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Abstract 

Ar t i f i c i a l Intel l igence has been the f ield of study 
for explor ing the pr inciples under ly ing thought, 
and u t i l i z ing thei r discovery to develop use­
fu l computers. T rad i t i ona l AI models have 
been, consciously or subconsciously, opt imized 
for available comput ing resources which has led 
AI in cer ta in direct ions. The emergence o f mas­
sively paral le l computers l iberates the way i n ­
tell igence may be modeled. A l t hough the A I 
commun i t y has yet to make a quan tum leap, 
there are a t tempts to make use of the oppor tu ­
nit ies offered by massively paral lel computers, 
such as memory-based reasoning, genetic algo-
r i t hms , and other novel models. Even w i t h i n 
the t rad i t i ona l A I approach, researchers have 
begun to realize tha t the needs for h igh per­
formance comput ing and very large knowledge 
bases to develop intel l igent systems requires 
massively paral le l A I techniques. In this Com­
puters and Though t A w a r d lecture, I w i l l argue 
tha t massively paral le l ar t i f ic ia l intel l igence w i l l 
add new dimensions to the ways tha t the AI 
goals are pursued, and demonstrate tha t mas­
sively paral le l ar t i f ic ia l intel l igence is where AI 
meets the real wor ld . 

1. Introduction 

Massively Paral le l A r t i f i c i a l Intel l igence is a f ield of s tudy 
exp lor ing methodologies for bu i ld ing intel l igent systems 
and invest igat ing computa t iona l models of thought and 
behavior t ha t use massively paral le l comput ing models 
[Wal tz , 1990, K i t a n o et a l . , 1991a]. Tradi t ional ly , a r t i f i ­
c ial intel l igence research has two goals: as an engineer­
ing discipl ine, ar t i f ic ia l intel l igence pursues methods to 
bu i l d useful and inte l l igent systems. As a scientific dis­
c ip l ine, ar t i f ic ia l intel l igence aims at understanding the 
computa t iona l mechanisms of thought and behavior. I 
believe t h a t massively paral le l ar t i f ic ia l intel l igence w i l l 
be the cent ra l p i l la r in the u l t ima te success of ar t i f ic ia l 
intel l igence in b o t h engineering and scientif ic goals. 

Massively paral le l ar t i f ic ia l intel l igence does not 
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merely speed up t rad i t iona l AI models. In fact, many 
t rad i t iona l models are not appropriate for massively par­
allel implementat ion. Vast majorit ies of the AI models 
proposed so far are strongly influenced by the perfor­
mance of exist ing von Neumann architectures. In a nar­
row sense, a von Neumann architecture can be repre­
sented by a single processor architecture w i t h a memory 
to store instruct ions and data. Even in the early 80s, 
available comput ing power for most AI researchers was 
far less than that for personal computers in 1993, and 
hopelessly slower than advanced RISC-based worksta­
t ions. Addi t ional ly , memory space has increased drast i ­
cally in 10 years. 

W i t h i n the hardware constraints to date, sequential 
rule appl icat ion, for example, has been an opt imal i m ­
plementat ion strategy. Whi le I agree that this idea is 
not merely an implementat ion strategy ( in fact there 
are numbers of cognit ive bases for sequential rule ap­
pl icat ion) , hardware constraints have prevented AI re­
searchers f rom seriously investigating and experiment ing 
on other, more computat ional ly demanding approaches. 
For example, the memory-based reasoning model could 
not have been experimental ly supported, using only the 
comput ing power and memory space available in the 
early 1980s. Genetic algorithms and neural networks 
could not be seriously investigated w i thou t a major leap 
in comput ing power. 

One might argue that if a program were run for, say, 
a mon th , experimental results could have been obtained 
even in the early 1980s. However, in practice, dominat­
ing computat ional resources for such a substantial per iod 
of t ime would be impossible for the vast ma jo r i t y of re-
searchers, and painful ly long tu rn around t ime for exper­
iments can be a major discouraging factor in promot ing 
research activit ies based on computat ional ly demanding 
paradigms. 

This hardware factor inevi tably guided, consciously or 
subconsciously, AI in a part icular direct ion. A l though 
the issues and approach may vary, several researchers 
have been expressing concern over the influence of ex­
ist ing computer architectures on our models of thought . 
Dav id Wal tz stated: 

the methods and perspective of AI have been 
dramat ical ly skewed by the existence of the 
common d ig i ta l computer, sometime called the 
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von Neumann machine, and ultimately, AI 
wi l l have to be based on ideas and hardware 
quite different from what is currently central 
to it.[Waltz, 1988] 

and proposed memory-based reasoning. Rodney Brooks 
noted in the his 1991 Computers and Thought lecture 

the state of computer architecture has been 
a strong influence on our models of thought. 
The Von Neumann model of computation 
has lead Artif icial Intelligence in particular 
directionspBrooks, 199l] 

and proposed the subsumption architecture. 

Therefore, it is critically important to understand the 
nature of the computational resources which are avail­
able today and wil l be available in the near future. I 
argue that massively parallel artificial intelligence wil l 
add a new dimension to our models of thought and to 
the approaches used in building intelligent systems. In 
the next section, the state-of-the-art in computing tech­
nology wil l be reviewed and the inevitability of massive 
parallelism wil l be discussed. 

2. Massively Paral le l Computers 

Advancements in hardware technologies have always 
been a powerful driving force in promoting new chal­
lenges. At the same time, available hardware perfor­
mance and architectures have been constraints for mod­
els of intelligence. This section reviews progress in device 
technologies and architecture, in order to give an idea of 
the computing power and memory space which could be 
available to AI researchers today. 

2 . 1 . Devices 

Device technology progress is fast and steady. Memory 
chips, DRAM, capacity increases at a 40% a year rate. 
64M D R A M wil l be available shortly, and successful ex­
perimental results have been reported for a design 
rule. Figure 1 shows how this trend would continue into 
the future. 

Microprocessor performance increases at the rate of 20 
to 30% a year. In 1990, engineers at Intel corporation 
predicted that processors in the year 2,000 (Micro2000) 
would contain over 50 million transistors per square inch 
and run with a 250MHz clock[Gelsinger et al., 1989]. 
The Micro2000 would contain four 750 MIPS CPUs run 
in parallel and achieves 2000 MIPS. In 1992, they have 
commented that their prediction was too modest! This 
implies the possibility of achieving low cost, high perfor­
mance computing devices. Thus, some of the research on 
current massively parallel computers may be conducted 
on workstations in the future. 

On the other hand, uniprocessor supercomputer per­
formance is improving at a substantially lower rate 

Figure 1: Memory Capacity for Mass Production Mem­
ory Chips 

Figure 2: Peak Performance for Supercomputers 

than the microprocessor improvement rate. A l l newly 
announced vector supercomputers use multiprocessing 
technologies, so that the slow processor performance im­
provement rate can be compensated for (Figure 2). 
In addition, massively parallel machines are already 
competitive with current supercomputers in some ar­
eas [Myczkowski and Steele, 1991, Sabot et al., 1991, 
Hord, 1990]. It is expected that, in the near future, the 
majority of high-end supercomputers wil l be massively 
parallel machines. 

This implies that the progress in microprocessors wi l l 
face a slow down stage in the future, and that an ar­
chitecture for a higher level of parallelism wi l l be intro­
duced. This increasing availability of high performance 
computers, from personal computers to massively par­
allel supercomputers, wil l allow experiments on simu­
lated massive parallelism to be made at numerous places. 
Thus, computational constraints should no longer im­
pose restrictions on how thought is modeled. 

Special purpose devices provide dramatic speed up 
for certain types of processing. For example, associa­
tive memory is a powerful device for many AI applica­
tions. It provides a compact and highly parallel pat­
tern matcher, which can be used for various applica­
tions such as memory-based reasoning, knowledge base 
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search, and genetic algorithms [Stormon et al., 1992, 
Twardowski, 1990, Kitano et al., 1991c]. The benefit 
of associative memory is that it can attain very high 
parallelism in a single chip. Although only a few simple 
operations, such as bit pattern matching, can be accom­
plished, these are central operations for A l . 

There are also efforts to build high performance and 
large scale neural network device chips (Graf et al., 1988, 
Ae and Aibara, 1989, Mead, 1989]. Although current 
devices have not attained implementation of sufficiently 
large networks, which can cope with many real appli­
cations, there are some promising research results. For 
example, the use of wafer scale integration for neural 
networks may provide for scaling up to a reasonable size 
[Yasunaga et al., 1991]. 

2.2. A r c h i t e c t u r e 

The history of massively parallel computers can be 
traced back to Ill iac-IV [Bouknight et al., 1972], DAP 
[Bowler and Pawley, 1984], and MPP [Batcher, 1980]. 
Il l iac-IV was the first SIMD supercomputer with 64 pro-
cessors operating at a rate of 300 MIPS. MPP consists of 
16,384 1-bit processors. DAP ranges from 1,024 to 4,096 
processors. These early machines were built particularly 
for scientific supercomputing. 

However, the real turning point came with the devel­
opment of the connection machine [Hillis, 1985]. The 
connection machine was motivated by NETL [Fahlman, 
1979] and other work on semantic networks, and was 
originally designed with Al applications in mind. Hillis 
noted: 

This particular application, retrieving com-
monsense knowledge from a semantic network, 
was one of the primary motivations for the de­
sign of the Connection Machine[Hillis, 1985]. 

The CM-2 Connection Machine, which is the second 
commercial version of the Connection Machine, con­
sists of large numbers of 1-bit processors and float­
ing point processing units [TMC, 1989]. Various sys­
tems has been implemented, such as rule-based infer­
ence systems [Blelloch, 1986, Blelloch, 1986], a mas­
sively parallel assumption-based t ruth maintenance sys­
tem [Dixon and de Kleer, 1988], a text retrieval system 
[Stanfillet al., 1989], stereo vision programs [Drumheller, 
1986], a frame-based knowledge representation system 
[Evett et al.. 1990a], heuristic search programs [Evett 
et al., 1990b], parallel search techniques [Geller, 1991], 
a classifier system [Robertson, 1987], case-base retriev­
ers [Kolodner, 1988, Cook, 1991, Kettler et al., 1993], 
a motion control system [Atkeson and Reinkensymeyer, 
1990], and others (See [Kitano et al., 1991a] for a partial 
list of systems developed). The newest version, CM-5 
[TMC, 1991], uses 32-bit SPARC chips interconnected 
via a tree structured network. Companies, such as Mas-
Par Computer [Blank, 1990, Nickolls, 1990], Intel, Cray, 
I B M , NCR, Fujitsu, NEC and others, have started de­
velopment projects for massively parallel computers, and 
some of these are already on the market. 

The block diagram of I X M 2 associative memory processor 

Figure 3: IXM-2 

Although most massively parallel machines developed 
so far employ distributed memory architectures, there 
have been some attempts to build a shared memory ma­
chine. KSR-1 [KSR, 1992] by Kendall Square Research 
is an attempt to overcome the difficulties in software de­
velopment which often arise on distributed memory ma­
chines. KSR-1 employs the ALLCACHE architecture, 
which is a virtual shared memory (VSM) model. In a 
VSM model, a physical architecture resembles that of a 
distributed memory architecture, but local memories are 
virtually shared by other processors, so that program­
mers do not have to worry about the physical location 
of data. 

Independently from these commercial machines, sev­
eral research machines have been developed at universi­
ties and research institutions. These projects include the 
J-Machine [Dally et al., 1989] at MIT, SNAP [Moldovan 
et al., 1990] at the University of Southern California 
(USC), and IXM-2 [Hieuchi et al., 1991] at ElectroTech-
nical Laboratory (ETL). I have been involved in some of 
these projects, as will be described below. 

The IXM-2 massively parallel associative memory pro-
cessor was developed at ETL by Higuchi and his col­
leagues [Higuchi et a l , 1991], DCM-2 consists of 64 
associative processors and 9 communication processors 
(figure 3). The associative processor is organized us­
ing a T800 transputer [inmos, 1987], 4K words associa­
tive memory, SRAM, and other circuitry. Due to an in­
tensive use of associative memory, IXM-2 exhibits 256K 
parallelism for bit pattern matching. IXM-2 is now be­
ing used for various research projects at ETL, Carnegie 
Mellon University, and the ATR Interpreting Telephony 
Research Laboratory. The application domains range 
through genetic algorithms, knowledge-base search, and 
example-based machine translation. 
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Figure 4: SNAP-1 

The Semantic Network Array Processor (SNAP) is 
now being developed by Professor Dan Moldovan's team 
at the University of Southern California. A SNAP-1 
prototype has been developed and has been operational 
since the summer of 1991. SNAP-1 consists of 32 clus­
ters interconnected via a modified hypercube (Figure 4). 
Five TMS320C30 processors form a cluster, which store 
up to 1,024 semantic network nodes. Processors within 
a cluster communicate through a multi-port memory. 
Several systems have been implemented on SNAP, such 
as the DmSNAP machine translation system [Kitano et 
al., 1991b], the PASS parallel speech processing system 
[Chung et al., 1992], and some classification algorithms 
[Kim and Moldovan, 1990]. 

These trends in hardware and architectures wil l en­
able massive computing power and memory space to be 
available for AI research. 

2.3. Wafer-Scale I n teg ra t i on for 
Memory -Based Reasoning 

WSI-MBR is a wafer-scale integration (WSI) project de­
signed for memory-based reasoning. WSI is the state-
of-the-art in VLSI fabrication technology, and has been 
applied to various domains such as neural networks [Ya-
sunaga et al., 1991]. WSI fabricates one large VLSI-
based system on a wafer as opposed to conventional 
VLSI production which fabricates over 100 chips from 
one wafer. The advantage of WSI is in its size (high 
integration level), performance, cost, and reliability: 

Size: WSI is compact because nearly all circuits neces­
sary for the system are fabricated on a single wafer. 

Per formance: WSI has a substantial performance ad­
vantage because it minimizes wiring length. 

Cost : WSI is cost effective because it minimizes the re-
quirement for using expensive assembly lines. 

Re l i ab i l i t y : WSI is reliable because it eliminates the 
bonding process which is the major cause of circuit 
malfunctions. 

However, there is one big problem in WSI fabrication: 
defects. In conventional VLSI fabrication, one wafer 
consists of over 100 chips. Typically, there are certain 
percentages of defective chips. Traditionally, chips wi th 
defects have been simply discarded and the chips with­
out defects have been used. To estimate the faults in 

a WSI chip, we can use the Seeds model[Seeds, 1967]: 
where Y is a yield of the wafer, D is the 

fault density which is, in the fabrication process being 
used, about 1 fault per cm2, and A is the chip area. This 
is a reasonable rate for the current fabrication process. 
However, even this level of fault would cause fatal prob­
lems for an attempt to build, for example, an entire I B M 
370 on one wafer. Unless sophisticated defect-control 
mechanisms and robust circuits are used, a single defect 
could collapse an entire operation. But, redundant cir­
cuits diminish the benefits of the WSI. This trade-off has 
not been solved. 

MBR is ideal for WSI, and avoids the defect prob­
lem because it does not rely upon any single data unit. 
WSI-MBR is a digital/analog hybrid WSI specialized for 
memory-based reasoning. The digital/analog hybrid ap­
proach has been used in order to increase parallelism and 
improve performance. In the digital computing circuit, 
a floating point processor part takes up the most of chip 
area. On the other hand, the analog circuit requires only 
a fraction of the area for implementation of equivalent 
floating point operation circuits and drastic speed up can 
be attained. For detailed arguments on the relative ad­
vantages of analog and digital circuits, see [Kitano and 
Yasunaga, 1992]. Use of the less area-demanding analog 
approach provides two major advantages over the digi­
tal approach: (1) increased parallelism, and (2) speed up 
due to relaxed wiring constraints (critical paths and wire 
width). Expected performance with the current design 
is 70Tflops on a single 8 inch wafer. Using wafer stack 
and micro-pin technologies, peta-flops on a few hundred 
million record system would be technically feasible! 

3. Grand Challenge AI Appl icat ions 

From the engineering point of view, the ultimate suc­
cess in artificial intelligence can be measured by the eco­
nomic and social impact of the systems deployed in the 
real-world. Applications with significant economic and 
social impacts provide us with some grand challenge AI 
applications. 

Grand challenge AI applications are applications with 
significant social, economic, engineering, and scientific 
impacts. The term Grand Challenge was defined as 

a fundamental problem in science or engineer­
ing, with broad economic and scientific impact, 
whose solution wil l require the application of 
high-performance computing resources. 

in the U.S. High Performance Computing Act of 1991. 
Thus grand challenge AI applications are AI applica­
tions with significant social, scientific, and engineering 
impacts. Typical examples are Human Genome project 
[NRC, 1988] and speech-to-speech translation system 
projects. Two workshops have been organized to dis­
cuss grand challenge AI applications. 

In February 1992, NSF sponsored The Workshop on 
High Performance Computing and Communications for 
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Grand Challenge Applications: Computer Nat­
ural Language and Speech Processing, and Artificial In-
telligence. In October 1992, I organized The Workshop 
on Grand Challenge AI Applications in Tokyo — partic­
ipated in by a group of leading Japanese researchers[Ki-
tano, 1992b]. Details on these workshops and some of the 
on-going grand challenge AI applications can be found 
in [Kitano et al., 1993]. 

Typical applications discussed include: a speech-
to-speech translation system, human genome analysis, 
Global Architecture for Information Access (GAIA) — 
a highly intelligent information access system, Shogi and 
Go systems which beat Meijin (Grand Master), intelli­
gent robots and programs which undertake daily tasks, 
and intelligent vehicles. There have also been discus­
sions as to wehat technologies are needed to support 
grand challenge AI applications. The conclusions from 
both workshops are surprisingly similar. The common 
thread was the need for massive computing power, mas­
sive memory storage, massive data resource, and ultra 
high band-width communication networks. 

For a grand challenge to succeed, our computer sys­
tems must be able to be scaled up. For example, natural 
language systems must be scaled up to the point where 
a dictionary of the system contains all common words 
and many domain-specific terms, and to where grammar 
rules cover most syntactic structures. For any serious 
machine translation system, this means that the dictio­
nary contains from half a million to a few million word 
entries, and the grammar rules amount to over 10,000. 

In addition, for systems to be scaled up, and to be 
deployed in the real world, they must be able to cope 
with a noisy environment and incomplete data resources. 

4. The Bott lenecks 

This section discusses limitations of "the traditional AI 
approach." The traditional AI approach can be charac­
terized by several salient features: 

Fo rma l Representat ions: Most traditional models 
use rigid and formal knowledge representation 
schemes. Thus, all knowledge must be explicitly 
represented in order for the system to use that 
knowledge. There is no implicit knowledge in the 
system. 

Ru le d r i ven in ferenc ing: Reasoning is generally 
driven by rules or principles, which are abstract and 
generalize knowledge on how to manipulate specific 
knowledge. 

S t rong M e t h o d s : Since the system depends on ex­
plicit knowledge and rules, domain theory must be 
understood in order to build any system based on 
the traditional approach. 

H a n d - C r a f t e d Knowledge Bases: Knowledge 
and rules have been hand-coded at extensive labor 
costs. In many cases, coding must be carried out by 
experts in the field. 

Figure 5: Approaches for Building Intelligent Systems 

In essence, these are derived from the physical symbol 
system hypothesis and the heuristic search. As Dave 
Waltz stated: 

For thirty years, virtually all AI paradigms 
were based on variants of what Herbert Simon 
and Allen Newell have presented as physical 
symbol systems and heuristic search hypothe­
ses. 

The fundamental assumption in the traditional approach 
is that experts know the necessary knowledge regard­
ing the problem domain, and that expert knowledge 
can be explicitly written using formal representations. 
Toy problems, such as the blocks world and the Tower 
of Hanoi, meet this condition. And thus, historically, 
many AI research efforts have been carried out on do­
mains such as the blocks world and the Tower of Hanoi. 
The intention of such work is that by proving the effec­
tiveness of the method using small and tractable tasks 
the method can be applied to real-world problems. To 
rephrase, most research has been carried out in such a 
way that researchers develop a highly intelligent system 
in a very restricted domain. Researchers hoped that 
such systems could be scaled up with larger funding and 
increased effort (Figure 5: Independently, Brooks and 
Kanade uses similar figures). 

However, experiences in expert systems, machine 
translation systems, and other knowledge-based systems 
indicate that scaling up is extremely difficult for many 
of the prototypes. For example, it is relatively easy to 
build a machine translation system, which translates a 
few very complex sentences. But, it would be far more 
difficult to build a machine translation system which cor­
rectly translates thousands of sentences of medium com­
plexity. Japanese companies have invested a decade of 
time and a serious amount of labor inputs to developing 
commercial machine translation systems, based on tra­
ditional models of language and intelligence. So far, a 
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report on high quality machine translation systems has 
not been published. 

There are several reasons why the traditional AI ap­
proach fails in the real-world. The basic assumption is 
that knowledge exists somewhere in the mind of experts, 
so that, if it can be written down in operational form — 
the expertise can be transferred to the system. How­
ever, this assumption does not stand in the real-world. 
The following three factors prevent the traditional AI 
approach from real-world deployment. 

Incompleteness: It is almost impossible to obtain a 
complete set of knowledge for a given problem do­
main. Experts themselves may not have the knowl­
edge, or the knowledge may be tacit so that it can 
not be expressed in a formal manner. Thus, a cer­
tain portion of the knowledge is always absent. 

Incorrectness: There is no guarantee that expert 
knowledge is always correct and that encoding is 
perfect. A large knowledge base, which contains 
over 10,000 frames, must include a few errors. If 
there were a 0.5% error rate, there would be over 
5,000 incorrect frames in a million frame knowledge­
base! 

Inconsis tenet : The set of knowledge represented may 
be inconsistent, because (1) contextual factors to 
maintain consistency were ignored, or (2) expert 
knowledge is inconsistent. 

These realities in regard to real world data are dev­
astating to the traditional AI approach. Moreover, in 
addition to these problems, there are other problems, 
such as: 

H u m a n Bias: The way knowledge is expressed is in­
evitably influenced by available domain theory. 
When the domain theory is false, the whole effort 
can fail. 

T rac tab i l i t y : The system wil l be increasingly in­
tractable, as it scales up, due to complex interaction 
between piece wise rules. 

Economics: When rules are extracted from experts, 
system development is a labor intensive task. For 
example, even if MCC's CYC [Lenat and Guha, 
1989] system provides a certain level of robustness 
for knowledge-based systems, proliferation of such 
systems would be limited due to high development 
cost. 

Empirically, efforts to eradicate these problems have 
not been successful. In essence, AI theories for the real-
world must assume data resources to be inconsistent, 
incomplete, and inaccurate. 

Lenat and Feigenbaum pointed out the scaling up 
problem for expert systems, and proposed the Breadth 
Hypothesis (BH) [Lenat and Feigenbaum, 1991] and the 
CYC project [Lenat and Guha, 1989]. While there is 
some t ru th in the BH, whether or not the robustness 
can be attained by a pure symbolic approach is open 
to a question. A series of very large knowledge based 

systems projects, such as CYC [Lenat and Guha, 1989], 
knowledge-based machine translation (KBMT) [Good­
man and Nirenberg, 199l], corporate-wide CBR system 
[Kitano et al., 1992], and large-scale CBR systems [Ket-
tler et al., 1993] wil l be important test-beds for this ap­
proach. 

For these systems to succeed, I believe that incorpo­
ration of mechanisms to handle messy real world data 
resources wil l be necessary. 

5. Comput ing , Memory , and Model ing 

One promising approach for building real world AI appli­
cations is to exploit the maximum use of massively par­
allel computing power and data resources. In essence, I 
argue that an approach emphasizing massive computing 
power, massive data resources, and sophisticated mod­
eling wil l play a central role in building grand challenge 
AI applications. 

C o m p u t i n g : The importance of computing power 
can be represented by the Deep-Thought Chess 
machine[Hsu, 1991, Hsu et al., 1990, Hsu, 1990]. 
Deep-Thought demonstrates the power of comput­
ing for playing chess. It was once believed that 
a strong heuristic approach was the way to build 
the grand master level chess machine. However, 
the history of chess machines indicates that com­
puting power and chess machine strength have al­
most direct co-relation (Figure 6: reproduced based 
on [Hsu et al., 1990]). Deep-Thought-II consists 
of 1,000 processors computing over a billion moves 
per second. It is expected to beat a grand mas­
ter. Deep-Thought exemplifies the significance of 
the massive computing. Similarly, real-time pro­
cessing, using a very large knowledge source re­
quires massive computing power [Evett et al., 1990a, 
Evett et al., 1990b, Geller, 1991]. 

M e m o r y : The need for memory can be argued from 
a series of successes achieved in memory-based 
reasoning. Starting from the init ial success of 
MBRtalk[Stanfil l and Waltz, 1988], memory-based 
reasoning has been applied to various domains, 
such as protein structure prediction [Zhang et al., 
1988], machine translation [Sato and Nagao, 1990, 
Sumita and Iida, 1991, Furuse and Iida, 1992, 
Kitano and Higuchi, 1991a, Kitano. 1991], cen­
sus classificationfCreecy et al., 1992], parsing[Ki-
tano and Higuchi, 1991b, Kitano et al., 1991b], and 
weather forecasting. PACE, a census classification 
system, attained 57% classification accuracy for oc­
cupation codes and 63% classification accuracy for 
industry codes [Creecy et a l , 1992]. The AICOS 
expert system attained only 37% for the occupation 
codes and 57% for industry codes. These successes 
can be attributed to the superiority of the approach 
which places memory as the basis for intelligence, 
rather than fragile hand-crafted rules. In a memory-
based reasoning system, the quality of the solution 
depends upon the amount of data collected. Fig­
ure 7 shows the general relationship between the 
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Figure 6: Progress of Chess Machines 

Figure 7: Memory and Accuracy 

amount of data and solution quality. The success of 
memory-based reasoning demonstrates the signifi­
cance of a massive memory or data-stream. 

M o d e l i n g : The importance of modeling can be dis-
cussed using the SPHINX speech recognition 
system[Lee, 1988]. Using massive computing and 
a massive data-stream is not sufficient to build such 
artificial intelligence systems. The critical issue is 
how the application domain is modeled. Figure 8 
shows the improvement in recognition rate, with 
modeling sophistication. Even if massively parallel 
machines and large data resources are used, if the 
modeling is not appropriate, only a poor result can 
be expected. SPHINX exemplifies the significance 
of modeling. 

There are several reasons that these factors are impor­
tant, the following analysis may help in understanding 
the effectiveness of the approach. 

D i s t r i b u t i o n Many of the phenomena that AI tries to 
deal with are artifacts determined by human beings, such 
as natural languages, society, and engineering systems. 
However, it is acknowledged that even these phenomena 
follow basic statistical principles, as applied in nature. 
Normal distribution (also called Gaussian distribution) 
and Poisson distribution are important distributions. In 
physics, quantum statistics (such as Bose-Einstein statis­
tics and Fermi-Dirac statistics) and a classical statistics 
(Maxwell-Boltzmann statistics) are used. A I , however, is 

Figure 8: Modeling and Accuracy 

not mature enough to establish statistics systems for var­
ious phenomena. However, using statistical ideas, even 
in a primitive manner, can greatly help to understand 
the nature of many phenomena. 

Zipf's law, for example, describes distributions of 
types of events in various activities. In Zipf's law, the 
multiplication of the rank of an event (r) and the fre­
quency of the event (f) is kept constant (C = rf). For 
example, when C = 0.1, an event of rank 1 should have 
a 10.0% share of all events, a rank 2 event should oc­
cupy 5.0%, and so on (Figure 9). The sum of the top 10 
events occupies only 29.3%. Despite the fact that the 
occurance probability for an individual event, greater 
than the 11-th rank, has only a fraction of a percent 
(e.g. 0.5% for the 11-th rank), the sum of these events 
amounts to 70%. This law can be observed in various 
aspects of the world. AI models using heuristics rules 
wil l be able to cover events of high frequency relatively 
easily, but extending the coverage to capture irregular 
and less frequent events wil l be major disturbing fac­
tors. However, the sum of these less frequent events will 
occupy a significant proportion of the time, so that the 
system must handle these events. In fact, about 60% 
to 70% of grammar rules in typical commercial machine 
translation systems are written for specific linguistic phe­
nomena, whose frequencies are very low. This empir­
ical data confirms Zipfs law in the natural language. 
Memory-based reasoning is a straightforward method to 
cover both high frequency and low frequency events. In 
fact, the relationship between data size and accuracy of 
a MBR system and the accumulated frequency in Zipf's 
law is surprisingly similar (Figure 10). 

The Cen t ra l L i m i t Theorem Inaccuracy, or noise, 
inherent in large data resources can be mitigated using 
the very nature of these large data resources. Assuming 
that inaccuracy on data is distributed following a certain 
distribution (not necessary Gaussian), the central l imit 
theorem indicates that the distribution wil l be Gaussian 
over large data sets. A simple analysis illustrates the 
central l imit theorem. Assuming the linear model, y = 

where y is an observed value, is a true value, and 
is noise, the central l imit theorem indicates that the E wil l 
follow a normal distribution, regardless of the original 
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Figure 9: Z ipf 's Law 

Figure 10: Z ip f 's Law and M B R 

d is t r i bu t ion which produces W h e n the expected value 
of is 0, the observer w i l l get the t rue value. 

In fact, adding various types of noise to memory-
based reasoning systems does not cause ma jo r accuracy 
degradat ion. F igure 11 shows accuracy degradat ion for 
M B R t a l k (a M B R version o f N E T t a l k [Sejnowski and 
Rosenberg, 1987]), when noise is added to the weights. 
The noise fol lows a un i fo rm d is t r i bu t ion . N% noise 
means tha t a weight can be randomly changed in the 

range, where W is a weight value. The degra­
da t ion rate is much smaller, when larger da ta sets are 
used. 

F igure 12: Over lapping Noisy D a t a 

F igure 11 : Accracy Degradat ion by Noisy D a t a 

F igure 13: Accracy Degradat ion and Precision 

T h e L a w o f L a r g e N u m b e r s Accord ing t o the law 
of large numbers, the peak in a data d i s t r i bu t i on w i l l be 
narrower w i t h a large number of da ta sets. Assume tha t 
there are two close t rue values. Da ta d is t r ibut ions may 
overlap due to noise. However, the law of large numbers 
indicates tha t , by col lect ing larger da ta sets, over lap can 
be m i t i ga ted (F igure 12). ( I have not yet conf i rmed 
whether these effects can be observed in memory-based 
reasoning. However, the re lat ionship between accuracy 
and data size impl ies tha t the law is in effect (F igure 
13).) 

N o n l i n e a r B o u n d a r y A vast m a j o r i t y o f real wo r l d 
phenomena are non-l inear. A n y a t temp t to approx imate 
non-l inear boundaries, using Unear or discrete methods, 
w i l l create cer ta in levels of inaccuracy. A s imple i l lus t ra­
t i on is shown in F igure 14. The real boundary is shown 
by the (non-l inear) sol id l ine. Avai lab le da ta points are 
shown by O and X. Assuming tha t a categorizat ion 
has been made on bo th the Y and X axis as A1, A2 , A3 
and B1, B2 , B3, the region can be expressed as (A2 and 
(B2 or B 3 ) ) . However, there are areas wh ich do not f i t 
the rectangular area described by this symbol ic represen­
ta t i on . T h e proponents o f the symbol ic approach may 
argue tha t the prob lem can be c i rcumvented by using 
f ine-grained symbol systems. However, there is always 
an area where symbol systems and the real boundary 
do no t f i t . Us ing an in f in i te number o f symbols wou ld 
e l iminate the error — bu t th is wou ld no longer be a 
symbo l system! Therefore, for the non-l inear boundary 
problems, symbol systems are inherent ly incomplete. 

The use of a large number of da ta points and stat is­
t i ca l comput ing methods, however, can bet ter m i t iga te 
the error w i t h s igni f icant ly lower human effort. Th is ob­
servat ion has two ma jo r impl icat ions: F i r s t , i t impl ies 
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Figure 14: Nonlinear boundary of the problems 

that a massively parallel memory-based approach may 
be able to attain a certain level of competence. This wil l 
be discussed in the next section. Second, it has major im­
plications as to how to build very large knowledge-based 
systems. My recommendation is to use redundancy and 
population encoding even when the system is based on 
the traditional AI approach. 

6. Speech-to-Speech Translat ion 

The idea discussed above is also effective in speech-to-
speech translation systems. Speech-to-speech transla­
tion is one of the major topics of the grand challenge AI 
applications, and its success wil l have major social and 
scientific impacts. Speech-to-speech translation systems 
are generally composed of a speech recognition module, 
a translation module, and a speech synthesis module. 
The first group of speech-to-speech translation systems 
appeared in the late 1980s. These include Speech Trans 
[Saito and Tomita, 1988] and Dm-Dialog [Kitano, 1990a] 
developed at Carnegie Mellon University, and SL-Trans 
[Morimoto et al., 1989] developed at the ATR Interpret­
ing Telephony Research Laboratories. These systems 
were immediately followed by a second group of systems, 
which included JANUS [Waibel et al., 1991] at CMU, 
and ASURA [Kikui et al., 1993] at ATR. This section 
discusses limitations with the traditional AI approach 
for natural language processing and how massively par­
allel artificial intelligence can mitigate these problems. 

6 . 1 . T rad i t i ona l V i e w o f N a t u r a l Language 

The traditional approach to natural language processing 
has been to rely on extensive rule application. The ba­
sic direction for the approach is to build up an internal 
representation, such as a parse-tree or case-frame, using 
a set of rules and principles. In essence, it follows the 
traditional approach to artificial intelligence. 

In the early 1970s, there were efforts to develop natural 
language systems for small and closed domains. Woods 
developed LUNAR, which could answer questions about 
moon rocks[Woods et al., 1972]. In the LUNAR sys­
tem, an ATN represented possible sequences of syntac­
tic categories in the form of a transition network[Woods, 
1970]. Winograd developed the famous SHRDLU pro-
gram, which involved simple questions about the blocks 
world [Winograd, 1972]. These efforts heavily involved 

manipulation of the world model and a procedural model 
for sentence analysis. The world models, grammar, and 
inputs were assumed to be complete. These systems are 
typical examples of the traditional AI approach. 

In the mid 70s, Schank proposed Conceptual Depen­
dency theory [Schank, 1975J and the conceptual informa­
tion processing paradigm. His claim was that there are 
sets of primitives (such as ATRANS, PTRANS, and PROPEL) 
which represent individual actions, and that language 
understanding is a heavily semantic-driven process, 
where syntax plays a very limited role. Schank called 
his approach a cognitive simulation. From the late 1970s 
to the early 1980s, there was a burst of ideas regarding 
conceptual information processing, mostly advocated by 
Schank's research group at Yale. These ideas are well 
documented in Inside Computer UnderstandinglSchank, 
1981] and in Dynamic Memory [Schank, 1982]. Although 
the emphasis changed from syntax to semantics, the ba­
sic framework followed the traditional AI approach — 
the systems represented knowledge using primitives and 
used heuristics to derive a CD representation from an in­
put sentence. Again, this requires that the world model 
and the knowledge must be complete and hand-crafted. 

In the mid 80s, the syntactic approach gained renewed 
interest. It was motivated by unification-based gram­
mar formalisms, such as Lexical-Functional Grammar 
(LFG:[Kaplan and Bresnan, 1982], Generalized Phrase 
Structure Grammar (GPSG:[Gazdar et al., 1985]), and 
Head-driven Phrase Structure Grammar (HPSG:[Pol­
lard and Sag, 1987]). Introduction of a powerful in­
formation manipulation operation, such as unification 
and well-formalized theories, resulted in some success 
in developing experimental systems. Once again, how­
ever, these approaches were within the traditional AI 
approach. The frustrating fact is that the major empha­
sis of these theories was to determine whether or not a 
given sentence was grammatical. This is a bit of exag­
gerating, but the point is that modern linguistic theories 
ignore many phenomena important for building natural 
language systems. For example, linguistic theories typ­
ically do not explain how people understand ungram-
matical sentences. Most linguistic theories merely put 
* in front of the ungrammatical sentence. Many l in­
guistically interesting sentences, such as extremely deep 
center-embedded sentences, almost never appear in real­
ity. In addition, these theories do not entail a theory on 
how to disambiguate interpretations, which is a major 
problem in natural language processing. 

Therefore, although there have been progress and 
changes in emphasis, these approaches are all within 
the traditional approach towards artificial intelligence. 
As I have argued in the previous section, systems based 
on the traditional approach inevitably face a number of 
problems. For example, developers of commercial ma­
chine translation consider that the following problems 
are inherent in their approach, which is grounded in tra­
ditional AI and NLP: 

Per formance: Performance of most existing machine 
translation systems is not sufficient for real-time 
tasks such as speech-to-speech translation. It takes 
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a few seconds to a few minutes to translate one sen­
tence. 

Scalab i l i ty : Current machine translation systems are 
difficult to scale up because their processing com­
plexity makes the systems' behavior almost in­
tractable. 

Qua l i t y : Intractability of a system's behavior combined 
with other factors lowers the quality of translations. 

G r a m m a r W r i t i n g : By the same token, grammar 
writing is very difficult since a complex sentence has 
to be described by piecewise rules. It is a hard and 
time consuming task, partly due to the intractabil­
ity of the system's behavior, when these rules are 
added into the whole system. 

Notice that the capability to cope wi th ungrammati-
cal sentences is not even listed, because such a feature is 
not listed in the init ial specification of the system. Ob­
viously, I do not intend to claim that massively parallel 
artificial intelligence wil l immediately open an avenue 
for high performance and robust natural language sys­
tems. The accomplishment of such specifications seems 
to be far in the future. However, I do argue that reliance 
on models which assume complete knowledge wil l never 
accomplish the goal! 

6.2. Memory -Based M o d e l o f N a t u r a l 
Language 

The alternative to the traditional approach to natural 
language processing is a memory-based model. The 
memory-based approach to intelligence has been ex­
plicitly discussed since the early 80s. In 1981, Na-
gao proposed a model of translation based on anal­
ogy at a NATO conference (later published in [Nagao, 
1984]). This model is the precursor for recent research 
on memory-based and example-based models of trans­
lation. Nagao argued that humans translate sentences, 
by using similar past examples of translation. In 1985, 
Stanfill and Waltz proposed a memory-based reasoning 
paradigm[Stanfill and Waltz, 1988, Stanfill and Waltz, 
1986]. The basic idea of memory-based reasoning places 
memory at the foundation of intelligence. It assumes 
that large numbers of specific events are stored in mem­
ory, and response to new events is handled by first recall­
ing past events which are similar to the new input, and 
invoking actions associated wi th these retrieved events 
to handle the new input. In the same year, Riesbech 
and Mart in proposed the direct memory access parsing 
model[Rie8beck and Mart in, 1986], They argued that 
the Build-and-Store approach toward parsing is incor­
rect, and proposed the Recognize-and-Record approach. 
The main thrust of the DMAP was to view language un­
derstanding as retrieval of episodic memory. DMAP can 
be viewed as an application of case-based reasoning to 
parsing. 

Despite certain differences among these models, the 
common thread is to view memory as the foundation 
of intelligence. This idea runs counter to most AI ap-
proaches which place rules or heuristics as the central 
thrust of reasoning. At the same time, differences be­

tween models later became very important. For example, 
DMAP, in essence, uses complex indexing and heuristics 
which follows the tradition of A I . Thus, the weaknesses 
of traditional AI were also exposed when scaling up the 
DMAP system. 

Massively parallel memory-based natural language 
processing directly inherits these ideas. For example, 
in the memory-based parsing model, parsing is viewed 
as a memory-search process which locates the past oc­
currence of similar sentences. The interpretation is built 
by activating past occurrences. Rationales for memory-
based natural language processing include: 

V e r y Large F in i t e Space: The Very Large Finite 
Space (VLFS) concept is critical to the memory-
based approach. The most frequently raised concern 
with memory-based approaches to natural language 
processing is how these models account for the pro­
ductivity of language — the ability to generate an 
infinite set of sentences from a finite grammar. Op­
ponents to the memory-based approach would claim 
that due to the productivity of language, this ap­
proach cannot cover the space of all possible sen­
tences. However, the productivity of language is 
incorrect. The productivity of language ignores re­
source boundedness. It should be noted that only 
a finite number of sentences can be produced when 
the following conditions stand: 

C o n d i t i o n 1: Finite Vocabulary 
Cond i t i on 2: Finite Grammar Rules 
C o n d i t i o n 3: Finite Sentence Length 

Conditions 1 and 2 stand, since people only have f i ­
nite vocabulary and grammar at a given time. Ob­
viously, Condition 3 stands, as there is no infinite 
length sentence. For example, the longest sentence 
in one recent CNN Prime News report was 48 words 
long. 99.7% of sentences were within 25 words of 
length. Logically, natural language is a set of sen­
tences within a very large finite space (VLFS). 

S im i l a r i t y : In memory-based natural language process­
ing, input sentences are matched against all relevant 
data to find similar sentences in the data-base. The 
assumption is that similar problems have a simi­
lar solution. In fact, a series of experimental data 
on example-based machine translation indicate rea­
sonable accuracy can be maintained for a relatively 
broad space. Figure 15 illustrates the relation­
ship between accuracy and normalized distance in 
EBMT. (This figure is reproduced based on [Sumita 
and Iida, 1992].) Therefore, a memory-based ap­
proach may be able to cover a real solution space 
wi th implementable numbers of examples. 

Co l lec t ive Decis ion: The memory-based approach 
can take advantage of the redundancy of informa­
tion implicit in a large data resource. An advantages 
of this collective decision making is the increased ro­
bustness against the inaccuracy of individual data. 
As has been argued previously, the central l imit the-
orem and the law of large numbers ensure the ro-
bustness of the system. 
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Figure 15: Normal ized Distance and Accuracy 

Figure 16: Solut ion Spaces 

R e a l Space C o v e r i n g : Assuming tha t there is a set 
of g rammar rules wh ich covers a certa in por t ion of 
na tu ra l language sentences, the grammar not only 
covers sentences wh ich actual ly appear in the real 
wo r ld , bu t i t also covers sentences wh ich are gram­
mat i ca l , bu t also never produced in real i ty. An em­
p i r ica l s tudy revealed tha t only 0.53% of possible 
sentences considered to be grammat ica l are actual ly 
produced. F igure 16 shows how solut ion spaces 
overlap. The memory-based approach never over-
generates because the memory contains only exam­
ples of actual sentences used in the past. 

In add i t ion to these rat ionales, i t should be noted tha t 
the memory-based approach keeps examples, whereas 
neural networks and stat is t ica l approaches do not . Th is 
difference is i m p o r t a n t because the memory-based ap­
proach w i l l be able to capture singular events and higher 
order nonl inear i t ies, whi le neural networks and s ta t is t i ­
cal approaches often fa i l to capture these. For neural 
networks and s tat is t ica l methods, the ab i l i ty to capture 
singular and nonl inear curvature is determined by their 
network s t ruc ture or the model . In memory-based rea­
soning, there are chances tha t dense lower order inter­
po la t ion may approx imate higher order nonl inear curva­
ture . 

6 . 3 . S y s t e m s 

Since 1988, I have been bu i ld ing several massively par­
al lel na tu ra l language systems. DMDlALOG, o r D M -
DlALOG for short , is a representative system resul t ing 
f r o m the early work . DMDlALOG is a speech-to-speech 
dia log t rans la t ion system between Japanese and Engl ish 

which accepts speaker-independent, continuous speech. 
It has been publ ic ly demonstrated since March 1989. 
The f irst version of  D M D I A L O G had a vocabulary of 
only 70 words. It was extended to 300 words in the sec­
ond version. Ma jo r characteristics of DMDlALOG are: 

M a s s i v e l y P a r a l l e l C o m p u t i n g M o d e l : Knowledge 
representation and algori thms are designed to ex­
p lo i t the max imum level of parallel ism. 

M e m o r y - B a s e d A p p r o a c h : The knowledge-base 
consists of a large collection of t ranslat ion exam­
ples and templates. Parsing is viewed as a recall of 
past sentences in the memory network. 

P a r a l l e l C o n s t r a i n t M a r k e r - P a s s i n g : The 
basic computat ional mechanism is marker-passing 
in wh ich markers carry various informat ion among 
nodes in the memory network [Charniak, 1983, 
Charn iak, 1986]. This is a useful mechanism which 
has been studied in various applications [Hendler, 
1989a, Hendler, 1989b, Hendler, 1988, Hi rs t , 1986, 
Norv ig , 1989]. Markers are not b i t markers, but are 
s t ructured markers which carry data structures. In 
add i t ion, propagat ion paths for each type of marker 
are restr icted by the types and orders of l inks to be 
traversed. 

I n t e g r a t i o n o f Speech a n d N L P : The architecture 
enables interact ion between speech processing and 
na tu ra l language processing. The bo t t om up pro­
cess provides the l ikel ihood that a certain inter­
pre ta t ion could be correct. The top-down process­
ing imposes constraints and a priori probabi l i ty of 
phoneme and word hypotheses. 

The f irst version of  D M D I A L O G was strongly inf lu­
enced by the idea of D M A P , bu t substantial extensions 
has been made. It was a memory-based approach to nat­
ural language processing since the parsing process is to 
recall past sentences in the memory network. However, 
the focus of the system was on accomplishing speech-
to-speech translat ion. Thus, the system design has been 
rather conservative by today's standards in the memory-
based t ranslat ion community. In fact,  D M D I A L O G 
used a complicated indexing mechanism for the memory 
network, and markers carried feature structures when 
markers were propagating to a part of the network used 
for abstract memory. It used three abstraction levels — 
specific cases, generalized cases, and uni f icat ion gram­
mar (Figure 17). Therefore,  D M D I A L O G can be con­
sidered as a mix tu re of the t radi t ional approach and a 
memory-based approach. 

Despite the fact tha t the system was not a fu l l imple­
menta t ion of memory-based natural language processing 
paradigm,  D M D I A L O G demonstrated various interest­
ing and promising characteristics such as a h igh level of 
paral lel ism, simultaneous interpretat ion capabil i ty, and 
robustness against inconsistent knowledge. One of the 
salient features of the model is the integrat ion of speech 
processing and l inguist ic processing. In  D M D I A L O G , 
act ivat ion of the network starts bo t tom up tr iggered by 
external inputs. The act ivat ion propagates upward in 
the network to the word, sentence, and discourse levels. 
At each level, predictions have been made which are rep-
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Figure 17: Translation Paths 

Figure 18: Bottom-Up Activation and Top-Down Pre-
diction 

resented by downward propagation of prediction markers 
wi th a priori probability measures. There are multiple 
levels of loops in the system (Figure 18). 

However, the performance of the system on a serial 
machine was far from satisfactory. The parallelism was 
simulated on software in the first version. In addition, 
increasing emphasis on robustness against ill-formed in­
puts and the inconsistency of the knowledge-base fur­
ther degraded the total performance. Fortunately, the 
high level of parallelism in DMDlALOG enabled re-
implementing the system on various massively parallel 
computers. 

Massively parallel implementations of versions of 
DMDlALOG started in the fall of 1989. Two different 
approaches have been examined. One approach was to 
emphasize the DMAP approach using complex indexing. 
D M S N A P was implemented on the Semantic Network 
Array Processor (SNAP) to examine this approach. One 
other approach was to focus on memory-based parsing 
using simpler indexing and a large number of examples. 
A S T R A L was implemented on IXM-2 based on this ap­
proach. 

Implementations of $ D M D I A L 0 G on SNAP began in 
October 1989 when I started a joint research project wi th 
Dan Moldovan's group at the University of Southern Cal­
ifornia. At that time, Moldovan's group had been de­
signing SNAP-1. I worked together wi th Moldovan's to 
implement D M S N A P , a SNAP version of  D M D I A L O G . 
The first version was completed by the end of 1990. 
D M S N A P emphasized complex indexing and dynamic 

memory network modification to create discourse enti­
ties. This follows an approach taken in the case-based 
reasoning community [Hammond, 1986, Kolodner, 1984, 
Riesbeck and Schank, 1989]. In a sense, D M S N A P is 
much closer to the original D M A P idea, rather than to 
the memory-based reasoning approach. 

An independent research program to implement a ver­
sion of $ D M D I A L 0 G on the IXM2 massively parallel as­
sociative memory processor began in March 1990 with 
Tetsuya Higuchi at ElectroTechnical Laboratory (ETL). 
IXM2 is an associative memory processor designed and 
developed by Higuchi and his colleagues at ETL. It is 
a faithful hardware implementation of NETL [Fahlman, 
1979], but using associative memory chips. A S T R A L , 
the IXM2 version of DMDlALOG was completed in 
the summer of 1990. In A S T R A L , complex indexing 
was eliminated, and a large set of sentence templates 
were used as a central source of knowledge[Kitano and 
Higuchi, 1991b]. 

These differences in emphasis have been employed 
to make maximum use of architectural strengths for 
each kind of massively parallel computer. Comparisons 
between different implementations of  D M D I A L O G re-
vealed contributing factors and bottlenecks for robust 
speech-to-speech translation systems. D M S N A P faced 
a scaling problem due to reliance on complex indexing, 
and a performance bottleneck due to node instantiation 
which inevitably involves an array controller — a serial 
process. In addition, it is difficult to maintain multiple 
contexts before an interpretation is uniquely determined. 
On the other hand, A S T R A L exhibited desirable scal­
ing properties and single millisecond order parsing per­
formance. The D M S N A P project has been re-directed 
to place more emphasis on the memory-based approach 
without complex indexing and node instantiation. 

While I have been working on massively parallel imple­
mentations and performance aspects of memory-based 
approach to natural language, a series of reports has 
been made on the quality of the translation attained by 
memory-based models. Sato-san developed MBT-l[Sato, 
1992] for word selection in Japanese-English translation, 
and attained an accuracy of 85.9%. He extended the 
idea to the transfer phase of translation in his MBT-
II [Sato and Nagao, 1990]. A group at the ATR In­
terpreting Telephony Research Laboratory developed 
Example-Based Machine Translation (EBMT:[Sumita 
and Iida, 1991]) and Transfer-Driven Machine Transla­
tion (TDMT:[Furuse and Iida, 1992]). EBMT translates 
Japanese phrase of type ' 'A no B" with an accuracy 
of 89%. T D M T applied the memory-based translation 
model to translate whole sentence, and attained an accu­
racy of 88.9%. Since the architecture of T D M T is almost 
identical to the baseline architecture of DMDlALOG, 
the high translation accuracy of T D M T and the high per­
formance of massively parallel versions of $ D M D I A L 0 G 
indicates a promising future for the approach. 

Since 1992, a new joint research project has begun 
to implement EBMT and T D M T on various massively 
parallel computers. EBMT was already implemented on 
the IXM2, CM-2, and SNAP-1 machines [Sumita et al., 
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Figure 19: Asymptotic Convergence 

1993]. Ear ly results shows t ha t the E B M T approach f i ts 
wel l w i t h massively paral le l computers and scales wel l . 
Imp lemen ta t i on o f T D M T is i n progress. Independent ly, 
Sato has implemented M B T - I I I [Sato, 1993] on CM-5 
and n C U B E machines. 

6 . 4 . L i m i t a t i o n s a n d S o l u t i o n s 

A l t h o u g h I st rongly believe tha t the memory-based ap-
proach w i l l be a power fu l approach in many appl icat ion 
domains, there are l im i ta t ions to this approach. 

F i rs t , there is the problem of da ta col lect ion. Here, 
Z i p f s law which was a s t rong suppor t ing rat ionale plays 
a ki l ler role. A l t h o u g h most problems can be defined 
as hav ing V L F S as their so lut ion space, it is economi­
cal ly and pract ica l ly infeasible to collect a l l solut ions in a 
memory-base. Thus , a cer ta in par t of the solut ion space 
must be left out . I f solut ions, wh ich are not covered, can 
be der ived f rom simi lar examples in the memory-base, 
the ent i re so lut ion space can be covered. However, i t 
is most l ikely t ha t rare examples are t r u l y irregular so 
tha t any s imi lar examples cannot derive correct solut ion. 
For th is type of problems, the only so lut ion at this mo­
ment is to keep adding rare events to the memory-base. 
I t should be noted, however, t ha t th is problem is not 
unique to a memory-based approach. In rule-based sys­
tems, rules which are specific to rare events must keep 
being added to a rule-base. 

Second, the memory-based approach is not free f rom 
the human bias prob lem. Just l ike the t rad i t iona l 
A I approach, the representations o f example and mod­
el ing are created by a system designer. For exam­
ple, current memory-based t rans la t ion systems use a 
hand-craf ted thesaurus to determine a distance between 
words. A series of exper iments indicated tha t inaccu­
racy of thesaurus-based distance calculat ions is the ma­
j o r source of t rans la t ion errors. Methods to refine do­
m a i n theories need to be incorporated [Shavlik and Tow-
el l , 1989, Towel l et a l . , 1990]. I f inappropr ia te represen­
ta t i on and model ing have been adopted, the system w i l l 
exh ib i t poor performance. Even i f an appropr iate rep-
resentat ion and model ing is used, i t is implausib le tha t 
the representat ion and model wou ld be complete so tha t 
100% accuracy could be a t ta ined. Some bias in rep-
resentat ion and model ing wou ld be inevi table. W h e n 
there is some bias, in F igure 19 w i l l not be zero. Th is 

means tha t even i f the memory-base contains data to 
cover the entire solut ion space, certain errors (є) s t i l l re­
ma in . A hyb r id approach has been proposed and tested 
in [Zhang et al. , 1992] to overcome the problem of b i ­
ased in ternal representations. Their experiment shows 
cer ta in improvements can be gained by using mul t ip le 
strategies. 

T h i r d , pure memory-based approach models fo rm only 
a par t of the cognit ive process. A l though the memory-
based process may plays an impor tan t roles in intel l igent 
act iv i t ies, use of rules in the human cognit ive process 
cannot be ignored. I believe that there is a place for 
rules. However, it is l ikely to be a very different role 
f rom what has been proposed in the past. A rule should 
be created as the result of autonomous generalization 
over a large set of examples - it is not given a pr ior i . 
Resource bounds are the major reason for using rules in 
this context . There must be a cost for Btoring in mem­
ory. Thus, a trade-off exists between memory and rules. 
Pinker [Pinker, 1991] made an interesting observation 
on the relat ionship between memory and rules for En­
glish verbs. In Engl ish, the 13 most frequent verbs are 
irregular verbs: be, have, do, say, make, go, take, come, 
see, get, know, give, find. Most other verbs are regu­
lar. Low frequency irregular verbs are reshaped, and 
become regular over the centuries. Pinker proposed the 
rule-associative-memory theory, which considers that ir­
regular verbs are stored in the memory and tha t regular 
verbs are handled by rules. In this model, generalization 
takes place over a set of regular verbs. 

F ina l ly , f rom the engineering v iewpoint , expl ici t rules 
given a priori work as a moni tor . For example, hu­
man translators use rules which define how specific terms 
should be translated. Even for human experts, such 
rules are given in an expl ic i t fo rm. A memory-based 
model should be able to incorporate such reality. Thus, 
I recently proposed a model of memory-based machine 
t ranslat ion which combines a memory-based approach 
and a rule-based approach in a novel fashion [Ki tano, 
1993]. 

7. Grand Breakthrough 

Massively parallel art i f ic ial intelligence can be an ideal 
p la t fo rm for the scientific and engineering research 
for next generation comput ing systems and models of 
thought . A l though discussions have been focused on 
the memory-based approach, even this approach in ­
volves several trai ls in t rad i t iona l A I , which are po­
tent ia l ly undesirable as a model of thought. Massively 
paral lel memory-based reasoning and massively paral lel 
V L K B search use expl ic i t symbols and do not involve 
strong learning and adaptat ion mechanisms by them­
selves. Thus, they are inherent ly biased by the features 
and representation schemes defined by the system de-
signer. A l though the problems of representation, domain 
knowledge, and knowledge-base bui ld ing can be greatly 
mi t iga ted by memory-based paradigm, they are not to­
ta l ly free f rom the problem. Therefore, whi le there are 
many places where the present fo rm of massively para l ­
lel AI can be useful, we must go beyond this for a next 
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generation paradigm to come into play. At least, it wi l l 
be a significant scientific challenge. I argue that mas­
sively parallel artificial intelligence itself wi l l provide an 
ideal experimental basis for the genesis of new genera­
tion technologies. In this section, therefore, I focus on 
scientific aspects, rather than engineering. I believe that 
the following properties wil l characterizes the realistic 
theory for intelligence: 

Emergence: Intelligence is an emergent property. It 
emerges from as a result of interactions between sub­
components. Emergence can take place in various 
levels such as emergence of intelligence, emergence 
of structure, and emergence of rules for structure 
development. In this section, the term emergence is 
used to indicate emergence of intelligence. 

E v o l u t i o n : Intelligence is one of the by-products of evo­
lution. Intelligence is the memory of matters since 
the birth of this universe. Thus, a true theory of in­
telligence must be justified from an evolutional con­
text. 

Symbiosis: Intelligence emerges as a result of symbiotic 
computing. The essence of intelligence is diversity 
and heterogeneity. Symbiosis of diverse and hetero-
geneous components is the key to the intelligence. 

D ive rs i t y : Diversity is the essence of intelligence. No 
meaningful artifacts can be created without sub­
stantial diversity, the reality of our brain, body, 
and the eco-system demonstrates the significance of 
the diversity. 

M o t i v a t i o n : Intelligence is driven by motivation. Ob­
viously, learning is a key factor in intelligence. For 
learning theories to be legitimate from evolutional 
and psychological contexts, they must involve the-
ories on the motivation for learning. Essentially, 
learning and other intelligent behavior are driven to 
the direction which maximizes survivability of the 
gene. 

Physics: Intelligence is governed by physics. Ul t i ­
mately, intelligent system must be grounded on 
physics. Nano-technology and device technology 
provide direct grounding, and digital physics may 
be able to ground the intelligence on hypothetical 
physics. 

7 .1 . Emergence 

Intelligence is an emergent property. For example, nat­
ural language emerged from ethological and biological 
interaction under a given environment. Our linguistic 
capability is an emergent property based on our brain 
structure, and evolved under selectional pressure where 
individuals with better communication capacity survived 
better. 

Brooks proposed the subsumption architecture as an 
alternative to a Sense-Model-Plan-Action (SMPA) archi­
tecture [Brooks, 1986]. The subsumption architecture 
is a layered architecture in which each layer is defined 
in a behavior-based manner. The network consists of 
simple Augmented Finite State Machines (AFSM), and 

has no central control mechanism. A series of mobile 
robots based on the subsumption architecture demon­
strated that a certain level of behaviors which would 
appear to be intelligence can emerge. 

Currently, the structure of the system is given a priori 
in the subsumption architecture. Human bias and the 
problems of the physical symbol systems take place again 
because definitions for the units of behavior and internal 
circuitry for each layer must be defined by a designer. In 
addition, manual designing of the system which contains 
large numbers of layers for higher levels of intelligence is 
be extremely difficult. 

The research front now has to go into the next level 
of emergence — the emergence of structure. Structure 
could emerge using the principles of self-organization and 
evolution [Jantsch, 1980, Nicolis and Prigogine, 1977]. 
Self-organization is a vague notion which can be in­
terpreted in many ways. However, since the a priori 
definition for a structure is infeasible, self-organization 
of a system's structure through dynamic interaction 
with an environment needs to take place. DARWIN-
m developed by Edelman's group [Edelman, 1987, 
Edelman, 1989] shows some interesting properties for a 
self-organizing network without explicit teaching signals. 
However, DARWIN- I I I is limited to synaptic weight 
modifications, and has no structure emergence property. 

Independently, recent studies by Hasida and his col­
leagues propose the emergence of information flow as 
a result of dynamic interaction between the environ­
ment and constraints imposed orthogonally [Hasida et 
al., 1993]. Although this work is stil l at a preliminary 
stage, it has an interesting idea that the system has no 
defined functional unit. Functionality emerges through 
dynamic interaction with the environment. 

The concept of a Holonic computer was proposed by 
Shimizu [Shimizu, et al., 1988]. A holonic computer 
consists of devices which have non-linear oscillation ca­
pability (van del Pol oscillator), which are claimed to 
be self-organizing. Shimizu emphasizes an importance 
of Holonic Loop, which is a dynamic interaction of ele­
ments and top-down constraints emerged from bottom 
up interactions. Figure 20 is a conceptual image of 
next generation emergent computers (Needs for the l im­
bic system and the endogenous system wil l be discussed 
later). 

Although these models have not captured the emer­
gence of structure by themselves, combining these ideas 
with evolutional computing may enable the emergence 
of structures and the emergence of structure generating 
mechanisms. 

7.2. E v o l u t i o n 

Intelligence is a by-product of evolution. Species with 
various forms of intelligence find their niches for survival. 
Different species could have different forms of intelligence 
as they have been evolved under different environment, 
and hence different selectional pressures. If the environ­
ment for human beings had been different from what has 
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Figure 20: An Arch i tec ture for Next Generat ion Com­
puters? 

Figure 21 : Development using L-system 

are known to have the same or ig in, and to have differ­
ent iated in the course of evolut ion. Projections f rom the 
l imbic system, which is an old part of the brain, con­
trols awake/sleep rhythms and other basic moods of the 
bra in . These systems play a central role in bui ld ing a 
mot i va t ion for the system. 

7 .3 . S y m b i o s i s 

been imposed as the selectional pressure for mank ind , 
the f o rm of h u m a n intel l igence could have been very dif­
ferent. Dolph ins, for example, are considered to have 
a comparable numbers of neurons, however, human be­
ings and dolphins have evolved to have different kinds of 
brains. Physiological differences of the bra in inev i tably 
affects the fo rm of intel l igence. 

T h e s t ruc ture of our b ra in is also affected by our evo­
lu t iona l pa th . Obviously, b ra in is not a tabula rasa, not 
only a global s t ruc ture such as the existence of a bra in 
stem, neo-cortex, and other b ra in components, bu t also 
w i t h numbers of local c i rcui ts wh i ch are genetically de­
fined such as the hyperco lumn, Papez c i rcui ts, and h ip-
pocampal loops. Invest igat ion of these exist ing struc­
tures of b ra in and how the b ra in has evolved may provide 
substant ia l insights. 

Creat ing s t ruc tu ra l systems using evolut ional comput­
ing , such as genetic a lgor i thms, generally requires use 
of a developmental phase. W h i l e the biological the­
ory for development has not been established, there 
are some useful mathemat ica l tools to describe develop­
ment — the Lyndenmayer system [Lindenmayer, 1968, 
L indenmayer , 1971] and the Cel lu lar au tomaton . For ex­
ample, the L-system can be augmented to handle graph 
rewr i t i ng so tha t a wide range of development processes 
can be described (Figure 21). W i l son proposed using the 
L-system in the context of ar t i f ic ia l l i fe [Wi lson, 1987], 
However, I believe I was the f i rst to actual ly implement 
and exper iment w i t h th is evo lu t ion o f development [ K i -
tano, 1990b]. Since the L-system is a descript ive model , 
and not a mode l wh ich describes mechanisms for de­
velopment, new and more biological ly grounded models 
should be in t roduced. Nevertheless, the encouraging re-
sults achieved in a series of exper iments [K i tano, 1990b, 
K i t a n o , 1992a, G ruau , 1992] demonstrate tha t the evo­
l u t i on of development is an i m p o r t a n t issue. 

In add i t i on , the evo lu t iona l perspective leads us to i n ­
vestigate the mechanism of immune systems [Tonegawa, 
1983], project ions f r om the l imb ic system, and the en­
dogenous system [McGaugh, 1989]. The central ner­
vous system, immune system, and endogenous system 

Symbiot ic comput ing is an idea whereby we view an in ­
tel l igent system as a symbiosis between various different 
kinds of subcomponents, each of which is differentiated 
th rough evolut ion. Symbiosis has three major types: 
host-parasite, fusion, and network. The idea of symbio­
sis i tsel f is or iginated in the field of biology. One of the 
strong proponents of symbiosis is L y n n Margul is. Mar-
gulis considered symbiosis as an essential pr inciple for 
the creation of eukaryotic cells. She claims 

some parts of eukaryotic cells resulted direct ly 
f rom the format ion of permanent associations 
between organisms of different species, the evo­
lu t ion of symbiosis [Margul is, 1981]. 

Wh i le the serial endosymbiosis theory (SET) [Taylor, 
1974] is a symbiosis theory for eukaryotic cells, which 
is a fusion, there are symbioses at various levels. 

I c la im that symbiosis is one of the central principles 
for models of thought and life. Part icular ly, symbiosis 
is the key for evolut ion of intelligence. A l though genetic 
algori thms and other genetically-inspired models provide 
powerful adaptat ion capabil i t ies, i t would be extremely 
di f f icul t and t ime-consuming to create highly complex 
structures from scratch. It may be diff icult for genetic 
algor i thms alone to create complex structures w i th h igh 
mul t imoda l i ty . Symbiosis can take place at various level 
f rom cells to global mult i -agent systems. At the neural 
level, neural symbiosis may be a useful idea to consider. 

In The Society of Mind, Ma rv i n Minsky postulates i n ­
tell igence to emerge from the society of large numbers 
of agents [Minsky, 1986]. The society of m ind idea is 
one instance of symbiosis. It is a weak form of sym­
biosis, which can be categorized as a network, because 
ind iv idua l agents retain their independency. Symbiot ic 
comput ing offers a more dynamic picture. In symbi ­
ot ic comput ing, subcomponents can be merged to fo rm 
a t igh t symbiosis or loosely coupled to form a weak sym­
biosis. A component can be differentiated to form sev­
eral kinds of components, but could be merged again 
later. In the l ight of symbiot ic comput ing, the society of 
minds and the subsumption architecture are instances, 
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or snapshots, of symbio t ic comput ing . 

7 .4 . D i v e r s i t y 

D ivers i ty is an essential factor for intel l igence. For exam­
ple, in order for the symbiosis to be effective, or even for 
symbiosis to take place, components involved in symbio­
sis must have different funct ions. Thus , the assumpt ion 
of symbiosis is diversity. Evo lu t i on of ten drives species 
in to niches so tha t d i f ferent ia t ion between species takes 
place. 

Intel l igence is a mani festat ion of a h igh ly complex and 
dynamic system whose components ma in ta in a h igh level 
of diversi ty. I t is analogous to b ig art i facts such as big 
bui ld ings and bridges. In physics, par t ic le physicists t r y 
to discover the uni f ied theory. Numbers of theories such 
as the superstr ing theory and the supersymmetry theor 
have been proposed. A l t h o u g h these theories comes very 
close to the uni f ied theory, or even i f one of t hem is the 
uni f ied theory, they never expla in how a bu i ld ing can be 
built. 

Bui ld ings are bu i l t using various dif ferent components 
in terre lated to each other j us t l ike symbiosis. I t is impos­
sible to bu i l d any meaningfu l archi tecture using a single 
type of component. Theories wh ich c la im tha t one par­
t icular mechanism can create intel l igence fa l l i n to th is 
fallacy. Thus , i t is wrong to c la im tha t rules alone can 
be the mechanism beh ind intel l igence. I t is wrong to 
c la im that memory alone can be the mechanism behind 
intel l igence. 

M a n y models of neural networks make the same mis­
take. Most of models are too s impl i f ied as they usually 
assume a single neuron type. The real bra in consists 
of numbers of di f ferent types of neurons interconnected 
in a specific and perhaps genetical ly specified manner. 
In add i t ion , most neural networks assumes electric i m ­
pulses to be the sole source of in ter-neuron communica­
t ion . Recent biological studies revealed tha t hormonal 
effects also affect the state of neurons. 

Even if mechanisms at microscopic levels can be de­
scribed by relat ively smal l numbers of pr inciples, i t is 
analogous to a theory of par t ic le physics. In order for 
us to fo rmula te the model of thought , we must f ind how 
these components create diverse substructures and how 
they in teract . 

7 .5 . M o t i v a t i o n — G e n e t i c S u p e r v i s i o n 

No learning takes place w i t hou t mo t i va t i on . Th is is the 
factor wh ich is cr i t ica l ly lack ing in much current A I re­
search. The te rm motivation is used as a drive for learn­
ing. A l t h o u g h , bo th conscious and subconscious drives 
are i m p o r t a n t , the fo l lowing discussion focuses on a sub­
conscious dr ive. 

One example wou ld i l lus t ra te the po in t o f my discus­
sion. In fants learn to avoid dangerous th ings w i t hou t any 
teaching signal f r om the env i ronment . W h e n an in fant 
touches a very hot object , the in fan t ref lexively removes 

i ts hand and screams. A f te r several such experiences, 
the in fant wou ld learns to avoid the hot object . The 
quest ion is why th is in fant learns to avoid hot objects 
rather t han learning to prefer t hem. There must be some 
innate dr ive, wh ich guides learning in a par t icu lar direc­
t i on . Learn ing is genetical ly supervised. We learn to 
avoid dangerous th ings because ind iv iduals whose learn­
ing is d r iven to t ha t d i rec t ion have surv ived bet ter t han 
a group of ind iv iduals whose learning is d r iven to pre­
fer dangerous th ings. Therefore, learning is genetically 
supervised in a par t icu lar d i rect ion wh ich improves the 
reproduct ion rate. In add i t ion , studies on ch i ld language 
acquis i t ion seems to suppor t the existence of an innate 
mechanism for selective learning. No t j us t d i rect ion and 
focus, bu t also the learning mechanisms are determined 
genetically. 

Some species of b i rd demonstrate a fo rm of learning 
called imprinting. For these bi rds, the first mov ing ob­
jec t wh ich they see after hatch ing w i l l be imp r i n ted on 
their b ra in as being their mother . I m p r i n t i n g is an i n ­
nate learning wh ich allows birds to qu ick ly recognize 
their mother , so tha t they can be fed and protected wel l . 
Wh i l e there are cer ta in risks tha t an ind i v idua l m igh t 
i m p r i n t something di f ferent, evo lut ional choice has been 
made to use the par t icu lar mechanism under the given 
env i ronment . 

How knowledge should be organized and represented 
largely depends upon the purpose of learning. I f the 
learning is to avoid dangerous th ings, features of ob­
jects such as temperature, speed, distance, and other 
factors could be impo r tan t . In add i t ion , reasoning mech­
anisms to prov ide quick real- t ime response w i l l be used 
rather t han accurate bu t slow mechanisms. The sub-
sumpt ion archi tecture captured a mechanism which is 
largely p r im i t i ve bu t i m p o r t a n t for surv iva l . Thus, these 
mechanisms must be composed of re lat ively simple cir­
cu i t ry and provide real - t ime and autonomous reactions 
w i t hou t centra l cont ro l . 

The idea of reinforcement learning [Watk inє, 1989] 
provides a more realist ic f ramework of learning t han 
most t rad i t i ona l models of learning wh ich assume ex­
p l ic i t teaching signals. Reinforcement learning assumes 
tha t the act ion modu le received a scalar value feedback 
called reward, according to their act ion under a cer ta in 
env i ronment . I feel this is closer to real i ty. The short­
coming of reinforcement learning is tha t the evaluat ion 
func t ion to prov ide the reward signal to the act ion mod ­
ule, is given a priori. Ackely and L i t t m a n proposed 
Evo lu t i ona l Reinforcement Learn ing (ERL: [Ack ley and 
L i t t m a n , 1992]) to remedy th is prob lem. In E R L , the 
evaluat ion func t ion co-evolves w i t h the act ion module 
so tha t the ind i v idua l w i t h a better evaluat ion func t ion 
learns more effectively. Independent ly , Ede lman uses the 
value system to dr ive learning of D A R W I N - I I I to a de­
sired d i rect ion. I cal l th is class of models Genetic Su-
pervision. A general archi tecture for genetic supervision 
should look l ike F igure 22. 

For genetic supervision to be grounded in the bio logi­
cal and evolut ional context , several new factors must be 
considered such as the influence of hormones over mem-
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Figure 22: Learning and Evolution 

ory modulation [McGaugh, 1989] and A6 and A10 neural 
systems. These systems have an older origin than neo­
cortex, and control deep emotional and motivational as­
pects of our behavior. Due to the fact these systems were 
established at an early stage of evolution, their signal 
processing-transmission capabilities are limited. Gener­
ally, signals from these systems act as an analog global 
modulator. Nevertheless, I believe that these factors 
play critically important roles in the next generation of 
intelligence theories. 

7.6. Physics 

Since intelligence is a result of evolution and emergence, 
it is governed by physics. As long as models of intel­
ligence deal wi th stationary models, the significance of 
physics does not come into play. However, once the re­
search is directed to more basic properties such as emer­
gence, development, and evolution, physics cannot be 
ignored. For example, morphogenesis involves cell move­
ments and cell divisions which are largely influenced by 
physics. Morphogenesis is not necessary, or it can be 
significantly simplified, if there is no physics involved. 
However, at the same time, theories without physics in­
evitably assume a priori external constraints. Basic con­
figurations of gene and reproduction mechanisms could 
have been different if a different physics has been applied. 
Recent discoveries from the U.S. Space Shuttle missions, 
particularly by Japanese experiments in Endeavor, un­
covered the importance of gravitational influence in cell 
division and the gene repair. The semantics of the world 
could have been very different if a spontaneous break­
down of symmetry took place in a very different way. 
This argument largely assumes artificial life research to 
be the basis for artificial intelligence. I agree with Belew 

that artificial life is "a constructive lower bound for ar­
tificial intelligence" [Belew, 1991]. Brooks made a good 
argument for the embodiment of robots in the real world 
at a macroscopic level. The argument in this section is at 
a more microscopic level. My argument is that physics 
wil l be necessary to make emergence, development, and 
evolution to take place. It should be noted that this is 
one extreme, and much AI research wil l be carried out 
without physics. But, as research delves into basic mech­
anisms, physics wil l have to be considered. There are two 
promising directions, both approaches whcih should be 
pursued for physical grounding of AI and Alife — Nano-
technology and digital physics. 

Nano-technology can be a driving force grounding AI 
and ALife research to actual physics. The same physics 
which has been applied to ourselves for billions of years 
can be applied to A I . This approach wil l result in enor­
mous impact to society because the very definition of 
natural life and intelligence wil l be contested in the light 
of the state-of-the-art technologies. 

To the contrary, digital physics wil l be able to create 
a new physics. Massively parallel machines in the near 
future may be able to produce physics in themselves. 
This was one of the motivations for building the con­
nection machine [Hillis, 1985]. Just as Langton termed 
Artif icial Life life-as-it-could-be [Langton, 1989], digital 
physics may allow us to pursue the universe-as-it-could-
be. 

8. Conclusion 

The arguments developed in this paper can be expressed 
in a single statement: Massively parallel artificial intel-
ligence is where AI meets the real world. The phrase AI 
meets the real world has been used in various contexts, 
such as Robotics is where AI meets the real world. Nev­
ertheless, the phrase has its own significance and that is 
why it has been repeatedly used. 

Artif icial intelligence is the field of studying models of 
intelligence and engineering methods for building intelli­
gent systems. The model of intelligence must face the bi­
ological reality of the brain, and intelligent systems must 
be deployed in the real world. The real world is where we 
live, and embodies vastness, complexity, noise, and other 
factors which are not easy to overcome. In order for the 
AI to succeed, powerful tools to tackle complexity and 
vastness of the real world phenomena must be prepared. 
In physics, there are powerful tools such as mathematics, 
particle accelerators, the hubble telescope, and other ex­
perimental and conceptual devices. Biology made a leap 
when DNA sequencing and gene recombination methods 
were discovered. 

Artif icial intelligence, however, has been constrained 
by available computing resources for the last thirty 
years. The conceptual devices have been influenced by 
hardware architectures to date. This is represented by 
the traditional AI approach. Fortunately, however, the 
progress of VLSI technology liberates us from the com­
putational constraints. 
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Computationally demanding and data-driven ap-
proaches, such as memory-based reasoning and genetic 
algorithms emerge as realistic alternatives to the tradi­
tional approach. This does not mean that the traditional 
approach wil l be eliminated. There are suitable applica­
tions for traditional models, and there are places where 
massively parallel approach wi l l be suitable. Thus, there 
wil l be co-habitation of different approaches. However, 
the emergent new approach wi l l be a powerful method 
to challenge the goals of A I , which has not been accom­
plished so far. 

Massive computing power and memory space, along 
with new ideas for A I , wi l l allow us to challenge the re­
alities in our engineering and scientific discipline. For AI 
to be a hard-core science and engineering discipline, real 
world AI must be pursued and our arsenals for attack­
ing the problems must be enriched. I hope that discus­
sions developed in this paper contribute to the commu­
nity making a quantum leap into the future. 
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