Conceptual Design and Artificial Intelligence*

Devika Subramanian
Department of Computer Science
Cornell University
Ithaca, NY 14853
devika@cs.Cornell.edu

Abstract

This paper introduces new approaches to the
conceptual design of electro-mechanical sys-
tems from qualitative specifications of be-
haviour and function. The power of these
methods stems from the integration of tech-
niques in qualitative physics, symbolic mathe-
matics, computational geometry and constraint
programming. This is illustrated with an ef-
fective kinematic synthesis method that inte-
grates reasoning with configuration spaces and
constraint-programming techniques.

1 Introduction

The broad goal of our research is to derive computa-
tional theories of conceptual or pre-parametric design.
As manufacturing technologies change, as new materials
are developed, as new design constraints emerge (designs
with recyclable parts, and designs that assemble and dis-
assemble easily), as products become more complex, as
the need to build in continuous improvement into design
processes emerges, basic conceptual design procedures
for electro mechanical systems require broadening with
effective use of computer tools in the early stages of de-
sign. Our specific aim is to use methods from artificial
intelligence, especially qualitative physics and constraint
programming, with techniques from computational ge-
ometry and symbolic mathematics to build new compu-
tational prototyping tools for conceptual design.

2 A Case Study

While the talk will present several case studies of effec-
tive tools for conceptual design in a variety of domains,
the rest of this paper is devoted to an illustration in the
context of mechanism synthesis1. Mechanisms are an im-
portant part of most electro-mechanical systems. They
transmit motion from one rigid body to another. Our
design system takes as input constraints on the motion
of a mechanism in qualitative, mathematical form. As

*This work is supported by NSF-IRI-8902721, the Xerox
Design Research Institute, and the Moore Fund.

*This is joint work with my student Cheuk-san (Edward)
Wang.

800 Invited Speakers

Figure 1: Design of a windshield wiper

output, it produces a systematic enumeration of mech-
anism topologies and geometries that satisfy the given
constraints. Tt also performs high-level simulation to
demonstrate the feasibility of the design. The concep-
tual designs produced by our system can be refined and
optimized by constraint-solving systems that select can-
didate designs based on cost, material, manufacturing
and assembly constraints.

The running example used in this paper is the syn-
thesis of a windshield wiper whose input power is pro-
vided by a motor rapidly rotating around the z axis and
whose output is an oscillation in the yz plane with low
frequency. Note that this a partial description of the
input and output motions of this device.

The first design enumerated by our system is shown in
Figure 1. It employs a worm spur which converts the
uniform input rotation around the z axis to one about
the x axis. The output of the spur gear drives a crank
rocker. The overall output is tapped from the rocker.
Dimensions, positions and orientations of the gears and

the crank rocker are calculated by the system. Another
design generated by our system satisfies the same mo-
tion specifications using a rack and gear pair, where the
rack is driven by a slider crank with the crank being ro-
tated uniformly by a worm spur pair. The worm itself is
connected, in both cases, to a motor shaft.

There are several unique aspects of our method. We
have a uniform representation for constraints, and can
take them into account during the synthesis process. In
this example, motion constraints as well as dimensional
constraints are handled simultaneously. The synthesis
process is very efficient. The example synthesis above
was generated in about half a second on a Sparc station.
Relevant constraints are enforced as soon as they become
applicable. This is what makes the generation process
efficient: we elaborate this point in Section 7.

The synthesis process is grounded in a mathematical
theory of motion composition that is based on configura-
tion spaces. We compile the algebraic theory of motion
synthesis into a qualitative form that preserves essential
distinctions for the specification and solution of a large
class of kinematic synthesis problems. We introduce a
property called join preservation which is a constraint
on a qualitative motion language that is needed to guar-
antee the generation of correct designs. Our synthesis
algorithms are actually implemented and are currently
being field tested at the Xerox Webster Design Research
Center. Our program has produced innovative designs
for a number of common devices described in [19]. An
interesting set of egg-beater designs in shown in Figure 4.

2.1 The Problem:

We now describe the synthesis problem addressed in this
paper in detail. Kinematic synthesis is the problem of
determining a three dimensional structure of rigid parts
that implements a given motion specification. Kinemat-
ics only considers motions and not the forces that cause
the motions. Conceptual kinematic synthesis is generally
acknowledged to be a very difficult problem. A modern
textbook in the area [18] states that

Motion Synthesis

The designer generally relies on intuition and
experience as a guide to type and number syn-
thesis. Very little supporting theory is available
in these areas.

Conceptual synthesis of mechanisms is difficult because
designs are typically specified in incomplete terms and by
their intended use (e.g., a fruit-picker or a fuel-hose con-
nector). There is no general theory that relates function
and structure in mechanical devices. That is, the space
of mechanisms that achieves a given functional specifica-
tion is not exhaustively and systematically enumerable.
Compendia such as Artobolevsky's catalog [1] provide
a library of known mechanisms indexed by type (lever
mechanisms, e.g.) and function (e.g., indexing). They
are a useful starting point for a designer who can then use
systematic adaptation of these designs to create devices
which meet the specified functionality. The derivation
of the motions that accomplish a given function is an
open problem that is not addressed in this paper. Given
the motions, we call the problem of designing a struc-
ture that generates them, the motion synthesis problem.

This is also difficult to solve as it involves deriving ge-
ometry from motion. Most of the current work on con-
ceptual design of mechanisms focuses on this problem
[6, 11, 14, 15, 16, 26].

Previous work in this area falls under three major cat-
egories: structural, behavioural and functional theories
of synthesis. Structural theories[6] generate mechanism
topologies systematically, usually from specification of
the number of links and the total number of degrees-
of-freedom of the mechanism. Pure structural theo-
ries of synthesis result in a generate-and-test method
for producing mechanisms given input-output motion
specifications. This procedure is usually quite expen-
sive, and it is generally difficult to exploit information
about the desired motion to control the enumeration
phase. Behavioural theories derive the structure of a
mechanism from specifications of its output and input
motions. They fall into two categories: compositional
and non-compositional. = Compositional theories of mo-
tion synthesis [16, 24, 9, 5], assume the presence of
primitive or atomic building blocks which implement
simple input-output motion specifications. They pro-
vide methods for systematically breaking down a com-
plex input-output specification in terms of the primitive

ones. Compositional theories typically address the syn-
thesis of large scale electro-mechanical systems. Non-
compositional theories [11, 14] build structures "from
scratch" that satisfy given motion specifications. They

are typically used for small-scale electro-mechanical sys-
tems or the synthesis of specific parts. Functional theo-
ries are theories that work from intended function of a
device and derive a structure that performs that func-
tion. Functional theories of synthesis posit intermedi-
ate behavioural specifications and then design structures
that generate those behaviours. Few functional theories
exist in the literature: [7] and [10] take kinematic func-
tion into account in the design of mechanism topologies.

This paper is organized as follows. In Section 3, we
formally define motion specifications in terms of configu-
ration spaces and introduce abstract and concrete mech-
anisms. The operators which compose abstract mecha-
nisms and their concrete counterparts are presented in
Section 4. The composition operators form the basis
for a rigorous specification and solution of the motion
synthesis problem in Section 5. In Section 6, we discuss
tractable qualitative representations of the configuration
space descriptions manipulated by our algebraic synthe-
sis method. We then present efficient constraint solv-
ing algorithms that use the qualitative representations.
These algorithms have been implemented in CLP(R) [27]
and we present examples of interesting syntheses in Sec-
tion 7. We conclude by reiterating the main contribu-
tions of our paper and provide a discussion of future
work on the problem of automating motion synthesis,
and more generally on the problem of conceptual design.

3 Configuration Spaces, Motions, and
Mechanisms

We briefly review the concept of a configuration space
before formally defining the motion of an object. Let

Subramanian 801

Fa be a Cartesian frame embedded in the object A, and
et Fw be the fixed frame. The origin O4 of Fu is the
reference point on A.

Definition 1 A configuration of A is a spectfication of
the pesition and orienlation of F, wilh respect to Fw .
The configuration space of A is the space C of all possible
configurations of A.

The motion M of an object is a description of how its
configuration changes with time. The configuration of a
planar rigid body undergoing pure rotation at time ¢, is
{za,ya.0(1)) where z4 and y4 are fixed. (z4,y4), the
center of rotation, is also the origin of F4, and 6{t) is the
angular orientation of Fu with respect to Fwy, at time ¢.

Definition 2 The motion of an cobject is a continuous
Junction from time to ils configuration space.

Now we are ready to formally define a mechanism,
Reuleaux [23] defines a mechanism as “s combination
of rigid bodies so formed and connected that they move
upon each other with definite relative motion.” We dis-
tinguish between an abstract mechanism which is a rela-
tion on the configuration spaces of the input and outpul
links, from a conerete mechanism which is a 3D arrange-
ment of rigid bodies that implements this relation. The
diflerence between an abstract and concrete mechanism
is that while an abstract mechanism describes what a
mechanism does, the concrete mechanism is a specifica-
tion of how it does it.

Definition 3 An ebstract mechanism is a relation R
which is a subsel of [x O where 1 end O are config-
uralion spaces of ils snput and oulpul hinks respectively.

Consider a meshed gear pair A and B on the zy plane
with fixed centers al (z4,y4) and (zg,y8). & > 0 is
the gear ratio, and ¢ is the initial difference in angular
position between the local reference frames attached to
the centers of the two gears. 1t implements the relation
GCIxO I ={{zays,® {0 €[0,2x)} and O =
{(zp,ym, ¥} | ¥ €[0,2m)},

G¢ = {(za,ya.9.28,y8,¥) [¥ = —ab + 4, (1)
(za.ya .0} €1 (zB,y8, ¥) € O}

This description? has abstracted structure and could
well be implemented by any mechanism that transforms
uniform unconstrained rotalion around the : axis at
(za,ya) to uniform unconstrained rotation of the op-
posite sense with angular velocity scaled by & around
the z axis at (zp,yn). Note that & has only one de-
gree of freedom, namely #. All other components of this
relation are either constants or can be calculated [rom 8.

Definition 4 The degree of freedom (DOF) of the ab-
stract mechanism R is the dimension of R.

The definition of an abstract mechanism provided above,
is precise, but somelimes unintuitive, It is hard to un-
derstand the behaviour of a mechanism as a general alge-
braic relation on multi-dimensional configuration apaces.
This motivates us to define an abstract mechanism as a
set of pairs of input and output motions.

“We have omitied the relation between center distance
and pitch diameter of the gears for simplicity.

802 Invited Speakers

Definition 5 Let R be an absiract mechanism satisfy-
ing Definition 8, and let M; and M, be motions of the
tnput and oulput links respectively. Then this abstract
mechanism can be defined alternatively as R, where

R = {(Mi, M,) | Yt (M;(t), M,(1)) € R}

While R is a relation on configuration spaces and relates
the instantaneous positions of the input links with those
of the output links, R’ is a relation between two motions.
The implementation of -+ abstract mechanism—a
concrete mechanism, is a g, .etric description of links
and joints between links. This description is stored as a
kinematic diagram annolated with a set of constraints,

Definition 6 A concrete mechanism iz ¢ pair (K,C)
where K is the kinematic diagram of the mechanism and
" is a set of geomeiric and dimensional consiraints on
K. There are two distinguished classes of links in K -
inpul links I, end output links O. The relation between
the configuration spaces of the input and oulput links of
(K, C) is its corresponding abstract mechanism.

Following Freudenstein {8], we use graph theory to for-
mally specify a kinematic diagram. The kinematic graph
K of a concrete mechanism is an undirected graph (V,E),
where V is the sel of vertices that denole the links, and
the edge set E represents the kinematic pairs. The edges
are labeled according Lo joint type [23]. There are one or
more nodes in V standing for the input and output links
of the mechanism. An annotated kinematic graph has al-
gebraic constraints on elements of V and E represenied
as a constraint set C.

4 Composition of Mechanisms

Complex mechanisms are composed out of simpler ones.
During composition, we construct the relation (I, O}
from (1, 0¢) and (Jy, 0y) by imposing the equality con-
straint Oy = I2. Two configuralion spaces are equal if
and only if they denote the same set of configurations.
To enforce the equality constraint between two configu-
ration spaces, we intersect them to obtain the configu-
rations comtnon to both sets.

Definition T The composition M of twe abstract mech-

anisms R] g f] = O] and Rz _C_ 12 X Og is

R M R2 = {{i1,02) | o1 = ©2A(41,01) € R1A(d2, 02) € R7)
An example of composition of two abstracl mecha-

nisms is Hlustrated with the construction of T that can

be implemented by a gear train, from two relations @,

and G3 that can be implemented by gear pairs. We use
the relation in Equation 1 to define &, and 5.

Gi = {(za.ya,0.2p,yp.¥) ¥ = —a10 + ¢}
G2 {(zmrym. 0 2w, un) [¥ = —aaf +¢')
T G MGy
= {(za,ya.0, 28 —z5,yn —¥m, ¥) |
(za,¥a.0,28,y8,¥) € G1,
(ep.ym, 0 25, yn, ¥) € Gy,
(z8,y8.%) = (zu, ym.6)}

|}

The gear ratios a; and o3 are both positive. From G7,
we can derive the fact that ¢’ = —ag(—a8+¢)+¢ by
algebraic simplification. We can define a corresponding
notion of composition using Definition 5 where the con-
straint is that the output motion of one mechanism be
made equal to the input motion of the other.

When two concrete mechanisms, (K,,C) and
(K2, C3), that implement relations R, and Ry are com-
posed, a rigid connection is formed between Lhe output
links of K, and the input links in K. The constraints,
C, and (3, are merged.

Definition 8 Let the concrete mechanisms (K;,C))
with K, = (VI,EIJ and (R’Q,CQ) with K, = (VgrEg)
implement Ry C Iy x O, and Ry C I x Oy respec-
lively. The new concrete mechanism (K,C) that im-
plements Ry X Ry can be formed from (Ki,C;) and
(Kz, Cz), (denoted (K, C) = (K] ' C1)O(K2, C;r)) 63} hav-
ing C = CLUC,, V = ViUWy, E = E1UEy and by adding
edges denoled rigid connections between output links in
V) and corresponding input links in V,.

More complex compositions of multi-DOF abstract
mechanisms and their concrete counlerparts can be per-
fomed in our framework.

5 Formal Problem Specification

We now cast the synthesis problem in the formal frame-
work for motions and mechanisms thal we have just
introduced. Synthesis problems are rarely posed with
complete specifications of the desired input and output
motions. Typically, constraints on the motions are given
which define a class of abstract mechanisms, and nol a
particular one.

Definition 9 The general synthesis problem is to find
a concrele mechanism (K,), given constrainis on an
abstract mechanism R C I x O.

The construction of K from the parlial specification of
the relation R solves the type and numbersynthesis prob-
lem. The solution of C solves the dimensional synthesis
problem.

Like [15], we view mechanisms as motion transform-
ers. Our compositional approach to solving the gen-
eral synthesis problem grounds the syntheses in a set
of primitive motion relations (abstract mechanisms) R,
and associates with each a sel of concrete implementa-
tions (K,,Cy). In the first phase of synthesis, we find a
composition of abstract mechanisms which satisfies the
given constraints on R. In the second phase, we choose
concrete implementations of the primitive relations, We
will show that this method is sound: that is, it produces
concrete mechanisms which implement the given motion
specifications.

Definition 10 The abstract synthesis problem is to find
a sequence of absiract mechansisms, Ry, Rz, ..., Ry, with
known concrele counterparts, where By M Ry M .. N
R salisfies the given constrainis on R.

A simple incremental, generate-and-test algorithm for
solving this problem starts with the identity a!Jst.‘ra’act
mechanism Z (/ = Q) and computes joins of primitive

relations R, until the composition satisfies the specifi-
cation. For each primitive abstract mechanism we non-
deterministically pick an implementation. We use Defi-
nition 8 Lo compose concrete mechanisms. This process
involves simultanecusly solving dimensional and geomet-
ric constraints from each of the chosen primitive imple-
mentations.

Definition 11 The concrete synthesis problem is {o find
¢ set of concrete implementations (K;,C;), 1 <i < n for
each element in the composition Ry, Ry,..., Ry, which
solves the abstract synthesis problem for the given con-
strainis on R, such that UT_,C; is satisfiable,

Theorem 1 The synthesis process: solving the abstract
synthesis problem followed by concrete synthesis, is
sound. That is, if it produces a solution, it will satisfy
the specified motion constraints.

To prove completeness, we need to establish that the
method will find an implementation of all specifications
expressible in the configuration space formalism. The
only way to prove this is to show that our primitive rela-
tion set can reconstruct any configuration space relation.
Currently, our set of abstract mechanisms is incomplete:
work is underway to construct a complete set.

We now discuss the computational complexity of the
abstract and concrete synthesis problems. Let the cardi-
nality of the set of primitive abstract mechanisms be n.
Suppose we consider only composite mechanisms with at
most p primitives. In the abstract synthesis phase, the
generation component can explore ELI n' alternatives.
We have to compute compositions during the process,
which involves intersection of algebraic sets: the worst
case time complexity is doubly exponential in the num-
ber of variables in the constraint set when a closed form
solution is possible. In the concrete synthesis phase, the
number of possible candidates are d" where d is the max-
imum number of concrete instantiations for a primitive
abstract mechanism. Each step in the concrete synthesis
phase involves checking that a given non-deterministic
choice of primitive implementations yields a consistent
constraint set. The complexity of solving these geomet-
ric and dimensional constraints is the same as that of
solving constraints generated in the abstract synthesis
phase. Algebraic descriptions are extremely general, but
suffer from two disadvantages. They require detailed
knowledge of the configuration spaces and the computa-
tion of M is very expensive in this representation. This
motivates a qualitative approach to representing motions
and the construction of the qualitative counterpart of the
M operator on configuration spaces. This is the subject
of the next section.

6 Tractable Representations for
Compositions

Qualitative descriptions partition the space of possible
motions into equivalence classes. They have two chief
advantages: they permit partial specification of motions.
Second, they allow for potential efficiency gains in per-
forming the join computations by eliminating the need
to solve complex non-linear equations.

Subramanian 803

Our qualitative language is a predicate language that
abstracts algebraic motion descriptions. It is similar to
other motion languages in the literature [11, 14, 16, 24]
in its use of predicate calculus. However, unlike these
approaches, but in common with [13], our aim is to pro-
vide an analysis of tradeoffs between expressive power
and computational efficiency for qualitative motion lan-
guages. We develop a soundness criterion called the M-
preservation property that a qualitative motion language
must satisfy to generate correct syntheses.

A qualitative motion language can be characterized by
a homomorphic mapping A, from a motion relation to
a qualitative description, which picks out specific prop-
erties of a motion. For instance, our symbolic language
represents rotations by their centers (xyz location), their
axes (a unit vector), a speed (a constant for a uniform
rotation), an angular range (for constrained rotations),
and a frequency (for rotations that change sense). Recti-
linear translations are represented by an axis (a unit vec-
tor), a speed, arange (for constrained translations), and
a frequency (for reciprocations). How can we determine
the representational adequacy of such a language for a
given class of design tasks? For our synthesis task, we
require the computation of compositions. If we can com-
pute A{R, X R,) accurately and efficiently from A(R,)
and A(R3z), for motion relations R; and R, we have
an adequate language. The formal property is called
M-preservation and requires the specification of K—the
composition operation in the abstract language defined
by A

Definition 12 The mapping A preserves joinsitf
AR KR;) = A(RINA(R;)

Note that this constraint places restrictions on the defini-
tion of ®. We illustrate the B computation using the gear
train example of Section 4. G; and G, transform rotary
motion to another rotary motion with a different speed
and sense. The angular velocity a, can be obtained from
the algebraic description of motion: $(t) = ~af(1} + ¢,
where #(t) is the output configuration at instant ¢, and
6(t) is the configuration of the input link at t. The pred-
icates below reformulate the algebraic descriptions of ro-
tation provided earlier.

Input: rotation Output: rotation

Gy = center: (z4,ya) center: (zg,¥s)
velocity: 5 velocity: —m 5
Input: rotation Qutput: rotation
Gs = center: (zp,ym) center: (zn,yN)
velocity: Sy velocity: —a2Sy
Imput: rotation Output: rotation
GGy = center: {z,4,ya) centar: (zp,yr)

velocity: 5

To implement M by ¥, we equate the description of the
output motion of &; with that of the input motion of &y,
where G; may be rigidly transformed. The composition
results in the following constraints.

1. Trigid(zm . ym) = (€8, y8)
2. Trigia(zn,yn) = (ZF. yF)

804 Invited Speakers

velocity: —au(—a15)

[
R'l,R: > RS
A A
%]
A(R1), A(R2) * A(Ras)

Figure 2: Preservation of joins by abstraction A

We calculate the rigid transformation Trigiq (in this case
a pure translation) which moves the rotation about the
z axis from {zar, ym) L0 (2@, yp) and we then apply that
transformation to the output of &4

In general, f[or the predicate language of rotations
and rectilinear translations introduced above, % “uni-
fies” motions M; and M; by calculating the generalized
rigid transformationt T such that TAf; = M;. There are
specific conditions under which two motions can be uni-
fied: they have to be of the same “type”. T'wo rotaiions
can be unified if they have the same axes of rotation,
their angular speeds and range are equal, and they have
the same frequency (if they are oscillations). The unifi-
cation process captures the join calculation in C-space,
and the abstracl description filters exactly the properties
of interest.

To demonstrate the computational efliciency gained
by the loss of expressive power, consider the slider crank
mechanism with the crank at (0,0, 0) and the slider that
moves along the z axis, with crank radius r, and with
! being the length of the link connected to the slider.
The abstract motion relation implemented by the slider
crank is:

S = {{(0,0,0,2,0,0)| z=rcosf

+ [1 - m]} (2)

Cutput: translation
interval: (r—1I,r+1{)
frequency:§

Input: rotation
center: (0,0}
velocity: §

8q =

QOur qualitative description only picks out the motion
interval and frequency of the slider. The motion inter-
val is calculated from Equation 2 by using the fact that
€ [0,27). The angular velocity can be derived by ex-
amining the algebraic description of the slider’s motion
as a function of time. These two aspects of the slider’s
motion are sufficient characterizations for the i calcula-
tion. We no longer need to solve the non-linear equation
2.

If the configuration space relations R, and R are lin-
ear (representable by linear constrainis), the /X operation
defined above pernitits A to be join-preserving. To better
understand join preservation, it is useful to consider the
example in Figure 3 where it is violated. The output

%I\hm r
. . .
NN

—_—]

bl r

Figure 3: An example that shows join preservation vio-
lation

of the crank rocker in Figure 3 is a rectilinear transla-
tion (reciprocation) which is the input to the skotch-yoke
mechanism. Our K construction unifies the two motions
as long as their ranges, speed, and axes coincide. Unfor-
tunately, an analysis of the underlying C-space® relations
reveals that there is at most one possible position where
the two motions would intersect, thus the mechanism
would jam (become rigid). Both the crank-rocker and
skotch-yoke mechanisms are non-linear.

The specific) developed above is inadequate for han-
dling non-linear mechanisms in a general way. To guar-
antee preservation ofjoins for the specific t4 and A com-
bination introduced here, we ensure that non-uniform
motions are not composed. This can be done with the
restriction that non-linear mechanisms only take uniform
motions as input.

7 Efficient Synthesis Algorithms

We reformulate the algebraic description of the abstract
synthesis problem in terms of qualitative motion descrip-
tions.

Given i, a qualitative specification of the input motion:
0, a qualitative specification of the output motion,
and constraints on i and o.

Find a sequence of abstract mechanisms As,... A,
which when composed will transform any motion
described by i to some motion described by o. To
be exact, we want

Vm,; €i3dm, €o(m;,m,) € A K. . . MA,

where m; E i means that the motion m;, is in the
class of motions described by the qualitative speci-
fication i.

To make the process efficient, we transform the naive
generate-and-test scheme to a goal-directed procedure
in Section 4 that chains backward from the desired out-
put o to i. We distinguish between single-input, single-
output (SISO) mechanism synthesis from single-input,
multi-output mechanism (SIMO) synthesis because of
the opportunity for optimization by function sharing in
the latter case. We begin with the algorithm for the
SISO case.

The algorithms below are not committed to any partic-
ular abstraction language. For each language, we require

K —sing=rcos¥ 411 —4/1— {«H?singﬂ

procedures that test equality of motion descriptions, and
regress constraints on motion through a primitive ab-
stract mechanism. We will illustrate these in the con-
text of the simple motion description system introduced
in the previous section.

7.1 Synthesizing single input, single output
mechanisms

The recursive algorithm for synthesizing single input,
single output mechanisms is shown in Table 1. We imple-

SISO_Synthesize(i,0)
1. H i = o, then return the null machine.

2. Else select an abstract mechanism A and find a
rigid transformation T such that

§= {‘m] (mva)E T(M):mo EO} '-Ié 9

Thus q describes the (largest) set of motions that
can be transformed by T(M) to motions in 0. q
is the most general qualitative description in the
motion language which meets that the previous re-
quirement. It is the regression or backprojection of
o with respect to T(M).

3. Return [T{M), SISO-Synthesize(i,q)]

Table 1: Algorithm for synthesizing single input, single
output mechanisms

ment the synthesis method for our language as a depth-
bounded, goal-directed, depth-first backward chainer in
CLP(R). The operational model of CLP(R) is similar to
Prolog (so the reader familiar with Prolog can read the
code below quite easily), however unification is replaced
by a more general mechanism: solving constraints in the
domain of functors over real arithmetic terms.

For a linear primitive mechanism, we store its name,
a scaling factor for the input and output motions, and
the types of input and output motion. For example, the
abstract mechanism corresponding to a gear pair with
gears of sizes 3 and 5 is represented as:

mechanisrn(gear-pair,
linear(-3/5),
[rotation((0,0,0),(0,0,))],
[rotation(((3+5)/2,0,0),(0,0,1))]).

For a non-linear primitive mechanism, we store its
name, its input motion which must be uniform, and its
output motion. For instance, the abstract non-linear
mechanism corresponding to a crank rocker is repre-
sented as:

mechanism(crank-rocker(L),
non-linear,
[rotation({0,0,8),(1,0,0)), velocity(F})],
[rotation{(0,L,0),(1,0,0)), frequency(F), range(R)])
~R>0, R,

The top-level invocation of the synthesis function is:
synthesize(input motion, output motion, null design,
depth bound). The base case of the synthesis occurs
when the input motion j is equal to the output motion

Subramanian 805

o: this is established by solving arithmetic constraints
that are generated when the motions are unified.

synthesize(In_motion, Out.motion, Design, Depth) :-
motion_eq(In_motion, Out_motion).

motion_eq is a predicate testing whether two motion de-
scriptions are equivalent. Its actual implementation de-
pends on the specific motion language.

The recursive step of synthesis first involves non-
deterministic choice of a primitive mechanism. Suppose
a linear primitive mechanism with output motion o, is
chosen. The output o, is made equal to the output of
the overall mechanism via a rigid transformation T com-
puted by solving the constraint T(ep) = 6. Then, the
new synthesis problem i, T(ip} is solved, where T(ip) is
the input motion of the primitive after rigid transforma-
tion. We can calculate T'(ip) very simply from the type
of input motion and the scaling factor that relates the
input and output motions of the mechanism.

synthesize(In_motion, Out.motion,
[(N,R_transform)|Design], Depth) :-
Depth > 0,
mechanism(N, linear(F), PJnjnotion, P_out_motion),
transform(P_out_motion, Out.motion, R_transform),
linear -apply (R_.transform, F, P_in_motion, NewGoal),
synthesize(In_motion, NewGoal, Design, Depth-1).

If, however, the primitive mechanism chosen is not
linear, the the input and output motion description, i,
and op, have to be provided explicitly. We compute the
rigid transformation T by solving the matrix equation
To, = o.

synthesize(In_motion, Out.motion,
[(N,R_transform)|Design], Depth) :-
Depth > 0,
mechanism(N, nl, P_In_motion, P.outjnotion),
transform(P_out_motion, Out_motion, R.transform),
nl_apply(R.transform, P_in_motion, NewGoal),
synthesize(In_motion, NewGoal, Design, Depth-1).

Consider the problem of designing a windshield wiper
introduced in Section 1. The input power is provided by
a motor rapidly rotating around the z axis. The wiper
oscillates in the yz plane with low frequency. We spec-
ify the problem as follows. Capitalized symbols in the
descriptions above are variables. The constraints specify
ranges on some of the variables.

Input motion i QCutput motion ¢

rotation” rotation

center: (0,0,0) center: (0,Y,2)

axis: (0,0,1) axis: (1,0,0)

velocity: 20 frequency: F, range: X

Constraints: 0.0 < F <2 n/2< X <7
For the synthesis of the wiper, the first primitive ab-
stract mechanism chosen is a crank rocker.

Input motion QOutput motion

rotation rotation
center: (0,0,0) center: (0,L,0)
axis: (0,0,1) axis: (0,0,1)

angular_velocity: F frequency: F, range: R
Constraints: 0 < R<n

806 Invited Speakers

To have the output of this primitive mechanism be
a rotation at (0,Y, Z), we will need to move the crank
rocker. We have to solve two systems of equations to
find the rigid transformation. The first system arises
from the requirement that the axes of rotations have to
be parallel. We need to find the angles of rotation that
allign the axes. We have to solve

f(2)-(¢)

where R is a 3x3 rotational matrix. Let ¥, ¢, # be rota-
tional angles about the 2, z, and y axis respectively.

The second system of equations arises because we re-
quire the centers of rotations to be coincident after the
rigid transformation. Let T be the 4x4 transformation
matrix.

L 0
. Y
1 Z

I
"]

E L
01 _ R Y 0
0 - z 0
1 000 1 1 1

From these equalions, we solve for z,y, 2,8, ¢, 9. One
solution to this problem produced by our system is

z=0y=Y-L 2=0,0=x/2,¢=0,¥=0.

The rigid transformation computed in this case is a ro-
tation of /2 about the y axis and a translationofl ¥ — L
along the y axis. We apply the transformation to the
input motion of the primitive mechanism. The interme-
diate motion generated is:

Intermediate motion g
rotation

center: (0,Y - L, Z)
axis: (1,0,0)
angular_velocity: ¥

All that remains is to transform the intermediate mo-
tion generated to the specified input motion ¢. This is ac-
complished with another abstract mechanism that meets
the constraint on F and changes the axis of rotation, in
this case, a worm-spur pair.

Input motion Output motion

rotation rotation
center: (0,0,0) center: (0,W,0)
axis: ((,0,1) axis: (1,0,0)

angular_velocity: F; angular_velocity: F)/a

Constraints: none

The unification of the intermediate motion generated
above with the output of this primitive abstract mecha-
nism generates the constraints: F = Fife, Y — L= W,
Z = 0. The rigid transformation is the identity transfor-
mation. Now the input motion of this primitive mecha-
nism can be matched with the input description ¢ yield-
ing Fy = 20. This generates the derived constrainti
F = 20/c«. The synthesis and refinement process gener-
ates the conatraints on the configuration of both mecha-
nisms, the dependency of X, Y and Z on the dimensions
of the links (W, L), as well as the fact that F = 20/a,
where a is the worm-spur gear ratio. Alternate abstract

designs and the corresponding refinements of a wind-
shield wiper found by our system include the compo-
sition of a worm-spur pair, a slider crank, and a rack
and pinion mechanism; as well as a worm-spur, scotch-
yoke and a rack-and-pinion mechanism. This example
shows how the backward chaining process accumulates
simple algebraic constraints which are solved incremen-
tally during the synthesis. The constraint programming
language CLP(R) [27] is used to implement the algo-
rithm. CLP(R)Graphical outputs are produced via an
interface to Mathematica’

Theorem 2 Algorithm SISO_Synthesize (i,0)) s
sound: i.e, it designs concrete mechanisms that satisfy
the qualitative motion specifications (Qi,Qo)-

This theorem can be proven by induction on the length
of the generated solution. The worst case complexity of
this algorithm is exponential in the length of the solution
produced. The worst case branching factor for the search
is around 20, corresponding to the number of primitive
motion relations. In practice, the average branching fac-
tor is much smaller (around 2 for the examples in this
paper) because the constraint accumulation process is
a least-commitment strategy that minimizes backtrack-
ing in the space of compositions of primitive abstract
mechanisms. In other words, we incrementally solve for
the rigid transformation and dimensions of primitives
during synthesis. We do not search for them discretely,
which may be very time consuming. Put another way,
our constraint-based representation allow us to perform
delayed instantiation of parameters. Each search path
encodes a whole class of solutions. Pruning or accepting
a path involves pruning or accepting a whole class of so-
lutions. The algorithm synthesizes many of the designs
for conversion of uniform rotation to reciprocation in [1]
in a few seconds. The synthesis of the wiper shown in
Figure 1 and its variants was also completed in about
two seconds on a Sparc 1 +

7.2 Synthesizing single input, multiple output
mechanisms

Many useful mechanisms produce multiple outputs from
a single source, e.g., eggbeaters, cars. To design these
single input multiple output (SIMO) mechanisms, we
need to specify a sequence of output motions.

Given i, a qualitative specification of the input;
o],..,,o"‘, a sequence of output motions, and con-
straints on i and o's.

Find A tree of abstract mechanisms,

Al ALLATL L AT, which when
satisfies the input-output specification.

composed

The SIMO synthesis problem can be solved by a series
of calls to SISO_Synthesize as in (Table 2). Calls to
SISO-Synthesize produce a tree with isolated paths
from i to each o!. However, this introduces a lot of
redundancy in the form of common intermediate mo-
tions along these paths. The optimization algorithm
in Table 2 merges common motions in the paths: if

*Mathematica is a trademark of Wolfram Research, Inc.

SIMO _Synthesize(t, o', . .
for j from 1 to n do
A’,,,..,A{, — SISO _Synthesize(i, o/)
/* optimization */
for j from 1 to n do
for each A{, in A{,, . .,Mi' do
for | from j+1 to n do
for each 4! in M!, .. ., A}, do
if InMotion(A],) = InMotion(.4}) then
delete (A}, ..., M, _) _
merge the inputs of 4!, and MJ;

., 0")

Table 2: Algorithm for Synthesizing single input, multi-
ple cutput mechanisms

the inputs I, and [, to Lwo abstraci mechanisms in
two different branches of the initial tree are equivalent,
we eliminate the path to I; and connect 7; in place
of Iy. This eliminates repeated transformation of i to
I;. In the algorithm, we denote primitive A’s input
motion by InMotion(A). When we merge the inputs
of Al, and A} in the last step of SIMO_Synthesize,
the input links of Al and A], as well as the out-

put links of 4} _, are rigidly connected together. The
optimization step merges identical motions, and there-
fore the final mechanism produced by the synthesis is
behaviorally equivalent to the original tree. By the
correctness of SISO _Synthesize we can conclude that
SIMO _Synthesize is also sound. The optimigation re-
duces the number of nodes in the tree and thus produces
more compact refinements. ‘Thus we have the following
theorem.

Theorem 3 Algorithm SIMO Synthesize(I} is
sound: ie, #f designs concrele mechanisms that satisfy

the motion speetfications (Q;, (QL, ..., Q%))

We now present the class of mechanisms that are syn-
thesizable by these algorithms. Clearly the class is de-
termined by the qualitative motion description language
used, and the set of primitive abstract mechanisms and
their associated implementations. For the specific mo-
tion language used in our current implementation, the
class of mechanisms synthesizable are fixed-topology,
single-degree of freedom mechanisms with at most one
nonlinear mechanism on each path from the input to
the outputs. The mechanisms we consider thus far are
composed of rigid parts. The single-degree-of-freedom
restriction applies in our case, because all of our prim-
itive motion relations have only one degree of freedom.
The composition of two or more mechanisms with single
degree of freedom can only produce mechanisms with at
most one degree of freedom. Multi-degree of freedom
mechanisms can be synthesized by our algebraic tech-
nique. The restriction on rigid parts obtains because
our definitions of motions and mechanisms are grounded
in configuration spaces of rigid bodies. By allowing def-
initions based on generalized configuration spaces, we
can allow for some limited forms of non-rigidity. The
restriction on the number of non-linear mechanisms in

Subramanian 807

808

Figure 4: Conceptual Designs for an Eggbeater

Invited Speakers

a design is needed for the correctness of the abstraction
A that generates the qualitative motion language. The
fixed-topology restriction can be eliminated by having a
richer set of primitive relations as well as a richer mo-
tion specification language which allows for expression
of when and how part contacts are made and broken. A
limitation of our current approach is the lack of a com-
ponent for shape design. If there is no sequence of prim-
itive relations that satisfies the given specification, our
method will fail to produce a design. We can integrate
the methods of [11] for synthesizing novel shapes into
our design system to automatically extend our library of
primitive abstract mechanisms.

8 Conclusions

This paper presented a case study of the integration of
methods in qualitative physics and constraint program-
ming with general algebraic reasoning with configura-
tion spaces. The design domain studied is that of kine-
matic synthesis of mechanisms from specifications of in-
put and output motions. Two algorithms were presented
that rapidly generate alternate behavioural decomposi-
tions and concrete refinements of a mechanism. We also
identified the class of mechanisms which can be correctly
synthesized within the qualitative framework. We have
implemented our method in CLP(R) and all examples
discussed in this paper are drawn from our implemen-
tation. Our base set of examples are drawn from mech-
anisms in [19] and [1]. We are presently enriching the
language of qualitative motion specifications to handle
richer classes of non-linear motions. This will allow us to
obtain better coverage over the examples in the compen-
dia listed above. Future work involves extending the set
of primitive relations, proving completeness properties
for these relations, and integrating mechanism synthe-
sis with multi-domain (including dynamics and optics)
designs.

There are other approaches to mechanism synthesis
that can be profitably combined with the first-principles
approaches discussed above. Expert system techniques
[26] for synthesizing special classes of mechanisms e.g.,
cam-follower mechanisms, occupy an interesting middle
ground between p re-parametric design schemes which re-
quires high-level qualitative specifications and the nu-
merical optimization packages which require very de-
tailed kinematic specifications. Case-based methods
[3, 20] for synthesis of mechanical systems begin with
a known library of designs and use the goal specifica-
tion to index relevant designs. The retrieved designs are
modified to meet the given specifications. The algorithm
developed here can be used to design indices for the li-
brary of designs. This works by running the synthesis
algorithm "in reverse" to parse or understand a design
in terms of given primitive motion relations.

The class of conceptual design tasks that can profit
from the integration we have effected are tasks with a
significant geometric component. We have developed
fast simulation methods for the class of mechanisms that
can be synthesized by the algorithms presented here.
Space limitations preclude their inclusion in this docu-
ment; a discussion of simulation methods will be present

in the talk.

All the physical prototyping of the designs

presented in this paper were performed using Technics

Lego.

Integrating conceptual design systems through

detailed design and physical prototyping in a standard
medium, will be discussed in the talk. The talk will fo-
cus on mechanical nano-technology designs because low-
dimensional configuration spaces can be used to reason

about shapes and motions in that domain.

Computa-

tional scale issues and our experience with the field test-
ing of our tools at Xerox will also be presented.

References

(1]

2

(3]

[4]

(5]

6]

[8]

€

[10]

[11]

(2]

(131

I. Artobolevsky. Mechanisms in Modern Engineer-
ing Design, vols. 1-4- MIR Publishers, Moscow,
1979. English translation.

J. Cagan and A. Agogino. Innovative design of me-
chanical structures from first principles. Journal
of Artificial Intelligence in Engineering Design and
Manufacturing, 1(3): 169-189, 1987.

K.P. Sycara D. Navinchandra and S. Narasimhan.
A transformational approach to case-based synthe
sis. Journal of Artificial Intelligence in Engineering
Design and Manufacturing, 5(2), 1991.

B. Faltings. Qualitative kinematics in mechanisms.
Artificial Intelligence, 44:89 119, 1990.

S. Finger and J. Rinderle. A transformational ap-
proach to mechanical design using a bond graph
grammar. In Proceedings of the 1st ASME De-
sign Theory and Methodology Conference, Montreal,
Canada, 1989.

F. Freudenstein and L. Dobrjanskyj. On a theory of
type synthesis of mechanisms. ASME Transactions
on Machines and Mechanisms ??, 1967

F. Freudenstein and Maki. The creation of mecha-
nisms according to kinematic structure and func-
tion. Environment and Planning B, 6:375-391,
1979.

F. Freudenstein and L.S. Woo. Kinematic struc-
ture of mechanisms. In W.R. Spillers, editor, Basic
Questions of Design Theory. North Holland, 1974.

J. Rinderle and S. Finger. A synthesis strategy for
mechanical devices. Research in Engineering De-
sign, 1:(1), 1989.

G. lyengar, C. Lee and S. Kota. Towards an ob-
jective evaluation of alternative designs. In Proc.
Design Theory and Methodology, ASME 1992.

L. Joskowicz and S. Addanki. From kinematics to
shape: An approach to innovative design. In Pro-
ceedings of AAAf-88, pages 347-352. Morgan Kauf-
mann, 1974.

L. Joskowicz and E. Sacks. Computational kinemat-
ics. Artificial Intelligence, 51:381 416, 1991.

L. Joskowicz. Mechanism Comparison and Classifi-
cation for Design. In Artificial Intelligence in Engi-
neering Design, Vol |1, ed. C. Tong and D. Sriram,
Academic Press, 1993.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Kannapan and K. Marshek. Design synthetic rea-
soning. Technical Report 216, Mechanical Systems
and Design, University of Texas at Austin, Septem-
ber 1989.

S. Kota. A qualitative matrix repreentation scheme
for the conceptual design of mechanisms. In Pro-
ceedings of the ASME Design Automation Confer-
ence. ASME, 1990.

S. Kota. Qualitative motion synthesis: Toward au-
tomating mechanical systems configuration. In Pro-
ceedings of the NSF Design and Manufacturing Sys-
tems Conference, pages 77—91, 1990.

J.C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, 1991.

H. M. Mabie and C. F. Reinholtz. Mechanisms and

Dynamics of Machinery, 4th edition. John Wiley
and Sons, 1987.
D. Macaulay. The Way Things Work. Houghton

Mifflin Company, 1988.

K.P. Sycara R. Guttal J. Koning S. Narasimhan D.
Navinchandra. Cadet: A case-based synthesis tool
for engineering design. International Journal of Ex-
pert Systems, 1991.

G. Pahl and W. Bietz. Engineering Design.
Design Council, Springer-Verlag, 1984.

The

H.M. Paynter. Analysis and Design of Engineering
Systems'MIT Press, 1961.

M M. Rueleaux. The Kinematics of Machinery.
MacMillan & Co., 1876. Translated by Alex B.W.
Kennedy.

K. Ulrich. Computation and pre-parametric design.
Technical Report 1043, MIT Artificial Intelligence
Laboratory, July 1988.

K. Ulrich and W. Seering. Conceptual design:
Synthesis of systems of components. In S. Chan-
drasekar C.R. Liu, A. Requicha, editor, Intelligent
and Integrated Manufacturing Analysis and Synthe-
sis. ASME, PED-Vol 25, 1988.

B. Yang U. Datta P. Datseris Y. Wu. An integrated
system for design of mechanisms by an expert sys-
tem: Domes. Al EDAM, 3(1):53 70, 1989.

N. Heintze S. Michaylov P. Stuckey R. Yap. The
CLP(R) programmer's manual, version 1.1. Tech-
nical report, Carnegie-Mellon University and IBM
Research, 1991.

Subramanian 809

