Default Inheritance Reasoning in Hybrid KL-ONE-style Logics *

Umberto Straccia
Istituto di Elaborazione deirinformazione
Consiglio Nazionale delle Ricerche
Via S. Maria, 46 - 56126 Pisa, Italy
E-mail: straccia@iei.pi.cnr.it

Abstract

Hybrid KL-ONE-style logics are knowledge rep-
resentation formalisms of considerable applica-
tive interest, as they are specifically oriented to
the vast class of application domains that are
describable by means of taxonomic organiza-
tions of complex objects. In this paper we con-
sider the problem of endowing such logics with
capabilities for default inheritance reasoning, a
kind of default reasoning that is specifically ori-
ented to reasoning on taxonomies. The formal-
ism that results from our work has a reasonable
and simple behaviour when dealing with the in-
terplay of defeasible and strict inheritance of
properties of complex objects.

1 Introduction

Hybrid KL-ONE-style logics (H-logics, for short - see e.g.
[Nebel, 1990]) are knowledge representation formalisms
of considerable applicative interest, as they are specif-
ically oriented to the vast class of application domains
that are describable by means of taxonomic organiza-
tions of complex objects. These formalisms, that may
be seen as term-oriented syntactic variants of subsets of
first order logic, are usually structured into two modules:
the terminological module, allowing the representation of
"concepts" and their implicit structuring according to
a partial order, and the assertional module, allowing to
state that given individuals are instances of the concepts
described by means of the terminological module.

In the last ten years H-logics have been intensively in-
vestigated, with the attention of researchers especially
focusing on the analysis of their logical and computa-
tional properties. Little attention, however, has been
paid to the problem of endowing these logics with de-
fault reasoning capabilities. This is despite the fact
that default reasoning is an important item on the list
of desiderata of H-logics users (see e.g. [Peltason et ai,
1991]), and despite the fact that in most domains that
have a taxonomic nature (e.g. the natural species), de-
fault information is abundant. Some researchers have

*This work has been partially funded by the Progetto Fi-
nalizzato "Sistemi Informatici e Calcolo Parallelo* of the Ital-
ian National Council of Research

676 Knowledge Representation

recently addressed this problem (see e.g. [Baader and
Hollunder, 1992; Brewka, 1987; Nado and Fikes, 1987]),
but we think that their work has been successful only to
a limited extent.

In this paper we will address the problem of extending
H-logics with the ability to perform default inheritance
reasoning, a kind of default reasoning that is specifically
oriented to reasoning on taxonomies and that had been
used mostly within formalisms of a much smaller ex-
pressive power than H-logics (see e.g. [Touretzky, 1986]).
Most systems dealing with default inheritance reasoning
solve "conflicts" according to some sort of specialization
principle, i.e. by relying on the partial order according
to which the knowledge base is structured: as a first
approximation we can say that, in case of conflicts, a
default a—>bis "preferred" to another default ¢ — =b if
the precondition of the former precedes the precondition
of the latter in the ordering; this accounts for the fact
that the conclusion derivable from the former is more
reliable than the one derivable from the latter.

This paper is organized as follows. In Section 2 we
summarize the main notions of H-logics. In Section 3 we
describe the integration of default inheritance capabili-
ties into H-logics, while in Section 4 we present an algo-
rithm for computing "extensions" (i.e. sets of derivable
conclusions). In Section 5 we show that, unfortunately,
computing an extension is a computationally hard prob-
lem in our formalism, even if its monotonic fragment is
computationally tractable. Section 6 concludes.

2 Basic Notions of H-logics

In this section we present the basic notions of H-
logics. For a more general presentation see [Nebel, 1990,
Donini et al., 1992].

2.1 The Terminological Module

We assume two disjoint alphabets of symbols, called
atoms and roles. Concepts (denoted below by C and D)
are formed out of atoms (denoted by A and B) according
to the following syntax rule:

C,D — A{CND|-C|VRC
This logic is usually known as ACC. Other H-logics

are obtained by allowing different concept-forming op-
erators. An interpretation I = (AI, -I) consists of a set

A* (the domain of 7) and a function T (the interpreta-
tion ;unction of) which maps every concept to a subset
of AT and every role to a subset of AT x AT in such a
way that the following equations are satisfied:

(—~CH ATy C?
(cn Dy ctnp?
(YR.CY? {z € AT {Yy:{z,y) € R = ye CT)

Let A be an atom and C be a concept. A {ferminological
aziom is an expression of type A = C (concept definition)
or A < C (concept specialization). When A = C we say
that A4 is the rame of C'. An interpretation 7 seiisfies a
terminological axiom § iff

AT=CT i $§=A=C
ATcct i §=Ac<C

Therefore, a concept definition lists necessary and suffi-
cient conditions for appartenance to A, whereas a con-
cept specialization lists necessary conditions only.

A terminelogy (TBox) is a finite set 7 of terminolog-
ical axioms. An interpretation 7 is a model of T iff 1t
satisfies all terminological axioms in 7. We say that C
subsumes D wrt T (written D Cr C) iff D C C? for
every model I of T, and that C is equivalent to D wrt
T (written C =7 D) iff C* = D7 for every model T of
T. We will write C #7 D iff C is not equivalent to D
wrt 7.

o

2.2 The Assertional Module

We assume an alphabel of symbols called individuals (de-
noted below by a and b), disjoint from the alphabets
of atoms and roles. An indiwvidual descriplion is an ex-
pression of type a:C, where g is an individual and C a
concept. A relation description 15 an expression of type
(a,b):R, where a and b are individuals and R is a role.
A deacriplion 13 either an individual description or a re-
lation description. Finally, an ABox is a finite set of
descriptions.

With respect to the semantics, we extend the interpre-
tation function - of an interpretation Z to individuals
by mapping them to elements of the domain AZ, in such
a way that af # 6% if a # b'.

An interpretation 7 satisfies a description o iff

aleCt i a=aC
(a*,b*ye RT i e=(a,b}:R

An interpretation Z is a model of an ABox A iff it satis-
fies all descriptions in A4.

2.3 Reasoning in H-logics

A knowledge base in an H-logic is defined as the pair of a
TBox and an ABox. We will say that an interpretation
T is a model of an ABox A wrt @ TBoz T, iff I i8 a4 model
of A and of 7. An ABox A is consistenf wrt a TBox T
iff it has & mode! wrt T. An ABox A and a TBx 7
imply a description a, written A =7 a, iff all models of
A wrt T satisfy a.

1 This restriction on individuals, the so-called unigue name
assumption, ensures that different individuals denotes differ-
ent clements of the domain.

With respect to an H-logic knowledge base, the fol-
lowing problems are usually considered interesting. Let
T be a TBox and A be an ABox.

Subsumption problem: Does a concept C subsume a
concept D wrt T 7

Consistency problem: Does there exist a model of A
wit T 7

Instance problem: Do .4 and 7 imply an individual
description® a:C ?
Realization problem: Let ¢ be an individual occur-

ring in A. The set of the most spectfic concepis of
which a ie an instance is defined as

MSCua1(a) = {C | A =1 a:C, BD such that
C#r DLAET a:D and DCr C}.

What is the set of the most specific concepts of
which a is an instance?

Retrieval problem: Let C be a concept. What is the
set of all the individuals a such that A Er a:C ?

Recent works on the computational properties of H- log-
ics (see e.g. [Hollunder, 1990]) have shown that the above
problems are reducible to the consistency problem, for
which there exists a well-known technique based on con-
straint propagation. In fact, the subsumption problem
is reducible to the instance problem since D Cr C iff
{a:D} Er a:C, whereas the instance problem is re-
ducible to the consistency problem since A 1 a:C iff
AU{a:—~C} has no model wrt 7. Finally, the realization
problem can be easily solved by reducing it to the in-
stance problem and the subsumption problem, while the
retrieval problem can be reduced to the instance prob-
lem.

For reasons of space we will not describe the constraint
propagation method here. The interested reader can
consult [Hollunder, 1990).

3 Embedding Default Inheritance
Reasoning in H-Logics

Until now we have described only the standard notions
of H-logics. Let us now see how we can effectively for-
malize a mimimal framework in which defanlt inheritance
reasoning in H-logics can be performed.

A default of type 1is an expression of the form A — C,
while a default of type 2 is an expression of the form
A — R.C, where A is an atom, R is a role and C
is a concept. Informally, a default A — C means:
“if ¢ is an A and the assumption that a is a C does
not lead to a “conflict”, then assume that a is a C%;
for example, the default Bird—Fly means: “if a is a
bird and the assumption that a flies does not lead to
a “conflict”, assume that a flies". On the other hand,
a default A — R.C means: “if a is an A such that
b is an R-filler of @ and the assurnption that b is a C
does not lead to a conflict, then assume that & is a

20Observe that, in our case, A =1 (e, b}:R holds iff

{a,4):R € A, since there are no role-forming constructs in
the terminological module.

Straccia 677

C"; for example, the default Italian-University —
Faculty-Nember.Italian means: “if a is an Italian uni-
versity, b is one of its faculty members, and the assump-
tion that b is an Italian does not lead to a conflict, assume
that b is an Halian”.

In all systems for defanlt inheritance reasoning con-
flicts are solved (whenever possible) by applying the so-
called specialization principle, according to which prop-
erties belonging to & subclass are preferred to properties
belonging to a superclass. For example, given that Opus
is a penguin, that penguins typically do not fly, whereas
birds do, the specialization principle let us infer, as de-
sired, that Opus does not fly even if his being a bird
might lead us to conclude differently. This is a defanlt
that we would call “of type 1"; the same principle is ap-
plicable to “type 2" defaults too: for example, given that
the faculty members of Italian universities are typically
Italian, given that the faculty members of South Ty-
rolean universities are typically not Italian, that South
Tyrolean universities are Italian universities®, that the
University of Bozen is a South Tyrolean university, and
that Professor Schmidt is a faculty member thereof, the
specialization principle lets us to derive, as desired, that
Schmidt is not Italian.

Whenever conflicts are not solvable by means of the
specialization principle, like in the well-known “Nixon
Diamond” example, multiple extensions are typically al-
lowed.

We now go on to describe how our framework allows
us to perform default inheritance reasoning in the con-
text of H-logics. Our way to handle defaults will com-
ply with the specialization principle and with “credulous
reasoning” (because of this, multiple extensions are al-
lowed). Let us define a Hybrid Defaull Inheritance The-
ory (HDIT) as a triple {4, T, D}, where A is an ABox, 7
is a TBox and D is a finite set of defaults. If D contains
only defauits of type 1 (resp. type 2), we will say that
the theory is an HDIT of type 1 (resp. type £).

From a technical point of view, our definition of ©
tension” will be similar to the one given by Reiter for
Default Logic [Reiter, 1980), i.e. an extension is a fix-
point of a consequence relation. However, unlike in De-
fault Logic, we will see that the specialization principle
is “wired” in our definition. The following definition de-
fines a precedence relation over atoms, <z 4,4, induced
by a HDIT T, an individual @ and an ABox 4. This
relation will be used for fixing priority to defaults.

Definition 3.1 Given an HDITT = (A, T, D), an indi-
vidual a and an ABoz A, the binary relation over atoms
27 4 g 18 defined as the smallest relation such that

1. yfAEraAand ACT B, then A=<y 41, B;

g ifAEr ahA Ay aCand A — C €D, then
A %p 1a B for all B's such that CCr B;

3. X744 19 transitively closed.

We define the fransitive closure of 4 wrt T, written
Tcl(A,T), to be the set {a | A =7). Note that <7 4
can be seen as the taxonomy induced by the strict and

3South Tyrol is, in fact, a German-speaking region of Italy.

678 Knowledge Representation

defeasible information, altogether, in T and 4. The fol-
lowing definition, which is the main definition of this
paper, deals with the notion of “extension”; the defini-
tion is rather complex, and the examples that follow it
will contribute in clarifying its import.

Definition 3.2 Lel T = (A, T,D) be an HDIT. Let T
be an opergtor such thet, for any ABO.'-: A, T(A,T) s
the smallest ABor satasfymg the follounng closure condi-
tions:
1. ACT(AT);
2 T(AT) = Tcd(L(A,T), T
3. for all defaulis A — C € D, for all descriptions
a:A € T(A,T), it happens that a.C € T{A,T), un-
less AU{a:C} is not consistent wrt T or there exists
an alom B such that B <r ; , A and A 47 4. B
and either
{a) B— DeD, and
(6} AU {a:C N DY} is not consistent wrt T
or
(s} B— RDeD, and
(b) (a,b):R€ A, and
(¢} Au{a.C, b:D} is not consistent wri T
4. for all defavits A — R.C € D, for all descriplions
a:d € T(A, T} sech that {a, b} R € T(A,T), st hap-
pens that b:C € T(A,T), unless AU {b:C} is not
consisient wrt T or there exists an atom B such
that B <r 4, A and A A7 1, B and either
(a) B— DeD, and
(b) AU{b:C, a:D} is not consistent wri T
or
{a) B— RDED, and
(8) AU{b:C N D} is not consistent wrt T

Ar ABor £ 1s an extension of the HDIT theory T iff
E=TET), ve. ff £ is a fizxpoint of the operator T,

In Definition 3.2, points 1 and 2 are as for Defauit Logic;
point 3 handles conflicts between type 1 and type 1 de-
faults, and conflicts between type 1 and type 2 defaults;
point 4 (symmetrically to point 3) handles conflicts be-
tween type 2 and type 1 defaults, and conflicts between
type 2 and type 2 defaults. Definition 3.2 sanctions that
(1) defaults which introduce conflicts cannot be applied
and (ii) ambiguous situations are handled by means of
multiple extensions (see Example 3.3 below).

We now consider some examples to show how Defini-
tion 3.2 works. The following example shows how “con-
flicts between fillers” are solved (type 2 vs. type 2).

Example 3.1 Let Ty = (A4;,7,,D,) be the BDIT
that formalizes our “Professors” example, with 4; =
{p:1U, (p,x):FM, b:STU, {b;s):FM}, 7 ={STU < IV} and
Dy = {IB~FN.I, STU—FN.-I}. Let & = Tecl{A U
{8:-I,7:1}) and T'(&;,T1) = £;. It is not hard to show
that T'(£,,7;) satisfies the conditions of Definition 3.2;
therefore £; is an extension of 73. In £; the inference
according to which Professor Schmidt is not Italian is
sanctioned, as we hoped.

In the next example we show how “conflicts between
classes” are solved (type 1 vs. type 1).

Example 3.2 Let T3=(A;, T;,D;) be an HDIT that
formalizes our “Bird” example, with 4; = {o:P}, T2 =
{P < B} and D; = {BF, P——F}. It follows that
&2 = Tel(A; U {o:~ F}) is an extension of Ty; hence,
the inference according to which Opus does not fly is
licensed.

The next example shows, instead, how ambiguous situ-
ations are handled, yielding multiple extensions.

Example 3.3 Let T3 = {A3,Ts, D3} be an HDIT that
formalizes an extended version of the well known “Nixon
Diamond”, with A3 = {a:AInC, a:-B}, 73 = @ and D3 =
{C—D, A—=D, A—B, B—C}. Let £3, = Tel(A3 U {a:D})
and &, = Tcl(As U {a:=D}) be ABoxes. It follows
that I'(€s,,T3) = &, and I'(£s,,T3) = &s,, thus Ty
has two extensions, £, and £3,. Furthermore, note
that lﬁ'r_g,‘_ldc, for 1 < i < 2, since aBZ £, In
the case a:-B¢ A3, A%r£:,4C would be the case, with
£5 = Tcl(A3z U {a:B,a:-D}), and thus £ would be ihe
unique extension of Ta.

In the example below we show how conflicts between
conflicting defaults of different type are sclved (type 1
vs. type 2},

Example 3.4 Let Ty = (A4, 7;, D) be an HDIT, with

= {jRE, {j.g):C}, T3 ={RE < E, GT < V¥C.G} and
Dy = {E—GT, RE—C.-G}, where RE, €, E, 6T, G, stand
for Royal.Elephant, Coler, Elefant, Gray-Thing and
Gray, respectively. It turns out that & = Tcl{dq U
{g:—G}) 15 an extension of Ty; in £4, as we hoped, the
fact that the colour of j is not grey is sanctioned.

The next example shows, by means of a modified ver-
sion of the “Royal-Elephant” example, how strict and
defeasible information interact.

Example 3.5 Let Tz = (45,75, D5} be an HDIT with
As = {jRE, {j,g):C}, T5 ={GT < VC.G,RE < EMVC.-G}
and D5 = {BE—GT}. It turns out thal & = Tel(As) is
an extension of T5. Note that the default E—GT is not
apphed in the computation of £5, since Royal-Elephants
are not gray: the application of defaults is “blocked” by
the presence of strict information conflicting with them.

Unfortunately, some HDITs may not have extensions.
The following example shows that there existe an HDIT
of type 2 with no extension.

Example 3.6 Let Ty = (As, 76, D¢) be an HDIT with
Ag = {a:A, (a,a)R }, Tg ={ A=BNC, D=BNCMNE} and Ds =
{A—R.E, D—R.-E}. It is easy to show that Tg has no
extension.

It is easy to show that the same property holds for HDITs
of type 1 too.

Finally, note that, given an HDIT Ti={A;,T7, D7)
such
that A7={a:3R,.(3Rz)NC} *, 77=0 and D;={C—R;.D},
E7=Tecl(A+,T7) does not cont.am a:3R, .3k, . D, since in
our definition of extension the role-filler must be exphc-
itly known. This is contrary to intuitions: hence, in
order to handle this case too, we must modify Definition
3.2, requiring that A and I'(A, T) are “F-closed”, ie. if

‘Note that 3R:= IR.T, with T = ~(-AN A).

A 1 @:3R.C and either {a,b):R € A or b:C € Ais false,
then {a,):R € A and b:C € A, for some new individual
b. For example given the HDIT above, the “3-closure”
of A7 is A7 = Az U {{a,b):R;, b(aﬂz)nc {b,c}: Rz}
It follows that I'(A7,T%) = Tel(A;U{c:D}) = £ and
F(£7,T-;) = &;. Therefore, a:3R;.3R;.D € &, as from
intuitions. This case can be seen as a special case of the
Skolemization process in Reiter’s Default Theories.

The examples detailed above show that our formalism
has a reasonable and simple behaviour. It is important
to notice that these features are due to the fact that
vur formalism 15 not just the “H-fragment” of a slan-
dard non-monotonic logic, as its behaviour is informed
by the “specialization principle”, a principle that is not
present into standard non-monotonic logics and that is
the reason for what we claim to be the superior (in terms
of intuitivity) behaviour of our formalism.

In the Section 4 we describe an algorithm for comput-
ing an extension (whenever it exists) of an HDIT T.

4 Computing Extensions

In order to describe cur algorithm, we introduce some
definitions. Let T = {A,7,P) be an HDIT, a and &
two individuals, 4 an ABox, § € T a default of the
form A — C, ¢ € D a default of the form A — R.C.
An instantiated default of T is either a pair y=(a, §)
ot a triple y=(a.b,0). The function Consequeni is
defined to be such that Consequeni{{a,s)}=a:C and
Consequent((a,b,0))=b:C. We say that an instantiated
default {a,8) is applicable in A wrt T iff A }=7 a:A4 and
the “unless” conditions of Definition 3.2, point 3, do not
hold. Analogously, an instantiated default {a,b, o) is ap-
plicable in A wrt T iff A =7 a:A, {a,b):R € A and
the “unless” conditions of Definition 3.2, point 4, do not
hold. We will write A7(.A) as shorthand for the set of
applicable defaults in A wrt T.

Let us now discuss the EXT algorithm for computing
extensions, which is similar to that described in {Ether-
ington, 1988] for Reiter’s Default Theories. The exten-
sion is built by a series of subsequent approximations,
each of them being an ABox. Each approximation A,
is built from the first component A of an HDIT T by
using applicable defaults, one at time. At each step, the
instantiated default to be applied is chosen from thoee
which have not yet been considered and which were ap-
plicable in the previous approximation and still are in the
current “state” of the current approximation. When no
more instantiated defaults are applicable, the algorithm
continues with the next approximation. If two successive
approximations are the same sei, the algorithm is said
to converge. The EXT algorithm is detailed in Table 1.

The following correctness and completeness theorem
states that all and only the extensions of an HDIT T
can be computed by the algorithm.

Theorem 4.1 Lei T = (A, T,D) be an HDIT. £ is an
eziension of T iff the apphcat:on of the EXT algorithm
1o T has e converging computalion such that A, = Ap
and Tcl{A,,T)=E£.

Therefore, it is not necessary to compute an entire ex-
tension &, since the corresponding A, is sufficient. Fur-

Straccia 679

Let T={A,7, D) be an HDIT,
begin
Ag =~ A;n — 0D
repeat
ne—=n+liw +— A, Dy — 81 0
repeat
r— (Ar(w) N A7 (Anaa)}\ Dis
if not empiy(Afr) _
then choose v from Af;
Diy1 — Dou{v}
wip1 — w, U {Conseguent(v)};
endif
f—i4+1
until empty(A'),;
n — Wi_1;
until An = An_1;
end

Table 1: The EXT algorithm computes an extension of
an HDIT.

thermore, observe that, according to Theorem 4.1, the
computation converges if and only if there exista an ex-
tension. The following example shows that, if there are
no extensions, the computation does not converge.

Example 4.1 Consider the HDIT Ty of Example 3.6. It
turns out that each approximation .4; is such that A4 =
Ag and Agp ., = Ag U {a:E}, for each k& > 0. Therefore
Az # Azgyq for each & > 0, and the computation never
stops.

Note however that, since the set of instantiated de-
faults of an HDIT T is finite, there is only a finite num-
ber of ABoxes A,,, computable by the EXT algorithm,
such that Tel(A,,7T) is an extension; it is thus possible
to decide if there are cyclic computations like the one in
Example 4.1. Therefore, it is straightforward to mod-
ify the EXT algorithm so that the computation always
converges.

5 Complexity

In this section we will analyze the computational com-
plexity of computing an extension. In order to do so,
first of all we will restrict our attention to HDITs for
which deciding if an instantiated default is applicable is
computable in polynomial time; for all the other HDITs,
the problem of computing an extension is obviously in-
tractable. For our purpose, let T = (4,7,D)} be an
HDIT and C a concept. C is a simple concept wrl T iff
C is a conjunction of atoms or negated atoms which are
not names in 7. We will say that T is a resiricted HDIT
of type 1iff (@) A contains only individual descriptions of
the form a:C, where C is a simple concept wrt T; (b) 7
contains only terminoclogical axioms of the form 4 = C,
where ' is an atom (or the negation of an atom) which
is not a name in T, or axioms of the form A < B, where
B isnot a name in 7, and (¢) D is a set of defaults of
the form A — C, where C is a simple concept wrt T,
The definition of a restricted HDITs of type £ is similar
to the case of type 1, but for the facl that D contains
only defaults of the form A+~ S.C, where C is a simple

680 Knowledge Representation

concept wrt 7. It may be shown that, in the case of
restricted HDITs (either of type 1 or of type 2) deciding
if an instantiated default is applicable is computable in
polynomial time.

Unfortunately, notwithstanding the restrictions on
HDITs, the problem of computing an extension is a hard
problem.

Theorem 5.1 Finding an exiension of a resiricted
HDIT of type I {or determining that 1! has no erten-
sion) 13 NP-Hard.

The proof of this theorem depends on the following re-
duction of the 3SAT problem {Garey and Johnson, 1979]
to the problem of determining an extension. The reduc-
tion is similar to that described in [Kautz, 1989}. For a
propositional formula & in 3CNF consider the restricted
HDIT of type 1, T,, obtained exactly from the expres-
sions which appear in the following rules. {A) for every
symbol P which occurs in o, the following expressions
appear in T,, where A is a new atom and a an individ-
ual: A — P, A~ =P a:A. (B)for each clause XVY VZ
of ¢, the following expressions appear in T, , where 4, B,
F and F:y, are new atoms: A = —X (we will use P in-
stead of ~=P), A — Fpy, N2Y N=Z and Foy, =+ FN-B.
(C) F < Fzy, and F +— B appear in T,. We can show
that ¢ is satisfiable iff 7, has an extension®. Therefore
the problem of determining if a restricted HDIT of type
1 has an extension is also NP-Hard.

The same property holds for restricted HDITs of type
2. In fact we can consider the same HDIT T, as above
except that expressions of the form A ~ C are substi-
tuted with the expressions of the form A ~ R.C and

{a,a):R.

Theorem 5.2 Finding an erienston of a restricted
HDIT of type 2 (or determining that it has no erten-
sion) 13 NP-Hard.

Among the problems listed in Section 2.3, let us ana-
lyze the complexity of the instance problem with respect
to our formalism (we will leave the consistency problem
aside as, in our context, it corresponds to the problem
of answering if there exists a consistent extension). Let
us first define what the “instance problem” amounts to
in our framework. One can say that, due to the pos-
sible presence of mulliple extensions, there are actually
two types of instance problems: the “credulous” one and
the “skeptical” one. Let T be an HDIT and a:C be an
individual description; the eredulous snstance problem is
the problem of determining if there is an extension £ of
T such that a:C € £ (in this case we will say that a
is a credulous instance of ' wrt T). The skeptical in-
stance problem is defined as the problem of determining
if a:C is an element of the intersection of all the exten-
sions of T (in this case we will say that a is a skeptical
instance of C wrt T). One can easily check that the
realization problem can be defined in terms of the sub-
sumption problem and the credulous/skeptical instance
problern, whereas the retrieval problem can be defined
in terms of the credulous/skeptical instance problem.

$Note that if o in satisfiable it must not be the case that
a:F € £, where £ is an extension of T,.

Since, given an HDIT T, a:T is a credulous instance
of C wrt T iff T has an extension, from Theorem 5.1 and
Theorem 5.2 we have the following Corollary:

Corollary 5.1 The credulous instance problem for re-
stricted HDITs (either of type 1 or of type 2) is NP-
Hard.

Instead:

Theorem 5.3 The skeptical instance problem for re-
stricted HDITs (either of type 1 or of type 2) is co-NP-
Hard.

The proof of Theorem 5.3 wrt HDITs of type 1 (resp.
type 2) is similar to the one for Theorem 5.1 (resp. Theo-
rem 5.2), except that in the reduction we do not consider
rule (C). Therefore, an arbitrary propositional 3CNF
formula o is unsatisfiable iff a:F holds in all extensions
of Ty.

6 Conclusion

In this paper we have shown how we can extend H-logics
in such a way that they allow default inheritance reason-
ing, thus creating a formalism that combines the expres-
sive power of a language for the description of taxonomic
organizations of complex objects with the taxonomy-
oriented style of default reasoning which is typical of
"inheritance systems with exceptions".

The importance of our work lies in bringing these de-
fault reasoning capabilities into a family of logics that
have gained wider and wider acceptance because of their
reasonable expressive power, good computational prop-
erties, intuitive "object-oriented" syntax and wide spec-
trum of applicability.

We have presented an algorithm that computes exten-
sions and shown that it is correct and complete. More-
over, we have shown that, even if the "H-fragment" of
our formalism were tractable, computing an extension or
deciding that there are no extensions would be NP-Hard;
similarly, also the (credulous or skeptical) instance prob-
lem, the realization problem and the retrieval problem
are intractable.

Our formalism has been designed with the aim of pro-
viding the minimal framework that would allow one to
study the interaction of H-knowledge and default inher-
itance knowledge in a meaningful way. Quite obviously,
extensions to this framework may be conceived that en-
able the expression of more general concepts: any H-logic
that contains ACC may be profitably used.

For that matter, the formalism could also be straight-
forwardly extended to the representation of default rules
of a different nature; for example, we might have de-
faults of the form a : fy,...,8af7y, where a, f1,...,8n
and 4 are ACC concepts. Recently, Baader and Hol-
lunder [1992] have embedded this types of defaults into
H-logics. However, their formalism, unlike ours, does not
support the taxonomy-oriented brand of non-monotonic
reasoning informed by the "principle of specialization";
it can thus be seen as (and has the disadvantages of)
an "H-fragment" of a standard non-monotonic logic (in
their case, Reiter's Default Logic).

References

[Baader and Hollunder, 1992] Franz Baader and Bern-
hard Hollunder. Embedding defaults into termi-
nological knowledge representation formalisms. In
Proceedings of KR-92, 3rd International Conference
on Knowledge Representation and Reasoning, Cam-
bridge, MA, 1992.

[Brewka, 1987] Gerhard Brewka. The logic of inheri-
tance in frame systems. In Proceedings of IJCAI-87,
10th International Joint Conference on Artificial In-
telligence, pages 483-488, Milano, Italy, 1987.

[Donini et al., 1992] Francesco M. Donini, Maurizio
Lenzerini, Daniele Nardi, and Andrea Schaerf. From
subsumption to instance checking. Technical Report
15.92, Universita di Roma "La Sapienza", Diparti-
mento di Informatica e Sistemistica, Roma, Italy,
1992.

[Etherington and Reiter, 1983] David W. Etherington
and Raymond Reiter. On inheritance hierarchies with
exceptions. In Proceedings of AAAI-83, 3rd Confer-
ence of the American Association for Artificial Intel-
ligence, pages 24-26, Washington, DC, 1983.

[Etherington, 1988] David W. Etherington. Reasoning
with incomplete information. Morgan Kaufmann, Los
Altos, CA, 1988.

[Garey and Johnson, 1979] Michael R. Garey and David
S. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. Freeman, New York,
NY, 1979.

[Hollunder, 1990] Bernhard Hollunder. Hybrid infer-
ences in KL-ONE-based knowledge representation
systems. In Proceedings of GWAI-90, 14th Ger-

man Workshop on Artificial Intelligence, pages 38-47,
Eringerfeld, FRG, 1990.

[Kautz, 1989] Henry. A Kautz and Bart Selman. Hard
problems for simple defaults. In Proceedings of KR-
89, 1st International Conference on Principles of
Knowledge Representation and Reasoning, pages 189-
197, Toronto, Ont., 1989.

[Nado and Fikes, 1987] Robert A. Nado and Richard E.
Fikes. Semantically sound inheritance for a formally
defined frame language with defaults. In Proceedings
of AAAI-87, 6th Conference ofthe American Associa-
tion for Artificial Intelligence, pages 443-448, Seattle,
WA, 1987.

[Nebel, 1990] Bernhard Nebel. Reasoning and revision
tn hybrid representation systems. Springer, Heidel-
berg, FRG, 1990.

[Peltason et ai, 1991] Christof Peltason, Kai von Luck,
and Carsten Kindermann (eds.). Proceedings of the
Terminological Logics Users Workshop. KIT Report
95, Technical University Berlin, Berlin, FRG, 1991.

[Reiter, 1980] Raymond Reiter. A logic for default rea-
soning. Artificial Intelligence, 13:81-132, 1980.

[Touretzky, 1986] David S. Touretzky. The mathematics
of inheritance systems. Pitman, London, GB, 1986.

Straccia 681

