximum and * is min or product again. In our particular

case, it gives, for a>0

n(wF=r(wlA) if ve A; T(OF)=n(@)*(1-o) il ve A.(19)

Note that m{wiF)Sup=max(i 4 ,1-a): moreover #(wIF)=

n{w) if a=0 since then F=L2, i.e. the operation is never a

contraction. This behavior is very different from the case

when N(A) = o 15 taken as a conastraint.

The first revision rule (18) under uncertain inputs can be
exlended to a set of constraints [T(A;)=A;, i=1,n, where
[A;.i=1,n} forms a partition of £2, and it gives

n(ml{(Ai.li)})=liﬂr(u)mi), Ve A 20)
where *=minimum or product whether m(wlA;) is ordinal or

Bayesian-like. In the limit case when Aji={w;}, Vi, the input

is equivalent to a fuzzy input F with pp(w;)=X;. The above

belief change rule reduces to a simple substitution of « by

B, just as for Jeffrey's rule for probabilities.

To conclude, while the belief change rule (19) is formally
analogous to Jeffrey's rule, its behavior is very much akin 1o
a revision 3 la Girdenfors. See Section 3.4. On the contrary
the other rule (18)-(20) is very close to the spirit of Jeffrey's
rule, and has been proposed in another setting by Spohn (27}
who uses the integers as a scale rather than (0,17 with the
convention that 0 corresponds to the minimum
impossibility (i.c. the maximal possibility), see {6].
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3.4 Epistemic States as Weighted Propositions
The set of possible worlds in which a possibilistic logic for-
mula (¢ o) is true is the fuzzy set [@ a] on € given by [7]
M o](@) =1 if we [9] | Byp j(®) = 1-0 otherwise ;

([@] is the set of possible worlds where @ is true); Hip o] is
the least specific possibility distribution x such that N({@])=
infge (o] 1-n(w)2wx. The fuzzy set of worlds which salisfy a
possibilistic knowledge base K={{9;.a;).i=1.m] is defined
by the possibility distribution wy

Ve (2, ng (@)=min;_; max(u[q,i](m).l—ai) 21)

which extends [Kl=[¢]In[@a]n...n[@,] from a set of
sentences to a set of weighted sentences. Semantic
entailment is defined in terms of specificity ordering (m<n’).
Namely Ki=(¢ «) if and only if ::KSmax(u[q,]. 1-¢). This
notion of semantic entailment is exactly the one of Zadeh
[31]. Note that here each possibilistic formula is viewed as
an additional piece of information. Indeed min(m,
max(u[qﬂ.l—a)kn only if (@,c0) brings information not de-
ducibie from x. These definitions make sense for consistent
possibilistic knowledge bases, i.¢, such that ny (w)=1 for
some we 2. Consistency of K is equivalent to the consis-
tency of the classical knowledge base K* obtained by remo-
ving the weights. When max . o m(w)=3<1, K is said 10 be

partially inconsistent, y being the degree of consistency of
K, i.e. inc(K)=1-%. It y=0, K is completely inconsistent.

Let us consider the case when K is consistent but
K'=Ku{{p 1)} is not, and let a=inc(Kuf(p 1)])>0. The
following identity is proved in [7]:

Kul(® 1}y B) with B>« if and only if N(ylg)>0
where N(yl@) is the neccssity measure induced from
n(-[¢]) the possibility distribution expressing the content of
K, revised with respect to the set of models of ¢. Indeed let
«' be the possibility distribution on Q induced by K' then

r:'=min(1tK,u[q,]) and O<max g, q m'(w)=1-a<l.

The possibility distribution %' induced from the consistent
part of K' made of sentences whose weights is higher than
o, isdefinedas T(0) = mw)if we (e} and t{@)<li-a

=1 if we[p) and n{e>)=1-a

= '{w)=0 otherwise.
Hence m'=r(-1[¢]), the resull of revising % by [¢]. The
corresponding revision is rather drastic since all seniences
(9; oy) with weights a; <o are thrown away, and replaced by
(o 1). Notc that when IT{)>0, N(wle)>0 is equivalent to
N(—pvy)>N(=gv—-y), or equivalently in terms of the
associate episiemic entrenchment >¢: ~Qvy > ~@v—y (5],
and corresponds to a characteristic condition for having y in
the (ordered) belief set obtained by revising the deductive
¢losure of K by o, in the sense of Giirdenfors [12).

4 Revision, Updating and Focusing

Let us now consider Shafer’s evidence theory [25][26). The
set of possible worlds is called frame of discemment. In this
framework the available kmowledge is represented in terms of
a basic probability assignment m, which is a set function
from the set of subsets 25 10 [0,1] with the constraints
m{@)=0 and Lo m(A)=1. The subsets AC such that
m(A)>0 are called focal elements. Note that there is no cons-
traint on the structure of the set F of focal elements (here
supposed to be finite and which does not make a partition in
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general), Each focal element A; represents the most accurate
description, with certainty m(A;), of the available evidence
pertaining to the location of the actual world in 2. The sub-
sets A, are the possible realizations of an imprecise observa-
tion pervaded with uncertainty. Due o the incompleteness of
the available information, A; is not hecessarily a singleton.
A plausibility function Pl and a belief function Bel are
bijectively associated with m [25] and are defined by
PI(B)=X A:ArB#0 m{A) 22)
Bek(B) = 1-PI(B) = £y, 0 cp m(A) (23)
Dempster rule of conditioning is expressed by
PI(BIA) = PANB)/PI(A) ; Bel(BIA) = 1-PI(BIA) (24)
This rule of conditioning can be justified on the basis of
Cox's axiom that defines a conditional function associated to
any uncertainty measure g defined on Q as in Sec, 2 [4].
Cox’s axiom justifies Dempster's conditioning rule as well
as the geometric rule of conditioning [28}

Belg(BIA)=Bel(A r B)/Bel(A) ; Plg(BIA)=1-Belg(BIA) (25)
In terms of basic probability assignments, PI(-[A) defined by
(25) is obtained by transferring all masses m{B) over to
AmB, followed by a normalization siep, while Bel (-IA) is
obtained by letting mg(BIA)zm(B) if BCA and 0 otherwise,
foliowed by normalization, i.e. a more drastic way of
conditioning. Dempster's rule of conditioning looks more
attractive from the point of view of updating since PI1(BIA)
is undefined only if PI(A)=0 (i.e. A is impossible) while
Bclg(BIA) is undefined as soon as Bel(A)=0 (i.e. A is
unknown). This unability to revise with a vacuous prior is
counterintuitive, with the geometric rule.

Dempster rule of conditioning is a mixture of AGM-type
expansion (when m(B) carries over to AnB if A becomes
true) and Bayesian updating. On the contrary, the geometric
rule has nothing to do with an expansion on € and is more
in the spirit of imaging since all masses outside A are
moved inside. Dempster rule of conditioning subsumes
conditional possibility based on product, i.e. (12).

Another approach to conditioning has been proposed by
De Campos et al. [3] and Fagin and Halpern {11} under the
form

P*(BIA) = PYANB)/PI(AB)+Be AN B) 26)
Px(BiA) = Bel(ANB)YBel(A~B)+PI(ANB) 2n
These definitions can be justified by interpreting belief and
plausibility functions as lower and upper probabilities, since
it has been proved that
P*(BlA)=sup(P(BIA)IPc P(Bel)) (28)
P+(BIA)=inf{P(BIA)Pe P(Bel)) 29
where P(Bel)=(PiBel(B)<P(B)<PI(B),vB}. These conditional
functions are actually upper and lower conditional
probabilitics and have been considered by Dempster 2]
himself and Ruspini [24]. P«(-|A) has been proved 10 be stil!
a belief function {11][16]. Although very satisfying from a
probabitistic point of view, these definitions lead to a rather
uninformative conditioning process since P*(-IA)ZPI{-|A)2
Bel(-tA)2P«(-|A) as noticed by Dempster {2]. Especially,
complete ignorance is obtained (P*(BlIA)=1 P« (BIA)=0) as
soon as Bel(AnB)=0 and Bel{AnB)=0, i.c. as soon as the
conditioning set A intersects each focal element without
including any one of them, thus making all focal elements
smatler. In that case the revising process would correspond



to oblivion rather than ieamning. It has been shown elsewere
that (28)-(29) is not a rule for revision but a "focusing rule”,
by which one only changes the reference class, without
forcing P(A)=0 [8]. Especially (28)-(29) does not modify the
constraints specified by the belicf function. Dempster rule of
conditioning comes down 1o add the constraint P(A)=1 to the
sct P(Bel), in the case when PI(A)=1, i.e. A is viewed as a
new piece of information to be integrated in the current
knowiedge, and leads 10 a revision, and not only a change of
reference class. When Pi(A)21, the constraint P(A)=PI{A)
can be added to the set of constraints in (28)-(29), and the
upper conditional probability thus obtained corresponds 1o
Dempster rule in the general case, as proved by Gilboa and
Schmeidler [13], who call it maximum likelihood revision.
A more refined proposal can be found in [22] where the
distributions which do not maximize P{A} are also
somewhat taken into account.

5 Conclusion

This paper has emphasized that belief revision in the sense
of Gardenfors, as well as updating in the sense of Katsuno
and Mendelzon can be defined through conditioning and
imaging respectively both in the probabilistic and in the
possibilistic settings. The possibilistic framework leads to a
more complete agreement with the two sets of postulates
(first stated for propositional logic) than the probabilistic
setting. The paper also has tried to relate the revision of a
possibility distribution on a set of possible worlds to the
revision of a knowledge base made of uncertain logical
formulas. More work is needed to relate probabilistic rules
to the axiomatic approaches to belief change in the logical
framework, despite the existing bridges between probability
and possibility theories. Namely we might consider devising
revision and updating rules in logics of uncertainty different
from possibilistic logic, and especially probabilistic logic.
Indeed while the problem of change has been thoroughly
studied for probabilistic representations of epistemic states
on a set of possible worlds, nothing has been done at the
syntactic level. Besides the justification of the different rules
in evidence theory is in its infancy. The idea of focusing,
i.e. changing the reference class as opposed to revising a
body of knowledge might be worth introducing in the
logical setting also.

The coherence between numerical versus symbolic approa-
ches to knowledge representation is still present in the revi-
sing and updating problems. Pushing further the conse-
quences of such a coherence looks like a challenging task.

The reader is referred to a more complete version of this
paper for further discussions and proofs [10].
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