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Abstract 

The scientific study of biological systems offers 
an approach to the development of sensor-
based robots that is complementary to the 
more formal analytic methods currently 
favoured by roboticists. I initially propose 
several general lessons from the biological field. 
Next, I consider a specific example selected 
from the work of Lederman & Klatzky, which 
focuses on human haptic object processing. An 
empirical base and recent theoretical 
developments from our research program on 
this topic are described. The human haptic 
system is an information-processing system that 
combines inputs from sensors in skin, muscles, 
tendons, and joints with motor capabilities to 
extract different object properties. A general 
model of human haptic object identification, 
which emphasises how object exploration is 
controlled, is presented. The model describes 
major architectural elements, including 
representations of haptically accessible object 
properties and exploratory procedures (EPs), 
which are dedicated movement patterns 
specialized to extract particular properties. 
These architectural units are related in 
processing-specific ways. The resulting 
architecture is treated as a system of 
constraints, which guide the exploration of an 
object during the course of identification. 
Empirical support for the model is also 
examined. To conclude, I show how this 

scientifically-based approach might be applied 
to developing strategies for active manual 
robotic explorat ion of unstructured 
environments. 

1 Outline 

In this talk, I treat the concept of "intelligence" as 
covering a broad domain that includes sensing and 
perceiving, thinking, and acting on the environment. In 
Section 2, I argue that there are a number of general 
lessons offered by the scientific study of intelligent 
biological organisms for sensor-based robotic design. In 
Section 3, I provide an example that focuses on the 
problem of human object perception and recognition. 
However, rather than follow the mainstream route by 
investigating vision, Roberta Klatzky and I have selected 
the "haptic" system for study. We formally define this as 
an information-processing system that uses inputs from 
receptors in skin, muscles, tendons and joints to perceive 
the concrete world and to guide actions within it. I 
present some of our experimental and empirically-based 
theoretical work on human haptic object processing, 
with particular emphasis on the nature and role of active 
manual exploration. In Section 4, I suggest how this 
research programme may be modified and extended to 
guide the development of high-level manual exploration 
strategies for robots equipped with a haptic perceptual 
system. Section 5 provides a more general summary of 
how knowledge of biological systems may contribute to 
the field of robotics. 
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the parameters are determined by principles of physics. 
As the system is typically too complex to model without 
resorting to approximations, the parameter set is 
reduced arbitrarily by the investigator. The scientific 
method provides an alternate and complementary 
approach to the design of sensor-based robotic systems. 
A l l sciences are based on careful, systematic and 
repeatable observation. In addition, when we actually 
systematically control or manipulate the parameters 
under investigation, we are said to be using the 
"experimental method". The scientific study of any 
system provides a coherent framework within which to 
study a given problem, whether this pertains to living or 
artificial systems. It provides formal methods 
(experimental and statistical) with which to 
systematically and rigorously test the validity of one's 
hypotheses, based on empirical results. We see such 
issues as being critical as well to the successful 
development and implementation of intelligent sensor-
based (tele)robotic systems. The rigorous principles and 
methodologies of the experimental method expose some 
of the weaknesses and limitations of current robotic 
practice. We have argued that the scientific approach 
offers roboticists a powerful set of general tools with 
which to complement their formal analytic methods (see 
Lederman & Pawluk, 1992, for a mini-tutorial on the 
scientific method and its applications to robotics). 

Let us turn now to one example involving the 
scientific study of intelligent biological systems, 
specifically the human haptic system, and how it 
processes and represents objects. 

3 T h e h u m a n h a p t i c system and object 
process ing 2 

3.1 Background 

Several years ago, we (Klatzky et al, 1985) demonstrated 
that humans are remarkably skilled at recognizing 
common objects (e.g., hammer) using only touch. We 
asked blindfolded observers to identify a set of 100 
common objects as quickly and as accurately as possible. 
Subjects' accuracy approached 100%, while the majority 
of objects were identified within only 2-3 seconds. This 
was surprising at the time since others had suggested 
that the human sense of touch is incapable of such high-
level information processing (e.g., Walk & Pick, 1981). 

We began to suspect that how people actively and 
manually explore such multidimensional objects might 

2Section 3 is based on material from Klatzky & Lederman 
(1991 and in press). 

play a critical role in uncovering, as well as eventually 
explaining, the substantial information-processing 
capacities we had demonstrated. In our next experiment 
(Lederman & Klatzky, 1987; Expt. 1), we asked subjects 
to perform a haptic "match-to-sample" task; on each 
trial, subjects were initially presented with a "standard" 
object followed by a set of 3 serially presented 
multidimensional "comparison" objects. Although all 
four objects in any set varied along many different object 
dimensions (e.g., texture, shape, etc., as underscored in 
Figure 1), subjects were instructed to attend to a single 
dimension, such as texture. They were to select the 
comparison object that best matched the standard object 
on the dimension named. Over the entire experiment, 
we used different unfamiliar custom-designed object sets 
for each of the dimension-matching instructions, some of 
which are shown (underscored) in Figure 1. 

Figure 1. Exploratory Procedures and associated object 
properties (Lederman, 1991; adapted from Lederman & 
Klatzky, 1987). 

We videotaped and subsequently analyzed subjects' 
hand movements during each trial. Our results indicated 
that manual exploration is very systematic; subjects 
performed highly stereotypical movement patterns that 
we have called "exploratory procedures" ("EP"s). 
Further, they chose to execute particular EPs in 
association wi th specific dimension-matching 
instructions, the ones most relevant for the current talk 
being shown in Figure 1. Thus, a Lateral Motion EP 
(tangential movements on a surface) was typically 
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2 General lessons for designing sensor-based 
robots1 

2.1 Areas of application 

It is possible to describe a continuum along which 
robotic systems can be placed. At one end, we would 
find those that clearly attempt to reproduce natural 
living systems. At the other end, we would find those 
that equally blindly reject the anthropomorphic 
approach. Yet there is an alternate approach that 
roboticists may adopt for deriving potentially valuable 
information from the scientific study of biological 
systems. According to this approach (e.g., Lederman & 
Pawluk, 1992; Lederman et al, 1992), one gains new 
conceptualizations, scientific methodologies, and specific 
empirical results about how living systems deal with 
problems that roboticists have yet to solve. Anatomical, 
biomechanical, neural, and behavioural constraints on 
information processing are all relevant areas of concern. 

The most likely applications of a biological approach 
are not to be found in highly structured environments 
(e.g., industrial automation), which may be precisely 
controlled or modified - under such circumstances, 
there may be litt le benefit from copying human 
processing. It is rather in robotic environments over 
which the human has litt le or no control; examples 
would include those requiring underwater repair and 
recovery, service and maintenance of the space station, 
disposal of radioactive waste, exploration of unknown 
planets, and microrobotic surgery. For operation within 
such highly unstructured environments, roboticists may 
benefit from learning how biological systems accomplish 
complex sensory, cognitive and motor tasks in flexible, 
efficient ways. 

2.2 Overlapping problem domains 

Scientists who, study biological systems have addressed 
many of the same problems that roboticists now face. 
Consider the following examples: sensor performance, 
sensor fusion, selection of primitives for scene 
segmentation and object recognition, object 
representations, active exploration vs. passive perception, 
motor control and planning for reaching, grasping and 
manipulating objects. Both groups need to address 

1Section 2 is based on material from Lederman & Pawluk 
(1992). 

hardware considerations to understand how such 
constraints affect the way information is processed and 
represented, and how this in turn affects system 
performance. 

2.2 Living organisms are functioning, multi-level 
integrated systems 

It is important to recognize that biological organisms are 
complete, multi-level, integrated systems that actually 
work, despite the complexity of the many problems they 
must handle (see examples above). As such, living 
systems clearly demonstrate the complexity of the task 
facing the roboticist. Both biological scientists and 
roboticists have found it simpler to treat the different 
sensory modalities as independently operating units; 
however, the most recent work with biological systems 
clearly demonstrates the ultimate fallacy and limits of 
this approach. 

2.3 Designing human-machine interfaces for 
teleoperation 

Initial predictions about the relatively rapid creation of 
highly flexible, sensor-based autonomous robots have 
proved overly optimistic. As a result, attention has 
turned to the design of teleoperated robots, which retain 
the human operator in the control loop. The rationale 
is that it is possible to short-circuit the design process by 
taking advantage of our own considerable sensory, 
cognitive and motor competencies. With an intact 
human central nervous system, it is no longer necessary 
to build an artificial one - as obvious by now, no mean 
feat! Those of us who study human systems, however, 
are quick to point out that with this approach, it 
becomes critical for the roboticist to learn about how 
our own human sensory systems process information, 
and about the constraints under which these operate. 
Such capabilities and limitations must be understood to 
achieve an effective interface with any teleoperated 
system. Since we are unable to present all information 
from the remote workspace, what information should be 
presented to the human operator? and what are the 
most effective ways to display it? Unt i l now, such 
considerations have been ignored or noted too late for 
appropriate modification. 

2.4 What the scientific method can contribute to 
robotics 

In robotics and engineering, it is most common to model 
a system analytically using differential equations, where 
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performed for the texture-matching instructions; 
Pressure (applied normal forces or torques about an 
object axis) was usually selected for hardness: Static 
Contact (simple static contact between an object surface 
and the skin) was associated with thermal matching; 
Unsupported Holding (lifting the object away from a 
supporting surface, usually in the form of dynamic 
hefting) was used for weight matching; Enclosure (finger 
molding to the object envelope) was selected most often 
to extract both volumetric and global (coarse) shape; 
Contour Following (edge following) was used most in 
conjunction with both global shape and exact (fine) 
shape. 

3.2 The macrostructure of human haptic object 
identification 

There are a number of computational models in the field 
of cognitive science that have successfully dealt with 
broad and complex domains of human information 
processing. Our own general approach to haptic object 
processing can be appreciated first by analogy to the 
computational model of reading proposed by Just and 
Carpenter (1980; 1987) and outlined in Figure 2. 

READING: 
FROM EYE FIXATIONS 
TO COMPREHENSION 

INPUT TEXT 

Move Eyes to Next Word 

Local Interpretation of Word: 
Access word meaning 

(parallel lookup) 
Assign sentence function to word 

HAPTICS: 
FROM OBJECT 
EXPLORATION TO 
IDENTIFICATION 

INPUT OBJECT 

Move Hand to Next Object Region 

Execute Exploratory Procedure 

Local Interpretation of Region 
Compute Object Property 

(parallel over accessible 
properties) 

representation. Within a fixation, these stages are 
performed as completely as possible; over successive 
fixations, they subsequently recur. The representation is 
continually updated with the inputs from each new 
fixation. 

In our own model, a period of manual exploration 
corresponds to a period of eye fixation. During the 
manual period, what we have called the "selection-
extraction loop" takes place. An EP (or EPs) is selected 
and performed at some area on the object, on the basis 
of activation flow. The resulting data are used to 
interpret a local object region, which in turn is used to 
build a global object representation for comparison with 
stored categorical representations. As much of the local 
and global processing is performed within an exploratory 
period as " possible; both recur during subsequent 
exploratory periods and object regions. Eventually, the 
system recognizes an object or selects the next EP for 
execution. 

Build Representation of Text 
Meaning 

Go back to start (view a new word) 
or exit ... 

-to alter previous knowledge 
representation 

-to act 

Build Representation of Object 
(material and geometric 

properties) 

Go back to start (move to a region) 
or exit ... 

-to discriminate 
-to classify 
-to name 
-to use a tool 

Figure 2. Analogous stages between haptic object recognition 
and the reading model of Just and Carpenter (1980; 1987) 

They separate text comprehension into a number of 
stages: moving the eye to the next location, fixation, 
local (e.g., lexical) analysis, and creating a global 

Figure 3. Model of the macrostructure of haptic object 
identification (from KJatzky & Lederman, 1991 and in press). 

Figure 3 presents our model of the macrostructure of 
the haptic object-identification system, including the 
different data representations and the links we presume 
exist among them. An object component represents 
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particular objects (e.g., wrench) and their specific 
property values. A property component represents the 
attributes along which an object may potentially vary 
(texture, hardness, etc.), rather than specific property 
values. More recently, we have divided properties into 
two major groups: "material" and "geometric". A 
material property is defined as having a factor affecting 
the response of a given material to imposed stimuli and 
constraints, independent of the shape and size of a given 
sample, for example, texture (Rosenthal & Asimow, 
1971). A geometric (sometimes called technological) 
property is one that relates to the geometry of a 
particular material sample (e.g., shape, size). "Hybrid" 
properties directly reflect both geometry and material 
(e.g., mass). An EP component represents an 
exploratory procedure. The underlying neural 
mechanisms control EP execution and process property 
information arising from inputs to the sensory receptors. 
The latter sensorimotor component is not something we 
have modeled in our work; however, there is much 
relevant research that addresses both the 
neurophysiology and psychophysics of the somatosensory 
system. 

Links between object and property components reflect 
the relative strengths of a given property for a particular 
object (e.g., texture is important for sandpaper), while 
links between object components are primarily intended 
to reflect the hierarchical classification relations 
documented in the cognitive literature (e.g., Rosch, 
1978); for example, wrenches and nuts are linked 
because of their common tool-related function. 

match-to-sample experiment tend to produce optimal 
performance in the constrained version of the 
experiment. 

Table la: EP-to-property weights (from Klatzky & Lederman, 
in press; adapted from Lederman & Klatzky, 1990a). 

L M 
PR 
SC 
U H 
EN 
CF 

tex 

2 
1 
1 
0 
1 
1 

hard 

1 
2 
0 
1 
1 
1 

temp 

1 
1 
2 
1 
1 
1 

wt 

0 
0 
0 
2 
1 
1 

vol 

0 
0 
1 
1 
2 
1 

global 
shape 

0 
0 
1 
1 
2 
1 

exact 
shape 

0 
0 
0 
0 
0 
3 

Table lb: Breadth of sufficiency and average duration* (s) for 
each EP 

Lateral Motion (LM) 
Pressure (PR) 
Static Contact (SC) 
Unsupported Holding (UH) 
Enclosure (EN) 
Contour Following (CF) 

Durations from Lederman & Klatzky (1987; Expt. 1) 

Breadth of 
Sufficiency 

3 
3 
4 
5 
6 
7 

Duration (s) 

3.46 
2.24 
0.06 
2.12 
1.81 

11.20 

Links between EP and property components represent 
the precision of information about a property extracted 
by a particular EP. We have empirical data (Lederman 
& Klatzky, 1987; Expt. 2) that address this issue. These 
were obtained from a variant of the match-to-sample 
experiment discussed above. On any trial, subjects were 
now constrained to perform a single designated EP in 
conjunction with a named property, with all possible 
EP/property combinations performed over the 
experiment. Both accuracy and response times were 
measured. With these data, we were able to compare 
the relative precision with which each EP could extract 
a designated property. The results are shown in Table 
la in the form of an EP-property weight matrix. The 
entries are based on relative accuracy and speed. A cell 
entry of "0" indicates that subjects could not perform the 
property-matching task above chance level with the EP 
shown. An entry of "1" indicated sufficient, but not 
optimal performance. A "2" indicated that performance 
with the given EP was optimal and sufficient, although 
it was not necessary. A "3" indicated that the given EP 
was necessary as well as optimal. Note that, in general, 
those EPs that were executed spontaneously in the initial 

Table lb provides us with additional important 
information. By summing the number of non-zero cells 
across a row in Table la, we can represent the relative 
breadth of sufficiency of each EP; thus, Lateral Motion 
and Pressure each provide sufficient information about 
several different properties, whereas Enclosure and 
Contour Following provide coarse information about 
most object properties considered in this study. 
However, the breadth of property information provided 
by Contour Following must be weighed against its 
relatively slow execution time, also shown in Table lb. 

Links between EP components represent the extent to 
which the EPs may be co-executed, each extracting the 
property(ies) for which an EP is optimal/sufficient. For 
example, Lateral Motion and Pressure may be executed 
simultaneously, thus providing information about texture 
and hardness. We have developed a set of visible 
kinematic and dynamic parameters that formally 
differentiate the EPs; these parameters were derived 
from an extensive body of hand-movement data, based 
on a large number of common and custom-designed 
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multidimensional objects tested over a wide range of 
experimental conditions. Values of four parameters 
were observed to occur reliably for a given EP across the 
different circumstances just described. Each parameter 
may be described as capturing some constraint inherent 
in an EP when it must be performed to extract certain 
types of information. The parameters and their 
stereotypic values are shown in Table 2a: these are 
Movement (static or dynamic), Direction (force applied 
normal or tangential to the surface), Region (of the 
object contacted by the end effector, i.e., surface, edge, 
or both), and Workspace constraint (supporting surface 
required or not). It is assumed that compatibility 
between a pair of EPs only exists to the extent that the 
constraints inherent in their parameter values can be 
satisfied simultaneously through some manner of 
exploration. The information in Table 2a allows us to 
determine whether any two EPs are compatible or not. 
Clearly, two EPs having identical parameter values 
would be compatible; however, they could not be 
differentiated. Stil l, it is possible to achieve 
compatibility by selecting some form of exploration that 
satisfies the constraints inherent in both EPs. For 
example, if one EP must be executed along the edges, 
whereas another must be applied to both edges and 
interior surfaces, in satisfying the second less restrictive 
constraint the first more restrictive constraint is 
simultaneously satisfied. Hence, the two EPs can be 
considered to be compatible. 

Table 2a: Values of EPs on four parameters (from Klatzky and 
Lederman, 1991 and in press) 

SC 
PR 
L M 
EN 
CF 
U H 

Movem'nt 

Static 
Dynam. 
Dynam. 
Static 
Dynam. 
Static 

Direct'n 

Normal 
Normal 
Tang. 
Normal 
Tang. 
Normal 

Workspace 
Region Constraint? 

Surface No 
Surface No 
Surface No 
Surf & Edges No 
Edges No 
Surf & Edges Yes 

Table 2b: Compatibility relations between EPs (+ means 
compatible; - means incompatible), (from Klatzky and 
Lederman, 1991 and in press) 

PR LM EN CF UN 
SC + + + 
PR + + - + 
LM - + 
EN - + 
CF 

We have expressed such compatibilities and 
incompatibilities in the form of an EP-EP weight matrix 

(Table 2b). A " + " represents compatibility between two 
EPs (e.g., Lateral Motion and Pressure); a "-" represents 
an incompatibility (e.g., Static Contact and Lateral 
Motion, because it is not possible to resolve the 
mismatch between two Movement parameter values). 

3.3 Selecting an EP and the selection-extraction loop 

In keeping with the interactive activation perspective 
(e.g., McClelland & Rumelhart, 1981), we treat haptic 
object identification as a parallel interactive process, 
with sequential constraints imposed by EP execution. 
Figure 4 shows how the process proceeds in a sequence 
of selection-extraction loops. During each step, an EP 
is selected and executed (along with any other 
compatible EPs). In this way, information about 
associated properties is extracted; the precision of the 
information is determined by the weights on the links 
between EPs and properties. Over a sequence of these 
loops, an object representation is built up and used as a 
probe to match against stored object representations. 
When a match criterion is satisfied, the search process is 
terminated, the object is said to be recognized. 

Figure 4. The selection-extraction loop (from Klatzky & 
Lcdcrman, 1991 and in press). 

3.3.1 Constraints on EP selection 

The primary goal during the selection-extraction loop 
is to choose an EP for execution, under a number of 
competing constraints, for example, the need to know as 
much about the object as quickly as possible or the need 
to learn about a desired object property. There may also 
be inherent biases that govern the use of certain EPs; for 
example, Contour Following is relatively time consuming 
and, for humans, also fails to provide sufficiently precise 
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contour information to effect fine shape discrimination. 
This may generally discourage the use of Contour 
Following. In contrast, Enclosure might be generally 
favoured inasmuch as it is relatively fast and provides 
coarse information about many different properties 
(broad EP sufficiency). 

In principle, these constraints and biases can be 
represented by the weights between different 
components in our system. For example, associations 
between specific objects can be represented by 
associative weightings within the object component, 
while expectations concerning the diagnostic value of 
various properties can be represented by connections 
between the property and object components. Hand 
movement precision and breadth of sufficiency are 
represented by connections between property and EP 
components (Table lb) ; EP compatibility (Table 2b) is 
determined by constraints inherent in the EP parameters 
(Table 2a). Finally, intrinsic biases, such as duration of 
execution, may be represented as item-specific bias 
terms. 

In this first output table, the complete weight matrix of 
Table la was used, thus including positive weights on all 
EPs that were at least sufficient for extracting a given 
property. This might represent a condition in which the 
observer wishes to extract as much information as 
possible initially. Note that no matter which EP is 
clamped, the maximum activation level always occurs for 
an Enclosure, which is not only broadly sufficient but 
also compatible with other EPs. The next most active 
element is Unsupported Holding, which is compatible 
with Enclosure. Thus, this pair of EPs could be selected 
and executed within the same loop. 

Table 3. Activation level of each EP after constraint satisfaction 
when each property has been activated externally. Results arc 
given for two sets of weights. Also shown are the time to relax 
(in multiples of 52 updates) and the goodness level at the point 
of relaxation, (from Klatzky & Lederman, 1991 and in press) 

3.3.2 A constraint satisfaction approach 

Collectively, these constraints function to select an EP, 
given a specific object and certain prior expectations. In 
connectionist terms, the EP selection process can be 
treated as a constraint satisfaction algorithm, in which 
the weights serve as constraints to be progressively 
relaxed until some elements are maximally activated. 

A system with symmetric weights and asynchronous 
updating minimizes a cost function over the set of 
constraints (weights), eventually selecting an optimum 
state or activation pattern over the associated units 
(Hopfield, 1982). In our case, constraint satisfaction 
serves as a method for selecting the next EP in a 
sequence during manual exploration. The weights are 
theoretically and/or empirically derived associations 
among EPs and properties (and potentially, objects). As 
the system progressively relaxes, a stable activation 
pattern eventually emerges that is used to predict which 
EP wil l be executed next in some exploratory situation. 

To consider the consequences of the associations 
between EPs and properties and the compatibilities 
between EPs, we implemented the weights in Tables la 
and 2b as a constraint satisfaction system. The nodes 
represented the EPs and properties. This is equivalent 
to examining a single generic object. 

Table 3a shows the activation level of each EP (as well 
as the time to relax and goodness level at the point of 
relaxation) after constraint satisfaction. Each property 
was clamped to represent an externally set property goal. 

A. FULL WEIGHT MATRIX 

Texture .45 .58 .48 .63* .56 .56 8 9.1 
Hardness .40 .60 .47 .63* .59 .54 7 9.1 
Exact Sh. .36 .54 .58 .60* .55 .53 9 8.6 
Global Sh. .33 .55 .46 .66* .59 .57 9 9.0 
Size .33 .55 .46 .66* .59 .57 9 9.0 
Weight .33 .55 .47 .64* .62 .54 9 8.8 
Temp. .39 .58 .46 .63* .59 .59 8 9.2 

B. OPTIMAL EP-PROPERTY WEIGHTS ONLY 

Texture 
Hardness 
Exact Sh. 
Global Sh. 
Size 
Weight 
Temp. 

.53* 
-.36 
.39 

-.39 
-.39 
-.40 
-.40 

-.34 
.52* 

-.38 
.37 
.37 
.38 
.37 

.50 
-.51 
.62* 

-.50 
-.50 
-.50 
-.50 

-.50 
.50 

-.50 
.59* 
.59* 
.50 
.50 

-.46 
.46 

-.46 
.45 
.45 
.56* 
.46 

-.46 
.46 

-.46 
.45 
.45 
.46 
.56* 

12 
12 
11 
11 
11 
11 
11 

4.4 
4.4 
4.7 
4.5 
4.5 
4.4 
4.4 

*highest activation for the given property 

Table 3b models a different situation, which might 
occur following the initial stage of coarse exploration 
-- if more precise information is required than can be 
extracted by an EP that is merely sufficient for that 
property, the optimal EP would be required. To model 
this we used a second set of weights in which only 
optimal EP-property weights in the matrix were 
included. Note the very different activation levels 

- here we see that clamping a particular property 
results in the optimal EP being selected. 
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3.4 Behavioural support for a constraint satisfaction 
approach 

3.4.1 Human experiments on the 2-stage EP sequence 

The results of our modeling are supported by evidence 
of a 2-stage exploratory sequence, which was adopted by 
subjects during an object classification task (Lederman 
& Klatzky, 1990b). On each trial, subjects were initially 
asked a yes/no question of the type: "Is this X further a 
Y?" (e.g., "Is this wood-working implement further a 
piece of sandpaper?"). An object was then placed in the 
subjects hands for exploration; on half the trials, the 
object was in fact an exemplar of both X and Y classes 
named in the question, while on the remaining trials, an 
object from the same X but different Y class was 
presented (e.g. file). The most diagnostic property for 
each object class named in the questions had been 
determined previously in a separate experiment 
(Lederman & Klatzky, 1990b). 

Position of EP in Sequence 

Figure 5. Cumulative percentage of occurrence of each EP as a 
function of position in the exploratory sequence (from 
Lederman & Klatzky, 1990b). The solid lines indicate the 
grasp/lift combination. Static Contact is not included because it 
occurred very infrequently. 

The hand movements from each trial were analyzed 
as a sequence of EPs. This analysis indicated two 
separate stages of manual exploration, as evident in 
Figure 5. Each function depicts the cumulative 
percentage of EP occurrence as a function of serial 
position in the EP sequence. The two solid dark lines 
indicate that the first two EPs in the sequence were an 
Enclosure followed by an Unsupported Holding, which 
together comprise what we refer to as a grasp/lift 
routine. Both of these are relatively broadly sufficient 

and would presumably provide considerable coarse 
information about any object. The remaining EP 
functions occurred after this initial exploratory sequence, 
the particular EP being predicted by the property that 
was known to be most important for object 
identification. For example, since texture was most 
diagnostic for deciding whether or not the wood-working 
tool in the subject's hands was a piece of sandpaper, we 
predicted that Lateral Motion would be selected 
following execution of a grasp/lift routine, since it is 
optimal for extracting texture. Such predictions were 
confirmed. The second stage of exploration was more 
specifically directed toward extracting further precise 
information about the critical property. In short, these 
data on manual exploration during object identification 
support our approach to exploratory control as a 
constraint satisfaction process. 

3.4.2 Experiments on the selection-extraction loop and 
property extraction 

In addition to determining how EPs are selected, our 
model also addresses how EP selection affects the 
precision with which information about an object can be 
extracted. We assume that the strength of relations 
between EPs and properties (Table la) should predict 
the extent to which an object's properties may be 
perceived and learned using a particular form of manual 
exploration. This assumption has several implications. 
Learning about a property should be fastest when 
exploration involves an optimal EP, because less 
sampling is necessary to obtain a given amount of 
information. When only a single optimal EP is executed, 
incidental information about other properties will be 
restricted to those for which that EP is sufficient. 
Selecting compatible EPs allows for co-execution, thus 
making available information about all properties for 
which either is sufficient. Presumably, selecting one EP 
is assumed to prevent the co-occurrence of any other 
incompatible EPs also selected; rather, these must be 
performed in sequence. If the eliminated EPs are 
necessary for a given property, then no learning about 
that property will occur. Clearly, these predictions 
highlight the "gatekeeper" role that EPs play during 
object perception. 

We have investigated the role of EPs in limiting 
accessibility to object properties in a series of 
experiments (Klatzky et al., 1989; Reed et al, 1990; 
Lederman et al, in press). The tasks generally required 
subjects to learn to classify sets of multidimensional 
objects into groups according to different classification 
rules. For these tasks, we designed sets of objects that 
varied factorially in a number of properties, such as 
texture, hardness, shape and size. At least one of these 
properties was used to divide objects into categories. 
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Take an example of a 1-property rule:, the roughest 
objects were all in category "A", the intermediate 
roughness objects all in category "B", and the smoothest 
all in category "C". Over a set of trials, subjects were 
required to indicate to which category the objects in a 
set belonged. Response time for object classification 
was measured as time from contact to verbal response. 

Across one experiment, the categorization tasks 
demanded that subjects extract information about one or 
more diagnostic properties of each presented object. We 
expected response time to decrease as the sets were 
repeatedly presented, because subjects would learn to 
eliminate those EPs that were not optimal for learning 
about the diagnostic property. And indeed, we note in 
Figure 6 that response time decreased to an asymptotic 
value for three different sets of objects regardless of the 
number of diagnostic object properties used to classify 
objects in a given set (1 , 2, or 3). 

Figure 6. Mean response time for classifying each object based 
on 1, 2-redundant, and 3-redundant property classification rules 
(adapted from Klatzky et al, 1989). The 1- and 2-redundant 
functions were both produced by averaging data from several 
different property-classification conditions. 

One important reason for the reduction in response 
time becomes evident when we examine the 
corresponding EPs performed over successive time 
periods in the 1-property case (Figure 7). We observe 
that subjects chose to streamline their manual 
exploratory activity over time. Thus, EPs that were 
optimal for extracting the diagnostic property (texture, 
shape, or hardness) continued to occur frequently and 
across blocks; in contrast, the other EPs scored in the 
study occurred less often initially and subsequently 
declined. Similar results were obtained for the 2- and 3-
property categorization conditions discussed next. 

Figure 7. Proportion of EP occurrence (Lateral Motion, 
Pressure, Contour Following, and Enclosure) over sequential 
periods for three different 1-property classification conditions 
(adapted from Klatzky et al. 1989). LM= Lateral Motion; PR= 
Pressure; EN= Enclosure; CF=Contour Following. 

We also predicted that when more than one property 
redundantly defines the categories (e.g., all "A"s are both 
very rough A N D very hard, all "B"s are of intermediate 
roughness A N D intermediate hardness, and all "C"s are 
both very smooth A N D very soft), categorization times 
should be faster than with a 1-property classification 
rule. This is evident in Figure 6 by the fact that the 2-
and 3-property curves lie below the 1-property curve, 
indicating a "redundancy gain". We argue that this 
reflects the savings resulting from the fact that the EPs 
that were optimal for extracting two properties were 
compatible (e.g., Lateral Motion and Pressure for 
redundant texture and hardness). That there is no 
additional savings from adding a third redundant 
dimension (shape) to redundant texture and hardness 
specifically reflects incompatibility of Contour Following 
with either Lateral Motion or Pressure. 

We further predicted that when a single EP is used to 
explore an object, incidental knowledge about other 
properties wil l accrue depending on the weight between 
each property and that EP. To assess this, we turn now 
to another experimental approach, which involves what 
we have called the "withdrawal" paradigm. We presented 
subjects with sets of objects that were redundantly 
defined with different 2-redundant property classification 
rules (texture/hardness; texture/shape; hardness/shape). 
Subjects were initially told to classify the objects on the 
basis of a single named dimension (e.g., texture), even 
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though objects varied redundantly on two dimensions 
(texture and hardness); when performance asymptoted, 
the object set was switched to a one-dimensional rule 
(i.e., objects only varied in texture) since values of the 
second property (hardness) were now held constant. 
That is, variation on the second property was 
"withdrawn". We reasoned that if subjects had 
previously incidentally learned about the second 
property, then their response times should increase just 
after it was withdrawn. Figure 7 presents the results. 
Note a strong withdrawal effect for texture/hardness 
redundancies, regardless of which dimension was 
withdrawn. In contrast, withdrawal effects for the other 
two combinations were very small, and typically not 
statistically significant. This result was also expected as 
Contour Following (for shape) is incompatible with both 
Lateral Mot ion (texture) and Pressure (hardness) for the 
set of planar stimulus objects used: shape information 
was only available at the edges, while texture and 
hardness were both found in the interior surface areas. 
In contrast, when texture and shape are available in the 
same local region (created by using fully 3-dimensional 
ellipsoids of revolution), we obtained strong withdrawal 
effects. We predicted this outcome because information 
about both shape and texture was simultaneously 
available from the now fully compatible EPs, Contour 
Following and Lateral Motion. 

Figure 8. Classification response time as a function of period 
for three 2-redundant property classification rules. Separate 
effects of targeting one property while withdrawing the second 
are shown in each panel. X/Y -> X should be read as properties 
X and Y are both initially presented together; Property Y is 
subsequently withdrawn, (from Klatzky et al, 1989) 

property was targeted. We predicted that knowledge 
about objects would be determined on the basis of which 
EPs were spontaneously selected. The prediction was 
tested experimentally by having subjects sort, according 
to perceived object similarity, the complete set of 
multidimensional planar shapes used in the immediately 
preceding series. We found (Klatzky et al, 1987; 
Summers et al, submitted) that when subjects could use 
only haptic exploration, they preferred to sort by 
hardness and texture, their selection apparently reflecting 
the cost (speed, accuracy) of executing a Contour 
Following to extract shape information. However, note 
what occurred when the instructions stressed attending 
to visual images or to visual cues when they were also 
provided. Such instructions presumably created a bias 
toward shape; as would be expected, Contour Following 
and Enclosure were selected most frequently. 

4 A p p l i c a t i o n to robo t i c exp lo ra t i on 3 

In keeping with Gibson's earlier observations (e.g. 1966), 
much research with humans and other living organisms 
has highlighted the importance of active exploration in 
perceptual activities. Our own work again confirms this 
general principle with respect to human haptic object 
processing. In the robotic domain, Bajcsy (1989) may be 
credited with emphasizing the need for exploration, 
particularly when information about object properties 
must be used to interact with unstructured environments. 
Presumably, such is true whether or not identification is 
requisite. 

Bajcsy and a number of others have recently linked 
the biological and robotic exploration domains by 
specifically adoping the concept of an EP as a systematic 
testing procedure, and by implementing robotic versions 
of the human EPs described above (e.g., Allen & 
Michelman, 1990; Bajcsy & Campos, 1992; Sinha, 1992; 
Stansfield, 1988). However, neither the selection of 
particular EPs nor the sequence in which these should 
be performed is intuitively obvious. We advocate 
adopting the experimental paradigm used by Lederman 
& Klatzky (1987, Expt. 2; see Section 3.2 of this paper) 
to develop a more general robotic search solution for EP 
selection when multidimensionally varying objects are 
explored. This experimental approach allows the 
systematic determination of the relative performance 
characteristics of the set of robotic EPs selected, which 
could then be used in conjunction with a constraint 
satisfaction approach to select efficient EP sequences. 

In the previous set of experiments, a particular 
property was targeted. Another series of experiments 
focused on EP selection under conditions in which no 

3Section 4 is based on material from Lederman et al (1992). 
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Consider the following scenario. We begin with the 
view of an EP as a motoric routine that is optimal for 
extracting one property, although it may also be 
sufficient for extracting several others. The properties 
and associated EPs wi l l depend upon the particular 
robotic end effector and sensing system selected, and 
could be quite different from what humans use (unless 
an anthropomorphic design has been deliberately 
adopted). Having selected a set of properties and EPs, 
one can now experimentally test the relative constraints 
on EP performance, however this is defined by the 
roboticist. The constraints on human EPs listed in 
Table la may be applied to any exploring system, along 
with any others that are specifically relevant to the 
robotic domain. The experiment described in Section 
3.2 can be used as a methodological guide for 
systematically evaluating the relative performance of 
each EP in extracting each property; note that the tasks 
should involve different levels of property discrimination 
if EP performance is to be fully and properly assessed. 
Also relevant to this approach is the extent to which 
robotic EPs may be co-executed, that is, the issue of EP 
compatibility. To determine the compatibilities and 
incompatibilities between EPs, the EP descriptions must 
be specifically defined in terms of robotically relevant 
constraint parameters. Collectively, the results 
concerning the relative strengths of the EP-to-property 
and inter-EP-compatibility associations can be used to 
rank robotic EPs for use in associated computational 
models of EP selection. 

5 S u m m a r y 

In closing, I would like to repeat my claim that the 
scientific study of biological organisms can further the 
development of current sensor-based robots in many 
different ways, without being constrained by, or limited 
to, anthropomorphic design. On a general level, I have 
argued (Lederman & Pawluk, 1992; Lederman et al, 
1992) that such work: a) addresses many of the same 
problem domains, b) provides an example of, and 
framework for, designing working, multilevel integrated 
systems, and c) offers valuable suggestions for presenting 
robotically extracted information to a human operator in 
teleoperation. Further, d) the scientific method 
highlights the value of properly constraining the 
problem, formulating testable hypotheses, designing 
rigorous and unbiased experimental tests of the 
hypotheses, and using statistical techniques for assessing 
the validity, reliability and generality of the experimental 
findings. On a more specific level, based on our 
familiarity with the scientific results of experiments on 
biological touch, my colleagues and I have further 
proposed a number of particular suggestions for 
designing robotic tactile/haptic systems, including the 

example discussed in Section 4. For biological scientists, 
who attempt to understand the bases of natural 
intelligence, and roboticists, who attempt to create such 
behaviour in machines, serious collaboration may 
provide a new and potentially valuable approach to 
robotic design. 
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