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Abst ract 
Reasoning about t ime often involves incomplete 
i n fo rma t ion about periods and their re lat ion­
ships. Variet ies of incompleteness include un­
cer ta in ty about the number of objects involved, 
the distribution of a set of tempora l relations 
among these objects, and what can be called 
the participation of a set of objects in a tempo­
ra l re la t ion . A so lut ion to the problem of rep­
resenting and reasoning about incomplete tem­
pora l i n fo rma t i on of these kinds is fo r thcom­
ing if a restr icted class of non-convex intervals 
(cal led n-tntervals) is added to the tempora l do­
ma in of discourse. An n- interval corresponds to 
the common sense not ion of a recurr ing period 
of t ime w i t h a (possibly) unspecified number 
of occurrences. In this paper, we formalize a 
representat ion for tempora l reasoning problems 
using n- intervals. The language of the frame-
work is restr icted in such a way tha t tractable 
techniques f r om constraint satisfaction can be 
appl ied. Specif ically, i t is demonstrated how 
the prob lem of de termin ing path-consistency in 
a network of b inary n- interval relat ions can be 
solved. 

1 In t roduc t i on 
C o m m o n sense knowledge about the occurrence of events 
is of ten incomplete. T h e k inds of incompleteness of i n ­
terest here is expressed in the fo l lowing sentences: 

1. John sometimes drives to Or lando. 

2. John 's ten t r ips to Or lando this mon th twice pre­
ceded his phon ing Phyl l is . 

3. Some of John 's ten t r ips to Or lando preceded her 
phon ing Phy l l i s . 

The first example exhib i ts number incompleteness: it is 
not clear how many d r i v i ng events there are, hence how 
many periods of t ime are involved, but tha t at least one 
occurs. T h e second example i l lustrates distribution un­
cer ta in ty ; we don ' t know which phoning intervals over­
lapped w i t h wh ich meetings. The t h i r d example ex­
h ib i ts , in add i t i on to d i s t r i bu t ion uncertainty, what can 
be cal led participation uncer ta in ty ; it is not known how 

often the relat ion between the t r ips and the phonings 
occurred. 

Uncerta inty of this k ind is removed by adding quan­
t i ta t i ve in fo rmat ion . Compare ( l ) - ( 3 ) w i t h "John's ten 
t r ips to Or lando this mon th twice preceded his phoning 
Phyl l is : the f i rst t ime and the third t i m e " . Add ing the 
f i rst quant i ty el iminates number uncer ta in ty ; the second 
quant i ty ( " tw ice" ) el iminates par t ic ipa t ion uncer ta inty ; 
the last two quant i t ies together e l iminate d is t r ibu t ion 
uncertainty. 

Tempora l knowledge incompleteness makes i t d i f f icul t 
to bu i ld a reasoner tha t adequately deals w i t h t ime. In 
this paper, the concern is to formal ize a representation 
which addresses the prob lem of reasoning w i t h number, 
d i s t r ibu t ion , and par t ic ipat ion uncertainty. To accom­
pl ish this a im the remain ing sections 

1. Define a class of b inary tempora l relat ions between 
pairs of n-intervals; 

2. Construct an algebra for fo rmal iz ing reasoning 
problems invo lv ing n- interval relat ions; and 

3. Demonstrate how pa th consistency can be applied 
to a knowledge base of assertions about n- interval 
relat ions, recast as a relat ion network, in the sense 
of [Van Beek, 1990]. 

In addi t ion to the order ing constraints on n-intervals, 
there is structure imposed by the fact tha t n-intervals are 
the temporal component of the representation of knowl ­
edge about recurring events. Th i s complex i ty is repre­
sented by in t roduc ing b inary relat ions between convex 
parts of n-intervals. 

1This term is used differently by Ligozat [Ligozat, 1990], 
viz., to denote an interval consisting of n points. 
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First, time is viewed as being partitioned into seg­
ments, or blocks, each representing a set of occurrences 
of recurring intervals. Blocks come in various sizes; com­
mon examples include days, weeks, months, years, etc. 
Formally, a temporal partit ion can be viewed as a func­
tion from a convex interval R, which we wil l call a ref­
erence frame, to a set of convex intervals. Being a parti­
t ion, no two items in this set overlap, and each segment 
of R is in one of the members of the set. For example, 
let Weeks(R) = the set of convex intervals in R with a 
duration of (at most) one week, starting at R1

-2. From 
this notion, where r is a partit ion, we define an equiva­
lence relation which is true of pairs of 
intervals /, and Jj if and only if /, and J, are in the same 
member of For example, if 
then and occur in the same week. 

In addition to associated intervals within a block, the 
model views periods of time to be correlated. Corre­
lation is an equivalence relation between pairs of con­
vex parts of recurring events that holds as a result of 
binary relations holding between them. For example, 
consider the sentence "Meetings precede lunches twice 
a week". There are two distinct groupings here: the 
first is indicated by the term "weeks", which partitions 
the reference frame into weekly blocks of associated in­
tervals. The second grouping pairs convex parts of the 
recurring events "meetings" and "lunches". This pairing 
phenomenon is represented in the model by the relation 
of correlation. Further examples of correlation are pro­
vided below. 

James Allen [Allen, 1983] defined a set of primitive 
binary relations on convex intervals by enumerating all 
ways in which two ordered pairs of real numbers can 
be related. There are 13 such primitives, which we col­
lect together in the set A C R : before (6), meets (m), 
during (d), overlaps (o), starts (s), finishes ( / ) , their 
inverses (after (bi), met by (mi) , etc), and equals (= ) . 
From these, he defined a class of 213 interval relations 
by considering all possible disjunctions of primitives; we 
call this set C R . Members of CR can be depicted as 
finite disjunctions of the form where 

As constraints in a relation network (de­
fined below) the same relation is depicted as the set 

Since temporal relations in such a knowledge base are 
binary, it is possible to represent the knowledge as a 
network, where each arc represents one of the temporal 
relations. More precisely (from [Van Beek, 1990]): 
D e f i n i t i o n 1. A Network of Binary Relations is a set 
X of m variables {X\,... Xm }, a domain of possible 
values for each variable, and binary relations be-

2If it is not possible to divide R into equal segments of 
one week duration, there will be a segment at the end of R 
of duration less than one week. 

3A word on notation used throughout: following conven­
tion, R, S etc. stand for members of CR. Lower case letters 
from i, , ; , . . . are used to specify arbitrary convex intervals; 
as noted, upper case letters from /, J , . . . specify n-intervals. 
Single subscripts distinguish members of ACR. 
Double subscripts are used to emphasize that R 
is a relation between i and j\ these are often omitted. 
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ated as ASSOC; 5. 
5. The set C R , based on the set of Allen primitives 

A C R 
In what follows, we extend the IRN framework for the 

representation of n-intervals and their relations. It is 
demonstrated how the method of path consistency can 
be applied to the problem of determining the set of fea­
sible relations in a n-interval relation network. 

3 A Class of TV-Interval R e l a t i o n s 

In this section, a language is constructed for specifying 
a collection of binary temporal relations between pairs 
of n-intervals, where a specification is a set of assertions 
describing n-interval relations. 

This language regiments fragments of natural lan­
guage discourse (in this case, English) involving the ap­
plication of temporal adverbs "sometimes" "only", "al­
ways", "always and only", and their negations, "never", 
"not always", etc. These adverbs can be viewed as oper­
ators on elements of CR to make assertions about recur­
ring or repeating events. For example, applying "always" 
to the convex interval relation "before or meets" results 
in the n-interval relation "always before or meets". 

An adequate semantics for temporal specifications re­
quires sensitivity to what we wil l call co-designation. For 
il lustration, contrast the following three fragments: 

1. John sometimes goes to work before calling his dad. 
Then, he misses (i.e. the call overlaps) the meeting. 

2. Joan sometimes goes to work before calling her dad. 
Otherwise, she calls her dad first. 

3. Faculty meetings sometimes precede seminars. 
Those meetings overlap with lunch. 

In the first passage, the adverb "then" serves to establish 
a connection with the previously introduced occurrence 
of going to work. In the second, "otherwise", serves to 
introduce a temporal relationship between a different oc­
currence of going to work and that of calling. Informally, 
co-designation can be viewed as a relation between two 
assertions, in which, informally, each succeeds in "pick­
ing out" a common object (in this case, the same period 
of time). Thus, there is co-designation between the sen­
tences in fragments 1 and 3, but not in 2. 

The case of "sometimes" thus illustrates the need for a 
mechanism for representing co-designation. This is also 
the case with contexts involving "always", "only" and 
"always and only", but these cases are more complicated. 
To say that cocktails always follow faculty meetings im­
plies a cocktail event after every faculty meeting event. 
Dually, to say that cocktails only follow faculty meetings 
is to say that for every cocktail event, there is a faculty 
meeting preceding i t . Finally, to assert that cocktails 
always and only follow faculty meetings is to express a 
one-to-one correlation between the two events. 

&The association relation is not discussed extensively in 
this paper, and does not figure explicitly in the interpretation 
of the formal language defined in this paper. It is intended to 
serve within more general systems for reasoning about recur­
ring events, and is introduced here for the reader to become 
acquainted with this broader framework. 

Assertions involving any of these operators will also 
be sensitive to co-designation relationships. However, in 
certain of these contexts, co-designation is being implic­
it ly established with any subinterval of an n-interval. An 
example wil l motivate this idea. If I say "Faculty meet­
ings only meet cocktails", and also "Sometimes, voodoo 
chanting begins faculty meetings", one can infer a tem­
poral relation between voodoo chanting and cocktails 
(viz., the former are sometimes before the latter), in­
dependently of the distribution of the chanting among 
the faculty meetings. To draw this inference, there needs 
to be a mechanism for expressing the added degree of 
uncertainty expressed by the italicized phrase. 
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a faculty meeting and the stngle happy hour in closest 
proximity following the meeting. The close proximity 
between the two occurrences is typically necessary and 
sufficient to establish their correlation. 

I-terms are used to express both correlation and co-
designation. The latter is depicted by co-indexing, i.e., 
subscripting with the same term. For example, let 
Go ingToWork , Ca l l ing , Meet ings , Seminars, and 
Lunches each denote n-intervals associated with the re­
curring events going to work, calling one's dad, meetings, 
seminars, and lunches, respectively. Then 1-3 above can 
be regimented as follows: 
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4 An TV-interval A lgebra 
In this section, a set of operations for manipulating a 
specification written in N R L is defined. First, a set of 
operations for an n-interval relation algebra is defined, 
specifically, the operations of inverse, intersection and 
composition. Secondly, rules governing substitution of 
i-terms are briefly discussed. 

An algebra is.a set together with one or more oper­
ations on that set, where the set is closed under those 
operations. The operations to be defined on N C R are 
inverse, composition, and intersection. These operations 
allow for the formalization of the reasoning tasks in­
volved in evaluating specifications. 

First, the proper definition of intersection on n-
interval relations requires the introduction of a form of 

6The reader will have noticed the similarity between the 
functional index and conventions for eliminating existential 
quantification in the process of producing clausal forms for 
first-order sentences, when the existential quantifier is in the 
scope of a universal quantifier. 



Def in i t i on 6. A TV-interval relation network (NRN) is 
a network of binary relations whose variables (nodes) 
represent n-intervals and whose arcs link pairs of nodes. 
The arcs are labeled with a single element of N C R . 
Example 1. I always Overlaps J. J sometimes occurs 
before K. K always meets L. L is sometimes before I. 

The NRN representation is found in Figure 1 7. The 
figure shows the edges added as the result of composition 
involving nodes I, J, and K and K, L and J. The 
knowledge base is consistent. 
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1. Possible additions to the number of apparent edges 
in the network as the result of composition; hence 

2. Dealing with possibly multiple arcs between the 
same two vertices; (i.e., an NRN is a multigraph)\ 
and 

3. Two kinds of relation composition (0 and o), inter­
section, inverse, complement, and i-term substitu­
tion. 

For an n-interval relation network, the worst-case behav­
ior of a path consistency algorithm is determined by both 
the number of nodes and the number of edges, both the 
edges init ially specified, and those added as the result of 
composition. The latter can be estimated by consider­
ing the number of distinct values of x and y among the 
^ r e l a t i o n s , as the following proof sketch demonstrates. 
Theo rem. Path consistency for NRN networks can be 
determined in 0 ( k 3 m 3 ) time, where k is the number of 
distinct values of init ial xy-indices, and m is the number 
of nodes in the network. 
Proof (sketch): In an m-node NRN there are m(m—1)/2 
pairs of nodes. For each pair (J, J) there are up to 0 ( k 2 ) 
distinct xy-indexed temporal relations (arcs) from / to 
J. Given a node pair ( I , J) and an arc A from I to J 
there are m —2 intermediate nodes K where composition 
can be used to form an alternate path of length 2 from 
I to J. For this node K there are up to a maximum of 
k edges from / to A' that could qualify for composition. 
Since the composition operation itself has constant time 
complexity, the time complexity of the path consistency 
algorithm on an NRN is 0 { k 3 m 3 ) . 

Contrasting this result with the complexity of path 
consistency for convex interval networks (0(rn3 ) [Van 
Beek, 1990]), it should be noted that because cluster­
ing of convex intervals is involved, there wil l in general 
be fewer variables in an NRN than in a convex interval 
network. In addition, k wil l tend to be small in practice. 

6 Related Work 

The research presented here extends current efforts in 
developing interval-based systems for reasoning about 
time by allowing for an explicit representation of inter­
vals wi th gaps. The purpose of this extension is to ex­
pand the set of properties and relations that can be at­
tributed to periods of time for applications such as static 
scheduling, natural language processing, and temporal 
database querying. 

The impetus for this work was provided by Peter Lad-
kin's init ial discussion [Ladkin, 1986], and by advances 
made by Ligozat [Ligozat, 1990]. Our work, as noted, 
has been also inspired by the success of constraint-based 
approaches to time [Mehri, 1991]. Finally, we were moti­
vated in part by issues raised and discussed in [Koomen, 
1989] which led to similar ideas of clustering intervals 
and their relations as a heuristic to aid in the reasoning 
process. The results here should also be compared to ear­
lier work by two of the authors [Morris and Al-Khat ib, 
1991]. 

7 Summary 
The problem of reasoning about certain kinds of incom­
plete knowledge about time was discussed. The mecha­
nism chosen for the solution uses a non-convex interval 
representation, and a class of non-convex relations con­
structed by considering only groups of correlated convex 
intervals within a single temporal block. It was demon­
strated that path consistency techniques can be applied 
to problem solving involving networks of n-interval rela­
tions. 
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