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Abstract

Instead of trying to compare methodologies for
reasoning about action on the basis of specific
examples, we focus here on a general class of
problems, expressible in a declarative language
A. We propose three translations, P, R and B
from A, representing respectively the first order
methods of reasoning about action proposed by
Pednault and Reiter and the circumscriptive
approach of Baker. We then prove the sound-
ness and completeness of these translations rel-
ative to the semantics of A. This lets us com-
pare these three methods in a mathematically
precise fashion. Moreover, we apply the meth-
ods of Baker in a general setting and prove a
theorem which shows that if the domain of in-
terest can be expressed in A, circumscription
yields results which are intuitively expected.

1 Introduction

Most of the past work in reasoning about action has
been done using nonmonotonic logics. Several nonmono-
tonic formalisms have appeared in the literature [Mc-
Carthy, 1980; Reiter, 1980; McDermott and Doyle, 1980;
Moore, 1985J and a number of technical results about
these have been obtained. Moreover, there has been a
flurry of formalisms which are variations of the above
which were designed to handle instances in which the
original formalisms yield counterintuitive results'. How-
ever, the focus of most of this work has been on for-
malizing specific problems. This makes it very difficult
to compare the different approaches as to the range of
applicability of each.

There also have been attempts recently to reason
about action in first order logic [Pednault, 1989; Schu-
bert, 1990; Reiter, 199I]. Again, most of the work has
been in terms of specific examples.

In this paper, we focus on a general class of problems,
which are expressible in a simple declarative language

*This work was partially supported by National Science
Foundation under grant IRI-9101078.

IThe most notorious among such instances is the Yale
shooting problem [Hanks and McDermott, 1987], for which a
large number of solutions have been proposed.
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A, introduced in [Gelfond and Lifschitz, 1992]. In that
paper, the authors also define a translation from A into
the language of extended logic programs and prove its
soundness. Our work is similar in that we provide sim-
ple translations from A into three different methodolo-
gies which have been proposed in the literature, but we
prove both the soundness and completeness of the three
translations relative to the semantics of A. Our mo-
tivation is to precisely characterize the strengths and
limitations of various formalizations of action and in
that, our work is is related to that in [Lifschitz, 1991;
Lin and Shoham, 1991].

The first two translations we provide use the first order
methods for reasoning about action, suggested by Ped-
nault [Pednault, 1989] and Reiter [Reiter, 1991]. The
third one is the nonmonotonic formalism of circumscrip-
tion. The soundness and completeness of the three trans-
lations is interesting since it lets us compare these three
methodologies in a mathematically precise fashion: we
get the result that they are equivalent in the sense that
they all faithfully capture the semantics of A. Many
problems which have been discussed extensively in the
literature, such as the Yale shooting problem, are spe-
cial cases of the formalization presented here. Thus, our
work yields three classes of successful formalizations of
wide applicability. Unlike other approaches like that in
[Shoham, 1988], in addition to reasoning forward in time,
the formalizations support reasoning backwards in time
as well. They also let us deal with incompletely specified
initial situations.

The technically most difficult part of this paper is the
formalization based on circumscription. It is based on
the following idea of Baker [Baker, 1991]: When the
abnormality predicate Ab is circumscribed, the Result
function and the situation constant corresponding to the
initial situation, So are allowed to vary. A theorem is
proved which shows that the circumscription yields re-
sults which are intuitively expected. This result shows
how to apply the methods in [Baker, 1991] in a general
setting. The theorem is proved in a fashion which makes
it plausible that the methods of proof can be employed
in other situations as well.

In the next section, we describe the language A which
is used to formalize the domain of actions. Section 3 de-
scribes Pednault's approach and a translation of actions
described in A which uses his scheme. Section 4 presents



a translation based on Reiter's approach. In Section 5,
we provide a translation which uses the circumscriptive
approach. Section 6 contains concluding remarks. The
proofs of all the theorems are omitted.

2 The Language A

In this section, we describe the languge A introduced
in [Gelfond and Lifschitz, 1992]. The reader who is in-
terested in more examples and motivation is referred to
that paper.

Consider two disjoint nonempty sets of symbols, called
fluent names and action names. A fluent expression is
a fluent name possibly preceded by -. A v-proposition
specifies the value of a fluent after performing zero or
more actions from the initial situation. It is of the form

F"nfterAl;A..;Am {1

where F is a fluent expression, and A;,..., A, (m > 0)
are action names. If m = 0, we will write (1) as

initially F.

An e-proposition describes the effect of an action on a
fluent and is of the form

Acauses Fif P, ..., P,, (2)

where A is ap action name, and each of F, P,..., Pa
(n > 0) is a fluent expression. Let us dencte by |F| the
fluent name oceurring in the fluent expression F. If |F|
occurs unnegated (negated) in (2), we call it a positive
{negative) e-proposition and say that A affects |F| pos-
itively (negatively). We also say that this e-proposition
describes the effect of A on F, and that Py, ..., P, are
its preconditions. If n = 0, we will drop if and write
simply
A causes F.

A proposition is a v-proposition or an e-proposition. A
domain description, or simply domain, is a set of propo-
sitions (not necessarily finite).

Example 1. The Blocks World domain D B, motivated
by problem DA from [Lifschitz, 1989], is defined as fol-
lows. The fluent names are Ontable and Inhand; the
action names are Putdown, Pickup, Lower and Wait.
The propositions of DB are:

initially - Ontable,

Ontable after Wait; Putdown,
Putdown causes Ontable if Inhand,
Putdown causes -Inhand if Inhand,
Pickup causes Inhand if Ontable,
Pickup causes -iOntable if Ontable,
Lower causes Ontable if Inhand.

The following definitions will be useful in describing
the semantics of A.

A state is a set of fluent names. Given a fluent name
F and a state o, we say that F holdsin o if F € 0; =F
holds in ¢ if F ¢ o. A transition function is a mapping
® of the set of pairs (A, o), where A is an action name
and o is a state, into the set of states. A structure is a

pair (o0, ®), where oy is a state (the [nitial state of the
structure), and ¥ is a transition function.

For any strocture M and any action names
Ai,...,Am, by MAri4m we denote the state

S(Am, ¥(Am—1,..., ®(A},00).. )},

where ¥ and o are the transition function and the initial
state of M. We say that a v-proposition (1) is true in a
structure M if F holds in the state M4:4= and that
it is false otherwise,

A structure (g, @) is a modef of a domain description
D if every v.proposition from D is true in (g0, ®) and
for every action name A, every fluent name F, and every
state o, the following two conditions are satisfied:

(i) if D includes an e-proposition describing the effect
of A on F (~F) whose preconditions hold in &, then F
(=F) holds in the state (A, o).

(ii) otherwise, F holds in the state (A, o) iff F holds
in the state .

Note that there can be at most one transition func-
tion &, satisfying conditions (i) and (ii). Hence different
models of the same domain differ only by their initial
states.

A v-proposition is entailed by a domain description D
if it is true in every model of D.

A domain description is consistent if it has a model.

Example 1 (continued). The domain description Dp is
consistent. Its only model is defined by the equations

oo = {inhand},

&(Puidown, o) = o U {Ontabdle} \ {/nkand},
if Inhand € o;
o, otherwise;

&(Pickup,0) = o U {Inhand} \ {Ontable},
if Ontable € o;
o, otherwise;

&(Lower,a) = o U {Oniable},

if Inhand € o;
o, otherwise;

®(Wait,0) =o.
It is easy to see, for instance, that

initially Iahand,
Ontable after Lower; Wail,
~inhand after Lower; Wast, Putdoun,

is entailed by Dg.

3 Translation into Pednault’s Scheme

3.1 Review of Pednault’s Proposal

In this section, we review Pednault’s proposal {or gener-
ating the frame axioms. We will conform for the most
part 1o the notation introeduced in [Reiter, 1991).
Pednault assumes that corresponding to each fixed flu-
ent F' and each fixed action A there are two effect axioms,
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a positive effect axiom of the form?:

ra(8) A e;(s} O Holds(F, Result(A, &)}, (D
and a negative effect uxiom of the form

xa(8) Aep(s) D ~Holds(F, Result(A,5)). (4)

Here, x4(8) denotes the action preconditions of the
action A. These are the prerequisites that must be aat-
isfied for the execution of action A. They depend only
on A. e}(s) (c7(s)) denotes the positive (negative) flu-
ent preconditions under which action A, if performed,
will lead to F' becoming true (false) in the resulting sit-
uation Result{A,s). We assume that in (3) and (4), 5 is
universally quantified.

Pednault observes that he can obtain the frame axioms
from the effect axioms systematically if a completeness
assumption for the fluent preconditions is made. The
assumption is that the positive (negative) fluent precon-
ditions specify all the conditions under which an action
if performed will lead to the truth (falsity) of the fluent
in the resulting situation. Using this assumption, we can
say that if in situation s, we have x4(s), then the only
way that F' can change from false in situation s to true
in situation Result(A, s) is if €5 (s) were true. This can
be formalized as

xa(8) A~Holds(F, 8) A Holds(F, Result(A, s)) D ££(s).
Rewriting the above as
7a(8)A—Holds(F, s)A-c}(s) D ~Holds(F, Result(A, s)),

we see that this is a frame axiom. Similarly, we can
generate the frame axiom

ma(8) A Holds(F,8) A ~ep(8) O Holds(F, Result(A, s))
from (4).

3.2 The Translation P(D)

Let D be a finite domain. The following notation will
be used: If A;,..., Ay are action names, [4;;...; Apn]
stands for the ground term

Result(Ap,, Result(Ag_y, ..
Iftis aterm,

Holds(—F,t) stands for

., Result(A;, Sp),...}).

~Holds(F,1).

The translation of a v-proposition a of the form (1),
denoted P(a), is

- Holds(F,[Ay;...; Am]). (5

Since corresponding to an F, A pair (where F is a filu-
ent name and A is an action), Pednault has just two
effect axioms, e-propositions are not translated individ-
uaily. Rather the set of all e-propositions describing the
effect of A on F or -F, Sp a, is partitioned into two
subsets S}, and S5 ,. S, (Si ) consists of all the

*The form of the effect axioms in our review is more spe-
cial than the ones actually used by Pednault: we deal with
individual actions and fluents rather than families parameter-
ized by r and y. We use such a simplification in our review
of Reiter’s proposal also.
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e-propositions describing the effect of A on F (=F). The
e-propositions in each of these two sets are then trans-
lated as a group. To express this formally, defire for any
e-proposition E of the form (2),

preg(s) = A Holds( P, s).

=1
Also define,

precondf. .(s) = v prep(s),
EBest .

precondp ((5) = v prep(s).
Ees;,
Now, we can translate the collection of e-propositions
in SF,A 1]
precond}. ,(8) D Holds(F, Result(A, 5)), (6)

prccond}lA(s) D ~Holds(F, Resull( A, 8)). (N
Using the notation of the previcus section we see that
r4(s) can be identified with true, £5(s) can be identi-
fied with precond}. ,(s) and £5(s) can be identified with

precondp, ,(s).

Let Fp and Ap be, respectively, the set of all the flu-
ent names and action names mentioned in the domain
description [). Then we will also add the following ax-
1oms;

1. The domain closure axiom (DCA) for fluents:

V f=F

FE Fa

2. The domain closure axiom (DCA) for actions:

V a= A

AEAD

3. The unique name assumption (UNA) axiom for flu-

ents:
A FiL # Fa,

F,,.F,eFp
F1,Fy distinet

4. The unique name assumption (UNA) axiom for ac-

tions:
A A # A

A11A2 € AD
A;, Az distinct

By P(D), we denote the collection of axioms which con-
sist of these four axioms, the axioms of the form (5}, (6)
and (7) and the frame axioms obtained from the effect
axioms by the process outlined in the previous section.
That is, we add for each fluent-action pair F, A, the two
frame axioms

- Holds(F, J)Aﬁprecond;_A(s) D ~Holds(F, Result(A, s}),
(8)



Holds(F, s) A—precondp ((s) O Holds(F, Resull(A, s)).
it
Example 1 (continued). P(Dp) consists of the follow-

ing axioms 1-11 and sixteen frame axioms (including two
trivial ones) of the form (8) and (9).

1. -~ Holds{ Ontable, Sp).
2. Holds{Ontable, Result( Putdown, Result( Wait, Sp)))

3. Holds(Inhand,s) D
Holds(Ontable, Result{ Putdown, 5)).

. Holds(Inhand, 5) D
=~ Holds(Inhand, Result( Puidown, 5)).

5. Holds(Ontable,s) D
Holds(Inhand, Result( Pickup, 8)).

6. Holds(Ontable, s) O
—~Holds( Ontable, Result( Pickup, 8)).

7. Holds(Inhand,s) D>
Holds(Oniable, Resuli( Lower, s)).

8. f=0Ontablev f = Inhand.

a = Putdown V a = Pickup Vv
a = Lower Va= Wail.

10. Ontable # Inhand.

11. Putdown # Pickup A Pultdown # Lower A
Putdown £ Wail A Pickup # Lower A
Pickup £ Wait A Lower # Wait.

-9

3.3 Soundness and Completeness

We can relate the notion of entailment in the sense of
first order logic and entailment relation for the language
A using the following theorem.

Theorem 1 Let D be any finile, consisien! domain, and
let P(D) be defined as before. For any v-proposition a,

P(D) E P(a) &= D entails a.

Theorern 1 can be thought of as expressing the soundess
and completeness of the translation P. Note that it
gives a very strong characterization of what can be
proved from P(D). For instance, using this theorem,
we can conclude in the case of Example 1 that P(D) =
Holds(Inhand, Sp). Note that this corresponds to rea-
soning about the past. Similarly, we can conclude that
P(D) [E ~=Holds(Inhand,[Lower; Wait; Putdown]).
This corresponds to reasoning about the future, when
the initial situation is incompletely specified. Domains
in which each v-proposition has the form initially F, are
just & simple special case of this theorem. Such domains
correspond to temporal projection problems, which have
been the focus of much attention in the literature.

In the subsequent sections, we shall propose similar
translations from D into other domains. In each case,
we will prove theorems of exactly the same form as The-
orem 1, the only change being that instead of the trans-
lation P, we will have other translation schemes. Thus
all the remarks of the previous paragraph apply to these
translation schemes as well.

4 Translation into Reiter’s Scheme

4.1 Review of Reiter's Proposal

Like Pednault, Reiter also has two effect axioms for each
fluent F'. But in these effect axioms, the actions are uni-
versally quantified (following the proposal by Schubert
[Schiubert, 1990)). So he calls them general effect axioms.
They are of the form

Poss(a,s) Ay} (a,s) D Holds(F, Reault(a,s)), (10)

Poss{a, s} Avy(a, 8) D ~Holds(F, Result(a, 8)). (11)

The predicate Poss(a, s) intuitively means that o is pos-
sible in situation s. Poss is defined by action precondi-
tion axioms of the form

wa(8) D Poss(A,s)

for each nction A, where x4(2) stande for the action 4’s
preconditions.

Reiter also makes a completeness assumption, accord-
ing to which (10) and (11} account for all the conditiona
under which action e can aflect the value of F'. As be-
fore, this completeness assumption leads to what Reiter
calls explanation closure azioms. They are equivalent to
frame axioms of the following form:

Poss(a,s) A ~Holds(F,8) A ~v}(a,s) D
—Holds(F, Result(a, 8)),

Poss(a,8) A Holds(F, ) A ~vp(a,8) D
Holds(F, Reauli(a, 8)).

Comparing these frame axioms with the ones obtained
by Pednault, we see that the reification of actions allows
Reiter to express the frame axioms in a more compact
way.

4.2 The Translation R(D)

The transiation of the domain I into Reiter’s scheme,
R(D), is very similar to the translation P(D) into Ped-
nault’s scheme: the translation of v-propositions is ex-
actly the same and the UNA and DCA for fluents and ac-
tions are included in the transiation, as before. The only
differences are in the translation of the e-propositions
and in the form of the added frame axioms. These dif-
ferences arise due to the fact that here, actions in the
general effect statements are universally quantified.

With a fixed fluent name F', we associate two sets: the
set A} of action names which affect it positively and the
set A of those which affect it negatively. Note that it is
possible for a patticular action name to be in both these
sets or to be in neither of them.

Now we can give the translation of e-propositions into
Reiter's formalism as follows:

Vaear(a=4 A precond}. ,(8)) D

Holds(F, Result{a,s)), (12)
VAGA; (@a=A A precondp 4(5)) D
=Holds( F, Result(a, 8)). (13)
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In comparison to the notation used in Section 4.1,
Poss(a, s) corresponds to true, vx(a, 5} to
Viacarla= AN precond}. 4(s)), and yp(a, ) to
VAeA;(a = A A precondp ,(5)).

R(D) consists of the translation of all the v-
propositions and e-propositions, that is, all sentences of
the form (5), (12) and (13), the UNA and DCA for flu-

ents and actions, and the frame axicms generated by the
process outlined in the previous section.

We can now prove a theorem about R(D) exactly sim-
ilar to Theorem 1.

Theorem 2 Let D be any finite, consisient domeain and
let R(D)) be defined as before. For any v-proposilion a,

R(D) E R{a) <= D entails a.

In [Elkan, 1992, Elkan proposed a similar scheme for
reasoning about action. We can easily prove a theorem
of the same form as Theorem 2 for this scheme also.

5 Translation into Circumscriptive
Scheme

In this section we will propose a translation into a cir-
cumscriptive scheme, based on the method of [Baker,
1991] and state again the soundness and completeness
of the translation. This result is of independent interest,
since it shows that circumscription can handle reasoning
about actions elegantly.

5.1 Review of Circumscription

Circumscription was introduced by McCarthy [Mc-
Carthy, 1980; McCarthy, 1986] as a formalism for non-
menotonic reasoning. Intuitively, circumscribing a pred-
icate in a sentence means assuming that Lhe extent of
the predicate is as small as possible. We formally define
this as follows:

For any predicate symbols P,Q of the same arity,
let P = Q stand for ¥z2{P(z) = Q(z)) and P £ @
stand for Ye(P(x) O Q(z)}). Let Z stand for the tu-
ple 21,23,... 2, of object, function, and/or predicate
constants. Let A(P, Z) be a sentence containing Z and
a predicate constant P.

The circumseription of P in A with Z varied, denoted
by CIRC{A; P; Z) is the sentence

A(P,Z) A -3p, z[A(p, 2) A p < P).

Here p is a .predicate variable of the same arity as
P, z stands for an m-tuple of variables which matches
the m-tuple Z in arity and type, and p < P stands for
(p< P)A-(p= P}

In reasoning about action using circumscription, we
first introduce an axiom for the “commonsense law of
inertia”

—~Ab(f,a,5) D (Holds(f, 5} = Holds(f, Resuli(a, 8))).
(14)

This says that the values of fluents normally persist, after
an action is performed. The predicate Ab(f,a,s) intu-
itively means the following: f is abnormal with respect
to a in situation s.

728 Knowledge Representation

Traditionally [McCarthy, 1986)], the formula B’ con-
sisting of the conjunction of the universal closures of
all the domain axioms is circumnscribed with respect to
Ab while varying the predicate Holds. But this does
not work, as noted by Hanks and McDermott in [Hanks
and McDermott, 1987). A simple solution, proposed by
Baker in [Baker, 1991] is to vary the function Result
instead. For this method to work correctly, we need
an “existence of situation” axiom, which intuitively says
that, corresponding to any subset of fluents, there is a
situation in which exactly these hold. This can be formu-
lated as follows: Let o range over states, that is, subsets
of the set of all fluents. Define

St,(s)= \ Holds(F,s)A J\ ~Holds(F,s).
Fee Fge

Now, the existence of situations axiom can be written as
N\ 3551, (s). (15)
T

Baker [Baker, 1991} suggests ways to write this axiom in
a more compact form.

5.2 The Translation B(D)

Let us first define an auxiliary translation T([}) as a
preliminary step before defining B(D). Tg(D) is similar
to P{D) in that the translations of the v-propositions are
exactly the same as in P(D}), and in that Tg(D) includes
the UNA and DCA for actions and the DCA for fluents.
Fach e-proposition is translated individually in Tg([}).
‘That is, the translation of an e-proposition E of the form
(2), which describes the effect of A on F is simply

Holds(Py,sin. . AHolds( P, 5} D Holds(F, Result( A, s)).
(18)

In addition to the above, Tp({ D) contains axioms (14)
and (15). (Note that we do not need to add the UNA
for fluents, since it follows from (15).)

Let B’ be the conjunction of the universal closures
of the axioms of Tg(D). Let us denote the formula
CIRC(DB', Ab, Resuit, Sp) by B(D). The following the-
orem about B{I}) can now be proved:

Theorem 3 Let D be any finite, consistent domain and
let B(D) be defined as before. For any v-proposition a,

B(D) E Bla) < D entails a.

Note that this theorem is of the same form as Theo-
rems 1 and 2. Using this theorem, we can prove a “re-
stricted monotonicity” result [Lifschitz, 1993) for Baker's
approach to formalizing action.

The proof of Theorem 3 is based on the following
lemma about the result of circumscribing Ab.

The Main Lemma Let D be a finite, consistent do-
main. Then B(DY) is equivalent to the conjuncilion of B'
and

Vf,a, 8 [Ab(f,a,8) =
VFEFp.AGAp(f = FAa= AAaffected g 4(s)}]



where

affectedp 4(s) = (precondy. ((s) A—~Holds(F, s))V
(precondy. ,(s) A Holds(F, s))

Note that this lernma characterizes Ab completely.

6 Summary and Discussion

In this paper, we have shown that the methods in [Ped-
nault, 1989; Reiter, 1991; Baker, 1991] are applicable to
a large class of problems. These methods support rea-
soning forward as well as backward in time. We have
also compared these methods in a mathematically pre-
cise fashion. Moreover, we have shown how to apply
the methods in [Baker, 1991] to reason about actions
using circumscription, in a general setting. The results
of this paper, in combination with the soundness the-
orem for the translation into logic programming from
[Gelfond and Lifschitz, 1992], suggest that the computa-
tional mechanism of logic programming can be used for
implementing the theories of action proposed by Ped-
nault, Reiter and Baker.

One major assumption we make is that the problem
domain under consideration can be formalized in A. As
is pointed out in [Gelfond and Lifschitz, 1992], A is
rather limited in its expressive power. For instance, we
assume here that the fluents are all independent. This
means that we are spared the task of coping with the
"ramification problem" Another issue we do not ad-
dress here is the qualification problem.

It seems, however, that the methods outlined in this
paper will prove capable of being extended to more com-
plex domains. This is the topic of our ongoing research.
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