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Abstract

Reasoning about time often involves incomplete
information about periods and their relation-
ships. Varieties of incompleteness include un-
certainty about the number of objects involved,
the distribution of a set of temporal relations
among these objects, and what can be called
the participation of a set of objects in a tempo-
ral relation. A solution to the problem of rep-
resenting and reasoning about incomplete tem-
poral information of these kinds is forthcom-
ing if a restricted class of non-convex intervals
(called n-tntervals) is added to the temporal do-
main of discourse. An n-interval corresponds to
the common sense notion of a recurring period
of time with a (possibly) unspecified number
of occurrences. In this paper, we formalize a
representation for temporal reasoning problems
using n-intervals. The language of the frame-
work is restricted in such a way that tractable
techniques from constraint satisfaction can be
applied. Specifically, it is demonstrated how
the problem of determining path-consistency in
a network of binary n-interval relations can be
solved.

1 Introduction

Common sense knowledge about the occurrence of events
is often incomplete. The kinds of incompleteness of in-
terest here is expressed in the following sentences:

1. John sometimes drives to Orlando.

2. John's ten trips to Orlando this month twice pre-
ceded his phoning Phyllis.

3. Some of John's ten trips to Orlando preceded her
phoning Phyllis.

The first example exhibits number incompleteness: it is
not clear how many driving events there are, hence how
many periods of time are involved, but that at least one
occurs. The second example illustrates distribution un-
certainty; we don't know which phoning intervals over-
lapped with which meetings. The third example ex-
hibits, in addition to distribution uncertainty, what can
be called participation uncertainty; it is not known how

often the relation between the trips and the phonings
occurred.

Uncertainty of this kind is removed by adding quan-
titative information. Compare (1)-(3) with "John's ten
trips to Orlando this month twice preceded his phoning
Phyllis: the first time and the third time". Adding the
first quantity eliminates number uncertainty; the second
quantity ("twice") eliminates participation uncertainty;
the last two quantities together eliminate distribution
uncertainty.

Temporal knowledge incompleteness makes it difficult
to build a reasoner that adequately deals with time. In
this paper, the concern is to formalize a representation
which addresses the problem of reasoning with number,
distribution, and participation uncertainty. To accom-
plish this aim the remaining sections

1. Define a class of binary temporal relations between
pairs of n-intervals;

2. Construct an algebra for formalizing reasoning
problems involving n-interval relations; and

3. Demonstrate how path consistency can be applied
to a knowledge base of assertions about n-interval
relations, recast as a relation network, in the sense
of [Van Beek, 1990].

2 Underlying Model of Time

Time is considered here to be a linear order on a do-
main consisting of points identified with the real num-
bers under the ordering <. The collection of inter-
vals over this domain is the set of finite sequences of
the form I = {7, I}, 17,1}, ..., I7  I}), representing
a gapped interval with n convex compenents, or subin-
tervals, starting at 17 and ending at I}. We call such a
sequence an n-infervel *, with the ordering I7 < I} <
I < ...< I} I = {7, I}) represents the ith convex
component of 1.

In addition to the ordering constraints on n-intervals,
there is structure imposed by the fact that n-intervals are
the temporal component of the representation of knowl-
edge about recurring events. This complexity is repre-
sented by introducing binary relations between convex
parts of n-intervals.

"This term is used differently by Ligozat [Ligozat, 1990],
viz., to denote an interval consisting of n points.
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First, time is viewed as being partitioned into seg-
ments, or blocks, each representing a set of occurrences
of recurring intervals. Blocks come in various sizes; com-
mon examples include days, weeks, months, years, etc.
Formally, a temporal partition can be viewed as a func-
tion from a convex interval R, which we will call a ref-
erence frame, to a set of convex intervals. Being a parti-
tion, no two items in this set overlap, and each segment
of R is in one of the members of the set. For example,
let Weeks(R) = the set of convex intervals in R with a
duration of (at most) one week, starting at R,2. From
this notion, where r is a partition, we define an equiva-
lence relation ASSOC, (I, J;), which is true of pairs of
intervals /, and Jj ifand only if /, and J, are in the same
member of r(R). For example, if ASSOCw ceks(fi, J;),
then I; and J; occur in the same week.

In addition to associated intervals within a block, the
model views periods of time to be correlated. Corre-
lation is an equivalence relation between pairs of con-
vex parts of recurring events that holds as a result of
binary relations holding between them. For example,
consider the sentence "Meetings precede lunches twice
a week". There are two distinct groupings here: the
first is indicated by the term "weeks", which partitions
the reference frame into weekly blocks of associated in-
tervals. The second grouping pairs convex parts of the
recurring events "meetings" and "lunches". This pairing
phenomenon is represented in the model by the relation
of correlation. Further examples of correlation are pro-
vided below.

James Allen [Allen, 1983] defined a set of primitive
binary relations on convex intervals by enumerating all
ways in which two ordered pairs of real numbers can
be related. There are 13 such primitives, which we col-
lect together in the set ACR: before (6), meets (m),
during (d), overlaps (0), starts (s), finishes (/), their
inverses (after (bi), met by (mi), etc), and equals (=).
From these, he defined a class of 2" interval relations
by considering all possible disjunctions of primitives; we
call this set CR. Members of CR can be depicted as
finite disjunctions of the form “R; vV Ky V... R.", where
R; € ACR. As constraints in a relation network (de-
fined below) the same relation is depicted as the set
{RIIRQ:"'!RH}‘ 3

Since temporal relations in such a knowledge base are
binary, it is possible to represent the knowledge as a
network, where each arc represents one of the temporal
relations. More precisely (from [Van Beek, 1990]):
Definition 1. A Network of Binary Relations is a set
X of m variables {X\... X, }, a domain [¥ of possible
values for each variable, and binary relations R“.j be-

21f it is not possible to divide R into equal segments of
one week duration, there will be a segment at the end of R
of duration less than one week.

A word on notation used throughout: following conven-
tion, R, S etc. stand for members of CR. Lower case letters
from i,,;,... are used to specify arbitrary convex intervals;
as noted, upper case letters from /, J, ... specify n-intervals.
Single subscripts {e.g. Ri) distinguish members of ACR.
Double subscripts are used {e.g. i3} to emphasize that R
is a relation between i and j\ these are often omitted.
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tween variables. An irstenifalion of the variables in X
is an m-tuple representing an assignment of elements of
D; 1o each X;. A consistent instantiation of a network
is an instantiation that satisfies all the relations between
the variables. A network is consistent if such an instan-
tiation exists: otherwise, it is fnconsisteni. A relation
R, ; is feasidle with respect to a network if there exists
a consistent instantiation of the network where R, ; is
satisfied. For each edge in a network, the set of feasible
relations is the set consisting of all and only the relations
that are feasible.

Definition 2 A (Conver) Interval Binary Relation Nei-
work (IRN) is a binary relation network whose variables
represent intervals, and whose binary relations are mem-
bers of CR. An atomic IRN is an IRN each of whose
edges are labeled with a single member of ACR. A so-
lution network (scenario) is a consistent atomic IRN,

A cheap, useful inference technique used in examining
systems of interval relations is that of path consistency
[Van Beek, 1990] *:

Definition 3 A network is path consistent if and only
if for every triple of variables (4, j, k), Vz,¥z, 2R 17z =
Jy€ DjzRijyAyRjez.

A path consistency algorithm such as the one found in
[Allen, 1983], is an approximate technique for determin-
ing the set of feasible relations in an IRN. It performs
intersection and composition of relations, and assumes
that a inverse operation on relations is defined. Intersec-
tion of relations is just intersection of sets. In the tem-
poral domain, a Cemposition Table ({Allen, 1983}, not
reprinted here} defines composition between elements of
ACR. In the general case, the results of composing two
elements of CR. is just the union of the result of the
pairwise composition of its atomic elements. Finally, for
each relation R;;, ils inverse (R,-‘,jl), is defined as the
relation R;; that satisfies I1R;;J <= JHR;. The
path consistency algorithm repeatly performs composi-
tion over triangles of edges in a relation network, until
ne more changes to any edges are performed. Changes
oceur when a composition of relations on a pair of edges
results in a change (a “refinement”) of the relation in the
third edge.

To summarize, the underlying model for reasoning
with recurring events has the following components:

1. A set of n-intervals I, J, K . ., each consisting of an
ordered set of convex parts called subintervals;

2. A function for retrieving the zth convex part of any
n-interval I, the result of which is denoted by I..

3. A binary equivalence relation cerrelation, (COR),
defined between convex intervals; in addition to
being an equivalence relation, if COR(I:,J,) and
COR(I;,J;) then y = z.

4. A binary eguivalence relation assoctation, abbrevi-

‘Frender [Freuder, 1978] generalizes path consistency to
k-consistency: a network is k-consistent if, given any instan-
tiation of any k— 1 variables eatisfying all the relations among
the variables, there exists an inatantiation of the k-th vari-
able such that the k values together satisfy all the relations.
Path consistency corresponds to 3-consistency.



ated as ASSOC; °.

5. The set CR, based on the set of Allen primitives
ACR

In what follows, we extend the IRN framework for the
representation of n-intervals and their relations. It is
demonstrated how the method of path consistency can
be applied to the problem of determining the set of fea-
sible relations in a n-interval relation network.

3 A Class of TV-Interval Relations

In this section, a language is constructed for specifying
a collection of binary temporal relations between pairs
of n-intervals, where a specification is a set of assertions
describing n-interval relations.

This language regiments fragments of natural lan-
guage discourse (in this case, English) involving the ap-
plication of temporal adverbs "sometimes" "only", "al-
ways", "always and only", and their negations, "never",
"not always", etc. These adverbs can be viewed as oper-
ators on elements of CR to make assertions about recur-
ring or repeating events. For example, applying "always"
to the convex interval relation "before or meets" results
in the n-interval relation "always before or meets".

An adequate semantics for temporal specifications re-
quires sensitivity to what we will call co-designation. For
illustration, contrast the following three fragments:

1. John sometimes goes to work before calling his dad.
Then, he misses (i.e. the call overlaps) the meeting.

2. Joan sometimes goes to work before calling her dad.
Otherwise, she calls her dad first.

3. Faculty meetings sometimes precede seminars.
Those meetings overlap with lunch.

In the first passage, the adverb "then" serves to establish
a connection with the previously introduced occurrence
of going to work. In the second, "otherwise", serves to
introduce a temporal relationship between a different oc-
currence of going to work and that of calling. Informally,
co-designation can be viewed as a relation between two
assertions, in which, informally, each succeeds in "pick-
ing out" a common object (in this case, the same period
of time). Thus, there is co-designation between the sen-
tences in fragments 1 and 3, but not in 2.

The case of "sometimes" thus illustrates the need for a
mechanism for representing co-designation. This is also
the case with contexts involving "always", "only" and
"always and only", but these cases are more complicated.
To say that cocktails always follow faculty meetings im-
plies a cocktail event after every faculty meeting event.
Dually, to say that cocktails only follow faculty meetings
is to say that for every cocktail event, there is a faculty
meeting preceding it. Finally, to assert that cocktails
always and only follow faculty meetings is to express a
one-to-one correlation between the two events.

%The association relation is not discussed extensively in
this paper, and does not figure explicitly in the interpretation
of the formal language defined in this paper. It is intended to
serve within more general systems for reasoning about recur-
ring events, and is introduced here for the reader to become
acquainted with this broader framework.

Assertions involving any of these operators will also
be sensitive to co-designation relationships. However, in
certain of these contexts, co-designation is being implic-
itly established with any subinterval of an n-interval. An
example will motivate this idea. If | say "Faculty meet-
ings only meet cocktails", and also "Sometimes, voodoo
chanting begins faculty meetings", one can infer a tem-
poral relation between voodoo chanting and cocktails
(viz., the former are sometimes before the latter), in-
dependently of the distribution of the chanting among
the faculty meetings. To draw this inference, there needs
to be a mechanism for expressing the added degree of
uncertainty expressed by the italicized phrase.

With this complexity in mind, a language for express-

ing n-interval relations is now defined.
Definition 4. The language NRL consists of the follow-
ing: A sel of terms for designating n-intervals I, J ... a
set of basic operators: “II” {“always™), “Q” (“only”}),
“@" (“always and only”), and “L” (“sometimes”); a
symbol for negation of basic operators (e.g., L), the re-
sult is a set of operators for “not always” (II), “not only”
{©), “not always and only” (1), and “not ever” (£); fi-
nally, a set of i-ferms (indez lerms), consisting of either:
a variable (taken from z,y,...), 2 constant (taken from
a,b,...) or a functional expression with one argument of
the form ¢;{t), (“the ith correlate of t”) where i is an
integer and { is an index term.

This language can be used to specify temporal knowl-
edge in the form of a conjunction of assertions about
n-interval relations expressed in the form IOP, v R; ;J,
where I and J designate n-intervals, t and t' are i-terms
and OP € {£ L 1,11,9,8,©,8}. This set will be
called OPS. The set of all n-interval relations which
are the extensions of relational predicates of the form
OP, ¢+ R; ; wili be included in a set called NCR. Finally,
in the sentence of the form “I QP ¢ R J”, we call t the
“I i-term”, and ¢’ the “J i-term”.

The interpretation of single sentences in NRL con-
taining the basic operators are provided by the following
translations into first order logic. It is assumed that [
is an X-interval and J is an Y-intervaland 1 < 2 € X
and 1 < y <Y, and that R; € ACR. y and v stand for
variables, c(u) is a functional expression whose meaning
can be expressed as “The correlate of u”, and g is a
constant index term. “COR{p,v)” is true of correlated
intervals.

» Iﬂc(v)_y{Rl,.‘.,Rk]J iff

Yodu, COR(u,v)A I {Rs,..., Re}dy. {(always)
o I cylRa, ... Re)J i
Vu3v, COR(, W) A Lu{Rs. .., Ri}ds.  (only)
L Ieyﬂu{Rl, ey Rk}‘} iﬁ
1 Hc(p)_,,{Rg, cay Rg}J A Ig,_c(,}{ﬁl, . Rk}.}.
(always and only)
o IZ0p{Ry, ..., R} iff

3u3dv, COR{p, v)A I {Ry, ..., Re}J,. (sometimes)
Restricting extensions of relational predicates in NRL to
correlated intervals represents the tendency in discourse
to restrict attention to correlated events. For example,
if one says “faculty meetings sometimes precede cock-
tails”, one usually iniends to express a relation between
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a faculty meeting and the stngle happy hour in closest
proximity following the meeting. The close proximity
between the two occurrences is typically necessary and
sufficient to establish their correlation.

I-terms are used to express both correlation and co-
designation. The latter is depicted by co-indexing, i.e.,
subscripting with the same term. For example, let
GoingToWork, Calling, Meetings, Seminars, and
Lunches each denote n-intervals associated with the re-
curring events going to work, calling one's dad, meetings,
seminars, and lunches, respectively. Then 1-3 above can
be regimented as follows:

1. GoingToWork sometimes,, before Calling.
Calling sometimes; . overlaps Meeting.

2. GoingToWork sometimes,; before Calling.
Calling sometimes, 4 before GoingToWork.

3. Meetings sometimes, p precede Seminars. Meet-
ings sometimes, . overlap Lunches.

In specifying relations involving “always”, as in “f al-
ways before J”, the I i-term needs to be indexed, since
it may be necessary to refer later to either “the same I”
or “some other I” (i.e., other than the ones related to
J). On the other hand, the J i-term can be a variable,
since every J is after I, and therefore there won’t be a
need to speak of “other Js". To make this distinction,
we introduced the functional expression “c;(1)", indicat-
ing a functional relationship to the variable i-term; e.g.
Il (s).z- The case of “only” is the dual of “always”; here,
the J variable needs to be indexed. Finally, the case of
“always and only” can be handled with only variables. ®

Finally, the meaning of assertions involving the nega-
tion of a basic operator is captured using the notion of
the complement of a relation. The complement of an el-
ement of CR, K (R'), is ACR —R. Thus, “never-R” is
“always-R', and “not-always-R" is “sometimes-R', etc.
For example, to say that “Dinners never precede, meel,
or overlap cocktails” is to say “Dinners always do any-
thing but precede meet, or overlap cocktails”.

4 An TV-interval Algebra

In this section, a set of operations for manipulating a
specification written in NRL is defined. First, a set of
operations for an n-interval relation algebra is defined,
specifically, the operations of inverse, intersection and
composition. Secondly, rules governing substitution of
i-terms are briefly discussed.

An algebra is.a set together with one or more oper-
ations on that set, where the set is closed under those
operations. The operations to be defined on NCR are
inverse, composition, and intersection. These operations
allow for the formalization of the reasoning tasks in-
volved in evaluating specifications.

First, the proper definition of intersection on n-
interval relations requires the introduction of a form of

®The reader will have noticed the similarity between the
functional index and conventions for eliminating existential
quantification in the process of producing clausal forms for
first-order sentences, when the existential quantifier is in the
scope of a universal quantifier.
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conjunction of relations. To see this, consider contexta
involving “always-R" and “sometimes-5”. For exam-
ple, compare “Dinners sometimes end or overlap with
speeches”, with “Dinners always end with speeches; the
latter is a refinement of the former. On the other hand,
the case involving the pair “Dinners always end or over-
lap with speeches” and “Dinners sometimes end with
or are met by speeches” is more complicated: there is
added information in the latter assertion that can’t be
completely refined. The @ operator is introduced to ex-
press what in English is expressed by “and furthermore”;
the result of intersection in this example is “Dinners al-
ways end or overlap with speeches and furthermore they
sometimes end with speeches”.

Definition 5. (N-Interval Algebra} NCR is the under-
lying set for an N-interval algebra. It consists, first,
of 4 x 2!3 basic relations that result from applying
one of four operators I,11,{2, © to one element in CR.
Secondly, if OP € {II,2,0}, R,5,...5 € CR and
SiCR,and §;nS; =Pforalli,j=1...k then NCR
contains the relation OP(R) @ Z(51) ® ... L(Ss).

By generalizing the @ operator in this way, n-interval
relations can be defined which are sucessive refinements
of other n-interval relations. For example, “Always be-
fore or meets or after and (furthermore) sometimes meets
and (furthermore) sometimes before” is more specific
than “Always before or meets or after and (furthermore)
sometimes meets”.

The operators defined on this set are inverse, intersec-
tion and composition. Due to space limitations, atten-
tion is restricted to defining these operations on basic
relations. Extending the definitions to fit the case of re-
lations defined using the @ operator is straight forward,
but somewhat tedious.

First, generalizing the notion of inverse to n-interval
relations is straight forward. When R is in CR we have:

1. (IR)"! = QR

2. (BR)~' = OR™!

3. (ER)"'=XLR!

4. (QR)"!=IIR"!
For example, if cocktails always follow or meet faculty
meetings, then faculty meetings only precede or are met
by cocktails.

Intersection is defined among members of NCR of the
form QP R and QP ,5; Table 1 contains rules govern-

ing intersection. We use M to distinguish n-interval rela-
tion intersection from convex relation intersection {N).

LI(R)NB(S) = ORNS);

29RnN6(5) = O(RNS);

JQRNIS) = ORNS);

4. I{RYNI(S) = N{RNS);

5 QRINYUS) = QRNS),

6.L(R)NE(S) = E(RNS):

7. 8(R) N O(S) B(RN S);
O(R} ifRC S,

8.O(R)NL(S) = { ) ifRNS =0,
S(R)®L(RNS) otherwise



N{R) HRCS;
9. MR)NE(S) = { if RNS =&
M(R)® Z(RNS) otherwise
QR) if RC 5,
10.AR)NE(S) = { 0 ifRNS=49;
Q(R)® Z(RNS) otherwise

Table 1. Intersection of N-interval relations

The rules collectively expresses the fact that “always and
only” is as specific or more specific than “only”, “some-
times” or “always”. For example, to say thal dinners
always follow cocktails is more specific than to say that
they sometimes do. Similarly, to say thal they always
and only follow cocktails is more specific than to say that
they always do.

Table 2 defines composition between non-convex inter-
val relations of the form OF, R and OF/, ;. S, where R
and S are in CR, and OP € OPS. For example, if J is
always and only (©) before J and J always (IT) starts K,
then using composition one infers that I is always and
only before (before-convex-composed-with-starts) K.

0] (5} $US) L(5) o(5)

MR [M(Es3) [ T(Eo5) [ SRo3) | (k-3
OR) | S(B+8) [ E-3) [ SR 3) [ Sk 3)
SR) [ S(Rod) | T(Ro35) | S(Ro %) [E(Ro3)
B(R) | (R0 5) | ({RoS) | T(RoS) [O(R=3)

Table 2. Composition of N-interval Relations

As noted above, negation operates on each of the four
basic non-convex relation operators to form new oper-
ators. Because negation can be defined in terms of re-
lation complement, contexts involving them can be re-
duced to contexts without them. Hence, the operations
defined in this section can be applied to all members of
OPS.

Finally, in order for a reasoncr to effectively apply
these operations on relations in NRL, it is necessary
to define rules for #-term substitution. We do this infor-
mally. In general, i-term substitution is applied to two
pairs of i-terms 7" and T", and occurs prior to perform-
ing either intersection or composition. First, any i-term
can be substituted (uniformly within a pair) for a van-
able i-term. In the case of intersection, if one i-term
in T is the result of a substitution with another i-term
in 77, then restrictions on correlalion relationships con-
strain the value of the other i-term in 77 to be identical to
value of the other i-term in 7¥. For example, intersection
can be performed on relations I,z <6 and X, .6, m, by
making the appropriate substitutions; the result of the
intersection is the refinement N, () b. In the case of
composition between OP; R and OP}, o, for the re-
sult to be defined it is necessary either that ¢ and ¢’ be
the same term, or that one of them is a variable. The
examples in the next section provide other iliustrations
of the substitution process.

5 Consistency In N-interval Networks

A knowledge base of assertions about n-intervals can be
represented as a network of binary relations defined as

follows:

Definition 6. A TV-interval relation network (NRN) is
a network of binary relations whose variables (nodes)
represent n-intervals and whose arcs link pairs of nodes.
The arcs are labeled with a single element of NCR.
Example 1. | always Overlaps J. J sometimes occurs
before K. K always meets L. L is sometimes before |I.

The NRN representation is found in Figure 1 7. The
figure shows the edges added as the result of composition
involving nodes I, J, and K and K, L and J. The
knowledge base is consistent.

O¢caty).ym

Figure 1. N-Interval Network For the Specification of
Example 1.

Example 2. T is sometimes during J. Some (other)
times, { meets J. The same J sometimes occurs before
K. K is never after . The network representation is
found in Figure 2. The knowledge base is inconsistent.
Composition will establish that I is sometimes before K;
but taking the inverse of the arc between K and I will
establish that I should never be before K.

Figure 2. N-Interval Network for the Specification of
Example 2.

Determining path consistency for NRN networks in-
volves:

"Not all the information has been represented; for exam-
ple, the inversc relation between J and [ (only overlapped by)
has not been represented. In addition, pairs of r-intervals for
which no initial relation has been specified {e.g. between [
and K') can be joined by an arc indicating this fact. Let ACR
be the set of all atomic Allen relations; then complete lack of
information in an n-interval neiwork can be depicted by the
relation LZ:  ACH: ,J;. (In English: some part of [; has
some temporal relation to some part of J;).
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1. Possible additions to the number of apparent edges
in the network as the result of composition; hence

2. Dealing with possibly multiple arcs between the
same two vertices; (i.e., an NRN is a multigraph)\
and

3. Two kinds of relation composition (0 and o), inter-
section, inverse, complement, and i-term substitu-
tion.

For an n-interval relation network, the worst-case behav-
ior of a path consistency algorithm is determined by both
the number of nodes and the number of edges, both the
edges initially specified, and those added as the result of
composition. The latter can be estimated by consider-
ing the number of distinct values of x and y among the
Arelations, as the following proof sketch demonstrates.
Theorem. Path consistency for NRN networks can be
determined in 0(k®m?®) time, where k is the number of
distinct values of initial xy-indices, and m is the number
of nodes in the network.

Proof (sketch): In an m-node NRN there are m(m—1)/2
pairs of nodes. For each pair (J, J) there are up to 0(k?)
distinct xy-indexed temporal relations (arcs) from / to
J. Given a node pair (I, J) and an arc A from | to J
there are m—2 intermediate nodes K where composition
can be used to form an alternate path of length 2 from
| to J. For this node K there are up to a maximum of
k edges from / to A' that could qualify for composition.
Since the composition operation itself has constant time
complexity, the time complexity of the path consistency
algorithm on an NRN is 0{k*m?).

Contrasting this result with the complexity of path
consistency for convex interval networks (0(rn®) [Van
Beek, 1990]), it should be noted that because cluster-
ing of convex intervals is involved, there will in general
be fewer variables in an NRN than in a convex interval
network. In addition, k will tend to be small in practice.

6 Related Work

The research presented here extends current efforts in
developing interval-based systems for reasoning about
time by allowing for an explicit representation of inter-
vals with gaps. The purpose of this extension is to ex-
pand the set of properties and relations that can be at-
tributed to periods of time for applications such as static
scheduling, natural language processing, and temporal
database querying.

The impetus for this work was provided by Peter Lad-
kin's initial discussion [Ladkin, 1986], and by advances
made by Ligozat [Ligozat, 1990]. Our work, as noted,
has been also inspired by the success of constraint-based
approaches to time [Mehri, 1991]. Finally, we were moti-
vated in part by issues raised and discussed in [Koomen,
1989] which led to similar ideas of clustering intervals
and their relations as a heuristic to aid in the reasoning
process. The results here should also be compared to ear-
lier work by two of the authors [Morris and Al-Khatib,
1991].
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7 Summary

The problem of reasoning about certain kinds of incom-
plete knowledge about time was discussed. The mecha-
nism chosen for the solution uses a non-convex interval
representation, and a class of non-convex relations con-
structed by considering only groups of correlated convex
intervals within a single temporal block. It was demon-
strated that path consistency techniques can be applied
to problem solving involving networks of n-interval rela-
tions.
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