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Abstract 

Vision is a key function not only for robotics 
but also for AI more generally. Today real-
time visual processing is becoming possible; 
this means that vision based behavior can be­
come more dynamic, opening fertile areas for 
applications. One aspect of this is real-time vi­
sual tracking. We have built a real-time track­
ing vision system and incorporated it in an inte­
grated robot programming environment. Using 
this, we have performed experiments in vision 
based robot behavior and human-robot interac­
tion. In particular, we have developed a robotic 
system capable of "learning by seeing". In gen­
eral, it is important for the AI community not 
to lose sight of the problems and progress of 
robotics. After all, an AI system which acts in 
real-time in the real-world is no less (and no 
more) than an intelligent robot. 

1 In t roduc t ion 
A robot is a versatile intelligent machine which can carry 
out a variety of tasks in real-time. The interaction with 
the outside world is the essential aspect which distin­
guishes robotics from ordinary A I . In order to make this 
interaction more intelligent, a robot needs functions such 
as: the ability to understand the environment by visual 
recognition, the ability to perform dexterous manipula­
tion using force, tactile, and visual feedback, the ability 
to plan task procedures, the ability to naturally commu­
nicate with humans, the ablity to learn how to perform 
tasks, the ability to recover from errors, and so on. Al l 
of these are required for robot intelligence to be realized. 

From the earliest days of AI research, aspects of robot-
related intelligence have been tackled; these include the 
principles for problem solving, planning, scene under­
standing, and learning. Whereas AI research generally 
takes the quest for the basic principles of intelligence as 
its goal, in robotics, the results of task planning or scene 
understanding are not the ultimate goal, but are rather 
the means for acting and reacting properly in the real 
world. 

Visual information plays a very important role for 
robot-environment interaction. If provided with visual 

sensing, the potential repertoire of robotic behavior be­
comes very rich. To actually experiment with such be­
haviors, we need very fast visual information processing. 
Section 2 sketches our efforts towards high speed robot 
vision. This system is implemented as a multi-processor 
configuration, greatly enhancing the performance. 

We have combined the real-time tracking vision sys­
tem with a radio control system for wireless servo units, 
giving us a robot development system. In this approach, 
the robot body consists of mobility, manipulator and vi­
sion. The robot does not carry its own computer; rather 
it is connected with the powerful vision system and com­
puter by radio link. Thus, this approach enables very 
compact robot bodies which actually behave in the real 
world. Section 3 describes this remote-brained approach 
and several environments for robot behavior research. 

High speed visual tracking capability opens up an­
other important way to make human-robot interaction 
smarter: "learning by seeing". Section 4 explains our 
preliminary experiments on this. Despite the limited 
performance of the vision system, the system as a whole 
can observe and understand pick-and-place sequences 
which a human acts out for the benefit of robot vision. 

Section 5, discusses some future directions for real 
world AI research and speculates on the possiblity of 
developing humanoid robots. 

2 A Real-t ime Visual Tracking System 
Vision is an essential sense for robots. In particular, 
robot vision requires real-time processing of visual in­
formation about motion and depth. Motion informa­
tion should include recognition of moving objects, track­
ing, and ego-motion understanding. Depth information 
is always necessary for a robot to act in the three-
dimensional real world. Flexible interaction between vi­
sual data and motion control is also important for at­
taining vision based intelligent robot behavior. 

2.1 Us ing correlat ions between local image 
regions 

The fundamental operation on which our system is based 
is the calculation of correlation between local image re­
gions. It computes the correlation value between a region 
R in image F\ and subregions s within a search area S 
in image F2, where F1 and F2 are either part of the same 
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Figure 1: Visual tracking system 

image, two time-consecutive image frames or left/r ight 
images at the same sampling time, and finds the best 
matching subregion, namely, that which minimizes the 
value 

The correlation between R and s is given by the equa­
tion 

Although correlation is generally defined as a sum of 
products, we employ this simpler equation (the Mean 
Absolute Error criterion) to decrease the computation 
time. 

2.2 H a r d w a r e o rgan iza t ion 
Figure 1 diagrams the organization of the hard­

ware [Inoue 1992]. The system is implemented as a 
transputer-based vision system augmented with a high 
speed correlation processor. The transputer vision board 
is equipped wi th three image-frame memories, each of 
which can be used simultaneously for image input, im­
age processing, and image display. Thus, the system 
can devote all its computation power to image process­
ing without waiting for image input or display. The vi­
sion board also incorporates an off-the-shelf chip (MEP: 
Motion Estimation Processor [SGS 1990] ), designed for 
image compression, but used here as a correlation pro­
cessor. Using this chip, we have developed a very fast 
correlation based robot vision system. This system can 
also be used in a multi-processor configuration, greatly 
increasing performance. The transputer controls the im­
age data stream for this data is trans­
ferred to the correlation chip, and the results are re­
turned to the transputer. 

2.3 V i s u a l t r a c k i n g based on loca l co r re la t i on 
Real-time visual tracking is an important requirement 
for robot vision. In the usual approach, various feature 

parameters of objects, such as region center or edge in­
formation, are computed for the input image data and 
the objects represented by these parameters are tracked. 
Such approaches are simple and fast enough, however 
they sometimes have the drawback of over-sensitivity to 
noise, lighting conditions, and background image char­
acteristics. Our method is simpler: local correlation is 
used to search for the corresponding location between the 
last and current image or between the reference image 
and the current input image. Unt i l now, this method has 
been considered much too computation-intensive, but by 
using the powerful correlation chip this computation can 
be performed in real-time if the reference frame is of 
moderate size. 

The tracking process repeats the following two step 
procedure: (1) search the reference image in the local 
neighborhood around the current attention point, and 
determine the location of the highest correspondence. 
(2) move the point of attention to this location. 

We performed a simple experiment using the vision 
hardware described in the previous section. The target 
region R was 16 x 16, the search area 5 was 32 x 32, 
and the sen-ch region 
We found at tracking for a 16 x 16 reference region is 
performed in 1.15 msec, significantly faster than possible 
with the transputer alone. Further, the hardware con­
figuration using the MEP chip is very simple, compact, 
and inexpensive. 

Using this system we can track more than 20 regions at 
video rate; which is more than sufficient for many real-
time tracking applications. If it is necessary to track 
more regions a multi-processor system can be used; the 
number of tractable regions increases linearly with the 
number of processors. 

2.4 Rea l - t ime op t i ca l f low c o m p u t a t i o n 

Although optical flow provides a very attractive way to 
detect motion by vision, its computation also has been 
extremely time consuming. Using the correlation proces­
sor, we managed to speed-up the calculation of optical 
flow. 

The input image is divided into a set of small patch 
regions, each of which is correlated with the image taken 
at the time dt later, and the flow vector is determined as 
the vector from the patch region in the previous image to 
the best corresponding region on the subsequent image. 

By using a single MEP chip the optical flow vectors for 
12 x 12 points were computed in 51 msec. The processing 
time for local correlation was less than 1 msec; the rest 
of the time was consumed by the transputer for data 
dispatch from image frame memories to the MEP chip. 
If the data dispatch were done by a dedicated circuit the 
computation time would be much faster. 

2.5 Stereo and d e p t h m a p genera t ion 

We next attempted depth map generation based on 
binocular stereo matching. In the experiments, the 
depth map at 10 x 15 points was generated. The 10 x 15 
measurement points were fixed on the left view image. 
The reference window to be located at each measure­
ment point was defined as a 64 x 8 pixel local image. 
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Figure 2: Robot world in remote brained approach 

The reference window on the left view was matched to 
sub-regions within a search window of 144 x 24 pixels on 
the right view. 

3 App l y i ng visual t rack ing to robot 
behavior cont ro l 

When the speed of visual processing reaches real-time, 
the nature of sensor interaction can be made dynamic 
instead of static. In particular, the performance of our 
tracking vision system enables us to perform new exper­
iments in real-time intelligent robot behavior, such as 
game playing between a computer-controlled robot and 
a human-controlled robot. 

3.1 E x p e r i m e n t a l se tup : the remote-bra ined 
approach 

In order to advance the study of vision based robot be­
havior, we built a system to serve as a base for exper­
iments. Figure 2 shows how this system is constructed 
using a transputer-based multi-processor organization. 
It is intended to provide a high performance, flexible 
system for implementing vision based behavior experi­
ments. Each workstation is interfaced with the vision 
unit and the motion control unit. The transputer/MEP 
based vision system in multi-processor configuration pro­
vides powerful sensing means for behavior control. For 
the controller interface, we use radio control servo units, 
which are available as parts for radio controlled model 
kits. In our system there are 64 wireless channels for 
servo units. The video signal is transmitted by UHF ra­
dio from onboard cameras to the vision processor. We 
can say that, rather than lugging its brain around, the 
robot leaves it at a remote computer and talks with it 
by radio [Inaba 1992]. 

In order to build an experimental setup for robot be­

havior study, we need to work on mechanisms, on the 
control interface, and on software. Unt i l everything has 
been integrated, we cannot do any experiments. This 
is one of the things that makes robotics research time-
consuming. However, the remote-brained approach can 
help; it partitions the work on mechanism, on interface, 
and on software. This approach provides a cooperative 
environment where each expert can concentrate on his 
own role. For the software engineer, the definition of the 
control interface can be treated as the specification of 
just another output device. For the mechanical engineer 
designing the robot hardware, the wireless servo unit can 
be considered as just another mechano-electrical compo­
nent. We believe this approach makes it easier for AI 
people to face up to the real world intelligence problem. 
Figure 2 shows a remote-brained experimental environ­
ment consisting of seven radio-linked mobile robots. 

3.2 Coord ina t ion of hand-eye robo ts 
Using the basic hardware described in the previous sec­
tion, we have built an integrated experimental environ­
ment, "C0SM0S-3". COSMOS-3 enhances the real-
time capacity of vision system and provides an easy in­
terface for developing experimental robot mechanisms. 
We have used it in several experiments in multiple robot 
coordination. For instance, we made two small hand-eye 
robots tie a knot in a rope using visual guidance. Video­
tapes of several other experiments wil l be shown at the 
conference. 

3.3 Compu te r -human sumo wres t l i ng 

Figure 3 shows the system overview. Two robots face off 
other in the "dohyo" ring, 150 cm in diameter. One robot 
is controlled by a human operator via wireless controller. 
The control signal of the other robot is transmitted from 
a computer through the radio link. Each "sumo" robot is 
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20 cm in length and width, and its weight is under 3 kg. 
The two driving wheels are powered by DC motors, each 
of which is controlled independently through a radio link. 
The maximum speed of the robot is 50 cm/sec. The two 
robots have the same mechanical performance to make 
things fair. 

Figure 3: Robot "sumo" system 

The key to the success of the experiment is the real-
time visual tracking of the two battl ing robots. A TV 
camera is placed above the ring looking down at the 
whole environment. As the robots move in the ring, 
changing their position and orientation, they are ob­
served by the vision system; their position and direction 
are tracked in real-time. Based on the real-time track­
ing of two robots's behavior, the fighting strategy and 
motion planning is computed. 

For this application the performance of the vision sys­
tem is adequate; using just one vision board the motions 
of both robots can be tracked completely in real-time. 
Experiments show that the computer controlled robot 
tends to beat the human controlled one. This is because 
the computer is quite fast in observation and control pro-
cessing, and makes fewer errors in control operation than 
the human operator. 

3.4 Towards a v is ion-gu ided au tonomous 
vehic le 

The behavior of autonomous vehicles in natural envi­
ronments is another interesting goal for research on real 
world A I . Natural environments include not only lanes 
for vehicles, but also pedestrians and obstacles, both sta­
tionary and moving. We wish to develop an intelligent 
vehicle which behaves like an animal such as a horse. 
When we ride a horse, its behavior is controlled only 
through high-level, multi-modal communications from 
the human. If we let the horse free, it walks as it pleases, 
choosing a trai l , avoiding obstacles, keeping itself safe, 
and interacting with other horses and moving objects. 
By training or teaching, a human and a horse can inter­
act wi th each other for successful riding. 

Figure 4 shows the design of our vehicle. Our purpose 
is to develop an semi-autonomous vehicle with horse-
level abilities. We adapted a compact electric scooter 
originally designed for senior citizens. It is battery pow-

Figure 4: Hyper scooter 

ered, carries a single driver, and has a maximum speed 
of 6 km/h . We modified it for computer control. The 
steering is powered by a servo-mechanism. A video cam­
era is mounted at the front. We put a trackball and a 
monitor TV on the steering bar to give instructions and 
to communicate. At the back, we installed a high speed 
robot vision system and control computer. We have built 
this experimental prototype and have just begun prelim­
inary experiments. Our long-term challenge is built an 
autonomous vehicle which can behave like a mechanical 
animal in being teachable/trainable. 

4 Seeing, understanding and repeat ing 
human tasks 

As a step towards an integrated robot intelligence, we 
have built a prototype system that observes human ac­
tion sequences, understands them, generates robot pro-
gram for the actions, and executes them. This novel 
method for robot programming we call "teaching by 
showing" or "learning by seeing" [Kuniyoshi 1990,1992]. 
It includes various aspects of intelligent robot behavior. 

4.1 E x p e r i m e n t a l Setup 

Figure 5 shows the hardware setup of the system. The 
system is implemented on COSMOS-2, a network based 
robot programming system. 

(1) Camera Configuration: Task presentation is mon­
itored by three monochrome video cameras ( two for 
stereo and one for zoom-in) connected to the network-
based robot vision server. 

(2) Vision Server: Special vision hardware is con­
nected to a host workstation. The host runs a server 
which accepts commands, controls the vision hardware 
and transmits the extracted data through a socket con­
nection over the ethernet. The vision hardware con­
sists of a high speed Line Segment Finder (LSF) and 
a Mul t i Window Vision System (MWVS). The LSF ex­
tracts lists of connected line segments from a gray scale 
image (256X256) within 200 msec [Moribe 1987]. The 
MWVS is a mult i processor hardware component that 
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Figure 5: System for teaching by showing 

extracts various image features at video rate from within 
rectangular "windows'1 of specified size, sampling rate 
and location [Inoue 1985b]. It can handle up to 32 win­
dows in parallel for continuous tracking and detection of 
features. 

(3) High-level Processing Servers: Two workstations 
are dedicated for action recognition and plan instantia­
tion. The action recognizer consists of an action model, 
an environment model and an attention stack. It ex­
tracts visual features by actively controlling the vision 
server and generates a symbolic description of the ac­
tion sequence. Plan instantiation involves matching this 
"action plan" against the environment model, which is 
updated by visual recognition of the execution environ­
ment. From this plan, motion commands for the manip­
ulator are generated and sent to the motion server. The 
programs are written in EUSLISP, an object-oriented 
Lisp environment with geometric modeling facilities. 

(4) Motion Server: A cartesian type arm with a 6 
DOF wrist mechanism supporting a parallel-jaw grip-
per is used for task execution. The host workstation 
interprets robot commands from the ethernet and sends 
primitive instructions to the manipulator controller. 

4.2 Requ i red Funct ions 

Seeing, understanding and doing must be integrated. 
Our approach is to connect these at the symbolic level. 
As shown in Figure 5, the system consists of three parts 
(divided by dotted lines in the figure), for seeing, un­
derstanding and doing. The following functions are per­
formed by each of these parts: 

Seeing : (1) Recognizing the initial state and con­
structing the environment model. (2) Finding and track­
ing the hand. (3) Visually searching for the target of the 
operation. (4) Detecting meaningful changes around the 
target and describing them qualitatively. 

Understanding : (1) Segmentation of the continuous 
performance into meaningful unit operations. (2) Clas­
sification of operations based on motion types, target 
objects, and effects on the targets. (3) Dependency anal­

ysis of observed task procedures to infer subprocedures 
consisting of temporally dependent operations. 

(4) Bottom-up plan inference to generate abstract .op­
erators for each subprocedure and to gather target ob­
jects and state changes descriptions from the lower-level 
operators. 

Doing : (1) Instantiating the task plan. Recogniz­
ing the given initial state. Matching the result with the 
stored task plan to produce goal positions for each op­
eration. (2) Path planning and generation of motion 
commands. (3) Using sensor feedback for guiding mo­
tions. (4) Error detection by vision and performance of 
recovery actions for the error. 

4.3 Examp le : Recogniz ing a p ick and place 
sequence 

The detailed technical content will not be be described 
here, however, to give the flavor of teaching by showing, 
the process of recognition of a "PLACE" operation is 
sketched in Figure 6. The top arrow is the time axis an­
notated with scene descriptions. ' 'Attention" lines rep­
resent continuous vision processing executing in paral­
lel. Marks on the "Events" line show when the various 
events are flagged. Intervals on Motion" lines denoted 
segmented assembly motions. Tw types of "Snapshots" 
at segmentation points and their "Changes" are also 
shown: "(Sil.)" snapshots are gray-scale silhouettes and 
"(Junct.)" snapshots are connectivity configurations of 
local edges around the target face of an object. 

(1) Recognition of Transfer: First a motion-detector 
is invoked. When a large movement is detected, an 
event "Found-moving" is raised, signaling the start of 
a "Transfer" motion. At the same time, a hand-tracker 
is invoked to track and extract motion features. For ex­
planatory purpose, we assume that a PICK Operation 
was completed and a Transfer motion was started during 
the break marked by wavy lines. 

(2) Initial point of LocalMotion: When the hand starts 
to move slowly downward, a "Moving-down" event is 
raised. This event invokes a visual search procedure. 
When the target object is found, a "Near" event is raised. 
This signals the end of the "Transfer" motion and the 
start of a "LocalMotion". The environment model re-
members that the hand is holding an object, a fact 
recorded when the system recognized the previous mo­
tion as a PICK. This information gives rise to an antic­
ipation that the held object is going down to be placed 
on the target object just found. A change-detector is 
invoked to extract and store a snapshot around the ex­
pected PLACE position. 

(3) Final point of LocalMotion: The hand starts to 
move again. When it gets far enough away from the 
target object, a "Far" event is detected. This signals 
the end of the "LocalMotion" and the start of the next 
"Transfer". The change-detector takes another snapshot 
and finds that the area of the silhouette of the target has 
significantly increased. This results in identification of 
the operation as a "PLACE-ON-BLOCK" (if there were 
no change in silhouette area, it would be identified as a 
"NO-OP", and if there were a decrease, as a "PICK".) 

(4) Updating the environment model: The environ-
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ment model is updated, based on the operation iden­
tified, to reflect the current state of the environment. 
To be specific, the "Holding" relation between the hand 
and the placed object is deleted and an "On" relation be­
tween the placed object and the target object is added. 
The target position of the operation is initially estimated 
by measuring the center of area found by differentiating 
the stereo images. Then, the vertical position of the 
placed object is recalculated, based on knowledge of the 
type of operation (from the action model) and the di­
mensions of the objects (from the environment model), 
and this information is stored. Copies of environment 
model nodes corresponding to the hand and the object 
are made and stored in the "final-state" slot of the cur­
rent node of the action-model. 

(5) Recognition of FineMotion: A finer level of recog­
nition proceeds in parallel with that of the "LocalMo-
t ion". The relative positions of the held object and 
the target object are continuously monitored by vi­
sion. When they touch each other, a " jo in" event is 
established; this signals the start of "FineMotion". A 
coplanar-detector is invoked and gives the result "Non-
Coplanar", because the faces of the objects are not al-
ligned at this point. 

When the fingers release the placed object, an event 
"Split" is detected, signaling the end of "FineMotion". 
This time the coplanar-detector detects the "Copla­
nar" state. Comparing the init ial and final states, the 
"FineMotion" is identified as an "AL IGN" operation. 
The coplanar relation defines the relative orientation of 
the objects, which is stored in the environment model. 

5 Concluding Remarks : Robot 
behavior and real wor ld comput ing 

At an invited talk at IJCAI-85 I presented a system in­
tended to help bridge the gap between AI and robotics 
[Inoue 1985a]. That system, called COSMOS, is a Lisp-
based programming environment which integrated a 3D 
vision system, a geometric modelling system, and a ma­
nipulator control system. The early COSMOS was built 
in a mini-computer based centralized configuration. Its 
successor, COSMOS-2, is implemented in a network-
based configuration consisting of several robot-function 
servers. Using COSMOS-2, we built the intelligent robot 
system, mentioned above, which can observe a human-
performed task sequence, understand the task proce­
dure, generate a robot program for that task, and ex­
ecute it even in a task space different from the one in 
which it was taught. As described in section 2, we 
recently succeeded in devleloping a very fast robot vi­
sion system, and COSMOS-3 is the extension of this to 
a multi-transputer configuration, greatly enhancing its 
real-time capacity. 

This paper has focused on our current efforts towards 
intelligent robots as real-world A I . The remainder of this 
paper presents some of our hopes and plans for the robots 
of the future. 

Real world environments are full of uncertainty and 
change. However, a human brain can recognize and un­
derstand a situation, make a decision, predict, plan, and 
behave. The information to be processed is enormous in 
quantity and multi-modal. An real world intelligent sys­
tem must perform logical knowledge processing, pattern 
information processing, and integration of the two. The 
Japanese Ministry of International Trade and Industry 
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(MIT I ) recently initiated "The Real World Computing 
Project", which aims to investigate the foundations of 
human-like flexible information processing, to develop a 
massively parallel computer, and to realize novel func­
tions for a wide range of applications to real world infor­
mation processing. As Dr. Otsu wil l present this project 
in an invited talk [Otsu 1993], I wil l merely make a few 
comments from the viewpoint of intelligent robotics. 

A robot can be viewed as an AI system which be­
haves in the real world in real-time. In a robot system, 
various autonomous agents such as sensing, recognition, 
planning, control, and their coordinator must cooperate 
in recognizing the environment, solving problems, plan­
ning a behavior, and executing it. Research on intelli­
gent robots thus covers most of what is involved in any 
real world agent. A robot can therefore be considered an 
adequate testbed for integrating various aspects of real 
world information processing. 

As a concrete image for such a robot, I propose a 
humanoid-type intelligent robot, to serve as a base for 
the integration of real world AI research. I imagine a 
body designed to sit on a wheeled chair to move about 
(as legged walking is not an essential purpose for intelli­
gent humanoids). I imagine a head equipped with binoc­
ular vision to see, a microphone to listen, and a speech 
synthesizer to talk. I imagine two arms, in a human-
like configuration, with five-fingered hands. I imagine a 
brain capable of learning by seeing. Further, I intend 
to give this robot the ability to communicate naturally 
with humans. 

To build such a robot we wil l have to deal with many 
issues. To mention a few: (1) visual observation and 
understanding of complex hand motions for object ma­
nipulation, (2) representation and control of coordinated 
motion of five-fingered robot hands, (3) sensor based ma­
nipulation skill, (4) direct visual feedback and forecast 
for dynamic motion, such as juggling, (5) handing flexi­
ble materials like ropes or clothes, (6) error recovery and 
reactive problem solving, (7) control of visual attention, 
(8) learning by seeing, and (9) recognition of and fu­
sion of information from facial expression, gesture, and 
speech, allowing natural human-computer communica­
tion, among others. The tasks such a robot can perform 
wil l demonstrate its degree of dexterity and degree of in­
telligence. Our short-term goal is to build a robot that 
can play games with our children. 
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