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Abstract

Uncertainty processing methods are analysed from the
viewpoint of their sensitivity to small variations of
certainty factors. The analysis makes use of the
algebraic theory which defines the function for
combining partial certainty factors by means of a group
operation of the ordered Abelian group over the interval
of uncertainty. Two approaches are introduced: (a)
sensitivity analysis of the inference network and (b)
calculation of second order probabilities. Sensitivity
functions are defined as partial derivatives of the
combining function with respect to their arguments.
Based on the sensitivity functions, we define the path
sensitivity which measures the sensitivity of a larger
part of the inference network. If a set of samples of
certainty factors is available instead of a single value,
the second order probability distribution can be
approximated by the distribution of an average value. It
is shown that the parametric form of the distribution is
completely determined by the combining function.

1 Introduction

Numerical values describing the uncertainty of knowledge
and data in knowledge-based (KB) systems are usually
imprecise due to the fact that they are almost always
provided as the subjective assessments of experts or users.
Nonetheless, these imprecise numbers are processed by some
algorithm and the results are used to draw conclusions.
Without a thorough KB verification which includes an
analysis of the robustness of the uncertainty processing
technique used, we must always be aware of die limited
credibility of results. This paper aims to provide techniques
for such an analysis. The methods described are based on
compositional (extensional) calculation of uncertainty
processing [Duda et id., 1976; Gashnig, 1980; Heckerman,
1986; Reiter, 1980; Wise, 1988] (see [Hajek et al., 1992;
Pearl, 1988] for more detailed discussion). Although the
current attention of the Al community is focused rather on
intensional (model-based, probabilistic) approaches
[Spiegelhalter, 1986; Lauritzen and Spiegelhalter, 1988;
Pearl, 1988], the compositional methods are still popular
due to their computational simplicity. The main objection
to the compositional methods is that the results are not
sound. In [Hajek et al., 1992] an attempt is made to revive
these methods by replacing the original simple-minded
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interpretation of their results by a comparative one, thus
improving their robustness as well as their soundness.

We will present two methods for assessing the
imprecision of uncertainty measures in rule-based KB
systems. The first approach is based on sensitivity
evaluation. The idea of a sensitivity analysis of inference
nets was explored in Prospector [Gashnig, 1980], where a
uranium model was compiled and run for a large number of
combinations of data and the sensitivity was calculated. Our
approach is more analytical. We define sensitivity functions
for particular methods of combining certainty factors and
then in terms of these functions and rule sensitivities, we
analyse the sensitivity of a path in the inference network.
The second method proposed in this paper is based on the
idea of second order uncertainties, i.e. the uncertainties of
certainty factors. The concept of second order probabilities
has already been suggested by [Cheeseman, 1985]. We will
show that for certain statistics the parametric form of the
second order probability density is completely determined by
the method used for combining certainty factors. This
property makes it possible to calculate the actual second
order density functions. Moreover, the parametric form of
this density function is invariant with respect to the
combining function used.

2 Preliminaries

Regardless of their origin, the uncertainty measures will be
called certainty factors throughout this paper. Our approach
is based on the algebraic theory of uncertainty processing
developed by [Hajek et al., 1992]. We will briefly
summarise the relevant parts of Hajek's theory needed for the
presentation our work (for the complete theory see [Hajek et
al., 1992]). It is assumed that knowledge is expressed in
terms of rules. A numerical certainty factor (weight) w from
(-1,1) is associated with each rule, E — H{w). The
extreme certainty factors correspond to "Hypothesis H is
false" (value -1) and "Hypothesis H is true" (value 1)
respectively. Certainty factor 0 (zero) stands for "There is no
evidence concerning hypothesis H' If two or more rules
bear on the same hypothesis, the overall certainty factor of
the hypothesis is calculated by applying some combining
function to individual contributions. We will call the result
produced by the combining function "the global certainty
factor", and the contributions, i.e. the arguments of the
combining function, "partial" certainty factors. The
combining function is defined by means of a binary
operation ® for which the following axioms hold:



Let x, y and z be partial certainty factors of a hypothesis.
Lifx=landy#-l,ory=1landx# -1thenx®y= 1.

Ifx=-landy#l,ory=~landx# I thenx®y = -I.
2Ifx=landy=-l,ory=1land x=-1 then x @ y is not

defined.
3. Forx, yz=-landx, v, z21

@ x@y=y@x ... Commutativity

D (xDy)Bz=x® (y®z).. associativity

D xd0=x ... null element

@ x®d-x=0 ... inverse clement

(e Ux<ythenx@z<y®z .. ordering

These axioms describe the propertics we intuitively expect
trom combining operations. The axioms 3 (a) - (¢} define an
ordered Abelian group (OAG) over (~1, 1) with the group
operation @ so far unspecificd. This OAG is isomorphic
with the additive OAG over (—eo, w); there are various
isomerphisms which map -1 — -e, 0 — (0, 1 -3 oo, the
group operation @ being the normal addition and the inverse
clement being the number with the opposite sign.
Similarly, the OAG over (-1, 1) is isomorphic with the
multiplicative OAG over (0, ), ie. =130, 01,
1 = oo, Lhe group operation being te multiplication and the
inverse element of x being I/x. Particular combining
operations @ over (-1, 1) can be defined by means of these
isomorphisms. For example, il we use the addilive OAG the
purtial weights x and ¥ 10 be combined are imapped by some
isomorphism from (-1, 1) 1o (—oo, e}, then the isomorphic
images are summed since addition is the group operation on
{—oo, oo}, and finally the result is mapped back by the inverse
isomorphism to (-1, 1). The group operation defines a
combining function gix,v).

.V =x®y=F'|F(x)+ Fiy) (1

There are several isomorphisins (=1, 1) @ (—ve, o0)
suggested by {Hajek ef of., 1992]. We will mention onty
two of them: those used in Emycin and Prospector. They are
defined for {(), 1} —» {0, =) by the following formulae, for
negative values we ake an odd extension, Fi—x) = —F(x).

Fix)=1n[1/1 ~ 1))
Fixy=1ln[(1 + )/ (1 -x}]

Substituting (2) wo (1) gives Emycin formulae. Similarly,
substituting (3) to (1) gives (x + yJAT + ay) which is the
Prospector odds-based formula recaleulated into (-1, 1)

The isomorhising between Prospector and Emycin were
used in [Heckerman, 1986] to interpret MYCIN's certainty
factors. Similarly, the AL/X uncertainty processing method
[Reiter, 1980] is just an isomorphic image of the Prospec-
tor's, Graphs of combining functions defined by (2) and (3)
are shown in Fig. 1 (a) - {b) for y = - 0.9, - 0.6, - (1.3,
0.0, 0.3, 0.6 and 0.9,

In order to demonstrate that our intuition expressed by
axioms 3 (a) - (e) is not sufiicient 10 guarantee sensitivity
properties required for processing of unceriain knowledge we
have defined the combining function as follows:

F(x)=fxt(1-n)" 4)

We will show this function to be a typical counter-
cxample which does not meet acceplable sensitivily
properties. Its graph is shown in Fig. 1 (¢).
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3 Sensitivity functions

For applications, the exact values of certainty factors must
not be crucial. Uncertainty processing methods must provide
correct results regardless of small variations in numerical
values. From this point of view we expect the processing
methods to be insensitive to small changes. On the other
hand the method must "weigh" the contributions; the global
certainty factor must depend on the values of partial ones
which means that it must not be too insensitive. Given a
standard rule-based architecture it is reasonable to assume
that no knowledge is represented in terms of the combining
method, i.e. we will consider the same, a priori determined,
combining function throughout the inference network. The
sensitivity of the final hypothesis depends on the sensitivi-
ties of rules and the sensitivities of combining algorithms.
The behaviour of the combining function for small varia-
tions of one variable is described by the first partial deriva-
tive with respect to this variable.

Definition 1
The sensitivity function s,(x,y) of a combining function
g(x,y) widi respect to x is
delx,
5 = g(x, ¥)
ax
Similarly we define the sensitivity function with respect
to y as sy(x,y) =dg(x,y)/dy. Since the operation @ is
associative, we can extend the concept of hinary combining
functions to n-ary ones as follows:
g(x,, x,...x )= F'[F(x,}+ F(x,+. .. +F(x )] (5
The concept of a sensitivity function can also be exiended
N g(X,, X1 X,)

ax.

(6)

‘I'

The sensitivity functions have the {ollowing properties:

Proposition 1

Fora and b € {-1,1}, sy(a,b) = sy(b,a), ie. the sensitivity
functions are symmetric.

Proposition 2

Sxla, b)Y =sx(—a,-b), i.e. the sensitivity functions are even
functions of their arguments.

Proposition 3
sx(a,b) 2 0, i.e. the sensitivity {functions are non-negative.

The following two propositions show that n-ary sensitivily
functions can be composed of binary ones.

Proposition 4

5 Xy )= 8, (080K X Xy X))

Proposition §

5, (X x ) =5, (gt ) s, Gty )08, (0 00,)
where I =x, ¢, =x,  forizj t =x fori<j, andforu,
we substitute 4, =20, .0 Jfor k=1 ..n -2 and
u_, =1,

The sensitivity functions corresponding to (2), (3) and (4)
are shown in Fig. 2 for y = 0, 0.3, 0.6 and 0.9. The
completion for y < 0 describes Proposition 2.
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For proofs of all the propositions introduced in this paper
sec [Zdrahal, 1991a).

What kind of sensitivity function do we prefes? Whereas
in control theory the minimum sensitivity with respect to
parameter varialion is a clear goal, here it is more difficult to
define an ideal sensitivity behaviour since we are interested
in an input sensitivity, Therefore the answer necessarily is
rather speculative.

If both arguments are of the same sign, the sensitivity
should be approximately constant, The combining function
weighs partial certainty factors. As both arguments approach
the same extreme vatue (+1 or —1) the sensitivity function
should go w0 zero. We are almost certain that the hypothesis
holds (for +1) or does not hold (for -1) and small variations
do not have any impact. The sensitivity increases as the
partial certainty factors are approximately of the same
absolute value but with different signs. The partial certainty
factors compensate each other and the result is close to zero.

‘The combining functions of both Emycin and Prospector
satisfly our intuitive insight. The required weighing effect
prevails. On the contrary, function (4) almost does not
weigh at all. Instead, it has a switching character. For some
Yo>0and -y, <x < y, the impact of x is negligible (see
Fig. 2 (c}). The value of x becomes important only near -y,
= x . A1 this point the combining function completely
switches to the global cenainty factor of the opposite sign.
The narrow band around -y, = x 15 overly sensitive and
unstable. In this case sg(x,v) has even got a singularity
pointat -y, =x .

Out of interest we have also evalusated the conditional
probability P(H | Ef, E2) calculated from P(H | Ey) and P(H
I E2) by means of the maximom eniropy criterion [Zdrahal,
1901b]. Both hypothesis H and evidences Ep and E2 were
binary valued, probabilities were recalculated into (—1,1} and
the values were cxpressed in terms of a "combining
funclion”. We are fully aware that this function is based on a
completely different (intensional) philosophy: it bas nothing
10 do with axioms 3 (a) - (e), cannot be expanded by (5) and
thus it is impossible to carry oot a fair comparison,
However the corresponding sensitivity function proved to be
very similar to that of Emycin and Prospecior (Fip. 2 (4)
and (b)) and very different from that of Fig. 2 (c).

From a sensitivity point of view, the fonnulie (2} and (3)
on the one hand and (4) on the other hand produce very
different types of combining functions. The properties,
however, become more obvious if we 1ake into account the
fact that all of them must obey the following proposition.

Proposition 6
The average value of sensitivity over interval (-11} is
constant and equals 1, i.c.

I
s (nydr=1

This proposition in combination with Proposition 3
implies that an excessive scnsitivity of the combining
function on some subinterval must be compensated by
insensitivity in some other subinterval. This effcct can be
observed in Fig. 2. In cases (a) and (b) there is an even
sensitivity on the major part of the certainty interval. On the

contrary, in case (c¢) there is extreme sensitivity around the
switching point which is necessarily compensated by almost
zero sensitivity in a large subinterval of (-1, 1).

4 Path sensitivity in the inference network

For the purpose of sensitivity analysis the KB is
represented as a directed acyclic graph (DAG). We will
suppose the DAG 1o be a uee. The nodes comrespond (o
propositions and the edges to rules. The combining function
(5} calculates the global node certainty factor given partial
ones. The partial certainty factor corresponding to a single
rule combings the certainty factor of the evidence with the
weight of the rule, Tt is vsoally calculated as their product
for a positive certainty factor of the evidence and zero for the
negative one. Thus, given rule R: A — B(w,) and cerwainty
factors aof A and b of B, we wrile

b=w,-a fora> @ (N
b=0 otherwise,

In tertnx of the DAG, equation (7) describes the edge
propagation. The same or a similar formula is used in Duda
et al., 1976; Iajek et al, 1992; Heckerman, 1986; Reiter,
1980} . 'The sensitivity of the rule is db/da=w,,.

Sensitivity of a larger part of the inference net can be
expressed in terms of the sensitivity of edge propagations
and sensitivity functions, Sensitivity along a path in the
inference net is defined as follows.

Definition 2
Let &(x,....x,) be the global certainty factor of a root
propusition H, where x;,....x, are certainty factors of all
leaves X ..., X of the wee with root H. Path sensitivity
Sy, of b with respect 1o x; is defined as
_ohx,x,,..,X,)

ox,

L

k\‘

kux,

Similarly we can defline the path sensitivity of subtrees in
the KB. The path sensitivity can be calculated recursively in
accordance with the [oliowing proposition.

Proposition 7
Let us denote X, X nodes of an inference network. Let path
p of length I(p)= ¢ exist from X, to X,. I {(p)>0 let X,
be the immediate predecessor of X, which is on the path p.
Letus denote: w, ... weight of the rule X, - X,
¥, .. partial certainty factor comesponding o
therule X, = X, y, =w, -1,
5, (Yyse-0r Yar-o ), sensitivity function of x,
with respect to ¥, .
Path sensitivity §, , equals:
(a) 1 if X,=X,, e ifi{(p}=0.
(b) wy '5,,()’1'"»?;:---)‘5.,:, if x, 20, and
(c)0 if x, <0,

Proposition 7 describes a recursive algorithm for
calculation of path sensitivities which is evaluated as a
function of certainty factors of some nodes (possibly leaves)
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of the inference network. This function is considerably non-
linear due to the non-linearity of both sensilivity functions
and equation (7) which complicales its calculation. However,
in some cases the exact values of path sensitivity are not so
important. Rather the aim of the analysis is to find extreme
cases. We are usually interested in an upper bound of the
path sensitivity. This can be estimated if all sensitivity
functions are substituted by their upper estimates. The upper
estimates of the sensitivity functions are not calculated over
the whole interval (—1,1}, since the range of values of the
partial certainty factors which are the arguments of
sensitivity functions get systematically restricied by repeatcd
application of (7) for each rule.

The following simple example demonstrates the
calculation of the path sensitivity: assume that the inference
network consists of four rules X - Viw,), Y- V(w),

Vo H(w)and Z— H(w,), ie. Histhe root, X, Yand Z

are the leaves and V is the intermediate node. Let us denote
as p=xw, the contribution of rule X+ V(w,) to the

value of V, similarly g=y-w, v=p®¢g=g(pq),
r=v-w, I=7w, and Ah=g(r.r). Assuming that the
values x,w,,y,w,, zand w,_are positive (in order to cnable

the complete edge propagation) we can calculate for example
the path sensitivity S, as 5 =s,(rd}-w -5 (p.q)-w , where

r=w, -glw, -x,w -y). With respect 10 the possible values
of p and g we evaluate s,(p,¢) only over pe(0,w,} and
g€{0,w). Similar restricions apply to the other variables.

5 Second order probabilities

The second way of characterising the imprecision of
certainty factors is by means of second order probabilities,
We are going 10 use the term probability although the first
order uncertainty is expressed in terms of general, not
necessarily probability-based certainty factors. While the
sensitivity analysis estimates the potential eerors produced
by variations of certainty factors the second order
probabilities estimate the chances (hat the error really
accurs, They express our doubts concerning the given value
of certainty factors.

Second order probability density p(x.m) has a meaning for
x,me (-1, 1). The parameter m is a value of the certainty
factor into which the density function is located. Intuitively,
we cxpect p(x,m) 10 peak at both ends of interval (-1, 1), i.e.
for m close to -1 and 1 respectively, since if we are certain
about some proposition we do not allow any doubts. In the
middie of the certainty factor interval p(x,m) is flattest as the
lack of evidence allows maximal doubts. We can however
hardly assume that the second order densities are a priort
known. Therefore we will attempt to replace them by some
statistic estimated from potentially available data.

Let us assume that instead of a single user providing
certainty factors there is a uvser poll which gives n
independent answers to each query. Thercfore when
investigating some evidence instead of a single certainly
factor x we get a set ¥ = { x,,....x ]} of certainty factors.

This set characterises the distribution p{x,m) of x. Instead of
calculating n independent inferences and then evaluating
results we characterise Lhe set y by a single value, a statistic

630 Knowledge Representation

of x. Let us use the sample average value. We cannot
simply take the arithmetic average since the average must
take into account the properties of uncertainty processing
group. We will use the group average which is defined as
follows:

Definition 3
Group average X is a number for which the equation
I0XD..T=x ®x,9..x_ holds.

In the additive group on (—ee, s0) the group average is the
well-known arithmetic average, similarly in the
multipiicative group on (0, =) the group average is the
geometric average. In the certainty factor group on (~1, 1)
we must calculate the group average in three steps: (i)
mapping certainty faclors by means of the isomorphism
from (-1, 1} to (—eo, o), (ii} calculating the arithmetic
average in the additive group and (iii) transforming the result
by means of the inverse isomorphism back to (=1, 1), i.e.

I= F"[lZF(x,.)=F(5f'), wherek":-l—zr(x,.) (8)
nia niq

In accordance with the assumptions y is a set of
independent answers, therefore also {F{x;)} is a set of
independent samples. Let us assume that there exists 4 mean
value ¢ and a dispersion ¢ of distribution of F(x).
According to the Central Limit Theorem the term

= 1
X==Y F(x,) )]
n
has the normal distribution N(p.c!ﬂ) From (8) it
follows that the average value T has, up to the mean and
dispersion of X, completely determined its density function
by the isomorphism F. We denote the density tunction of
the group avenige as g(X, 4 ) and summarise the result in the
following proposition,
Proposition 8
For a given set ¥ = { x,...., 1, } the group average has a dis-
tribution with probability density
@X.p)=F'[N(u.0/Vn)

i.e. the parametric form of the second order density
g(X, 1)) is determined by the isomorphism F.

Given a set ¥ and the parametric form of the density, the
actual values of 4 and o can be estimated by any standard
parametric technigue, For the group averages the following
propasitions hold (for proofs see [Zdrahal, 1991a]).
Proposition 9
Lew {x;} and {y;), i =1, 2, ..., r be sets of certainty values.
Let Tand ydenote the group averages of {x;} and (y,}
respectively, Then g(x,,y, ) = g(X, V).

Proposition 10

Let {x;),6 =1,2, .., nand {yjlhi= 12, ..m, besets
of independent certainty factors, lel Yand ¥y denote the
group averages of {x;} and {y;} respectively. Then the
parameltric form of the second order density of g(X,¥) is the
same as that of ¥ and ¥ respectively.



Proposition 9 states that the combining function preserves
sample averages. In accordance with the Proposition 10 the
combining function preserves the parametric form of the
second order density of group averages. However the
calculation of the second order density for group averages
across all inference network cannot be carried out
automatically by recursively repeating results of Proposition
10 since there is still the non-linear edge propagation
described by (7). It is necessary to split the inference
network into simple parts and cases and analyse them
individually.

Having obtained the second order density we can calculate
average values of various characteristics which depend on
values of certainty factors. As an example we can combine
both measures introduced in this paper and calculate an
average sensitivity function. It will be defined as

1
5.0m )= [5,05.9) gla,mydx
-3
The averaging is a kind of smoothing procedure. If the

dispersion a is very small, i.e. our knowledge of certainly
factors is very certain, the second order density is a very high
and narrow peak which takes a very local sample of the
averaged function (of the sensitivity function in the case

above). For a large c the average sensitivity function is
very smooth. The doubts concerning the correct value of the
certainty factor helps to solve the sensitivity problem.
Similarly, the second order density can be used to average
other useful characteristics.

6 Conclusions

We have presented two different tools for the analysis of
uncertainty processing methods in rule-based systems and
shown some of their properties. The first method -
sensitivity analysis - is focussed on properties of the
knowledge base with uncertainty. Sensitivity functions
evaluate the sensitivity of the combining formula while the
path sensitivity makes it possible to assess the sensitivity
of the inference network as a whole. The second method -
second order probability - is concerned with the impact of
uncertainty values from outside the knowledge base, i.e.
from the user. Both techniques, which are intended mainly as
an off-line analysis, can be used independently or in
combination. They allow a deeper insight into properties of
inference networks which is important from an application
point of view.
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