
A Language for Implementing Arb i t ra ry Logics

M a r k Tarver
mark@uk.ac.leeds.scs,

Division of Artificial Intelligence,
Centre for Theoretical Computer Science,
University of Leeds, Leeds, LS2 9JT, UK.

Abst ract
SEQUEL is a new-generation functional pro­
gramming language, which allows the specifica­
tion of types in a notation based on the sequent
calculus. The sequent calculus notation suffices
for the construction of types for type check­
ing and for the specification of arbitrary log­
ics. Compilation techniques derived from both
functional and logic programming are used to
derive high-performance ATPs from these spec­
ifications.

1 In t roduc t ion
Many of the seminal advances in the field of automated
deduction are encapsulated in certain landmark imple­
mentations; Bledsoe's IMPLY (Cohen & Feigenbaum
(1982)), the Boyer-Moore Theorem Prover (Boyer &
Moore 1979), and NuPrL (Constable et al. 1986). In
each of the cited cases, the implementation of these sys­
tems required thousands of lines of code and many man
months or years of effort before systems of an acceptable
degree of reliability could be constructed. The sheer ef­
fort in implementing a good ATP 1 or PA2 can be gauged
by sampling some of the better-known implementations.

Figure 1. Code Profile of Some Leading ATPs.

System Lines Based On Language

expressed than to continually reimplement logics from
scratch.

The problem is that scientists and logicians are in
disagreement about what that generic logic should be;
whereas Kowalski (1980) speaks for an older tradition in
advocating first-order logic, more recent developments
covered in Thompson (1991) point towards some form of
constructive type theory. However there are many differ­
ent systems of constructive type theory and no single sys­
tem has yet emerged as predominant. The upshot is that
although scientists agree that traditional ways of build­
ing proof-assistants and theorem-provers is costly, and
that better ways should be found, no single logic com­
mands sufficient support to be recognised as a generic
logic suitable for all purposes.

A more promising approach is to try to isolate what
all logics have in common and then build a shell. This
approach is encapsulated by Abrial's B-Tool (Abrial
(1986)). Logics are built in the B-Tool by entering the
appropriate axioms into the machine. This is indeed a
welcome alternative to typing in thousands of lines of
code. But since the B-Tool is not itself a programming
language, but a tool written in Pascal it lacks the flexibil­
i ty of control that a programming language such as SML
would provide. A better solution would be to integrate
the solution of the specification of an arbitrary logic into
a functional programming language of a new generation
that would absorb the lessons to be learnt from Abrial's
B-Tool and languages like Standard ML . This is a good
description of the SEQUEL programming language.

2 The Structure and Philosophy of
SEQUEL

SEQUEL fairly neatly separates into two parts;

1. A core functional language that is highly suited to
the symbolic manipulation of logical formulae.

2. An approach to type theory via the sequent calculus
that allows the high-level specification of arbitrary
logics through sequent calculus notation.

The two are tied together by a philosophy that insists
that the specification of logics can be reduced to the
specification of types, and that proof within a given logic
is equivalent to proving that a type is inhabited* The
process of proof in a logic is thus nothing more than

LLAMA 4K Many Sorted Logic Lisp
ITP 60K First Order Logic Pascal
Boyer-Moore 100K Recursive Functions Lisp
NuPrL 114K Martin-Lof Lisp/ML
Oyster 4K Martin-Lof Prolog

The recognition that much effort was required to imple­
ment any significant proof-assistant or theorem-prover
has led computer scientists to take an interest in generic
logics that are capable of representing a wide number of
formal systems. It would be more sensible to implement
one generic logic within which all other logics could be

1 Automated theorem prover.
2Proof Assistant.

Tarver 839

* form of type-checking, different from that found in
languages like SML because the control mechanisms for
driving a proof in a logic are more complex, but alike
in kind. One single notation, derived from the sequent
calculus, suffices to specify logics and to define the types
against which SEQUEL programs can be verified as well-
typed.

3 Core SEQUEL
Core SEQUEL runs on top of Common Lisp for both
portability and the richness that the Lisp environment
has to offer. The core language is a conditional priority
rewrite language modelled after Prolog syntax with the
novel feature of allowing a version of backtracking called
backtracking on demand.

A rewrite language is a functional language in which
functions are defined by means of rewrite rules. A SE­
QUEL rewrite rule takes the form i1,...,in o which
meets the variable condition that all variables in o also
appear in i i , . . , i n - A rewrite rule is triggered by a series
of inputs matching i1,...,in and the appropriate variable
instantiations are made in evaluating the output. Two
rewrite rules are said to conflict on an input when they
both match to an input, but the results of applying the
two rewrite rules are different. A solution to the problem
of conflict is to order the rewrite rules so that when two
conflict, only one is allowed to fire. Such a rewrite sys­
tem is called a priority rewrite system in Baeten et al.
(1987) where it is shown that priority rewrite systems
have an expressive capacity in excess of rewrite systems
that lack priority. As an example, the following pair of
rewrite rules defines the equality relation only with the
proviso that the first has priority over the second. In a
non-priority rewrite system this relation cannot be de­
fined.

I I t rue
X Y fa lsa
By organising such rules into function definitions with
the capacity to call other functions and letting the order
of appearance determine priority, a language very like
core SEQUEL is created. A rewrite rule appearing
immediately after another rewrite rule in a function
definition is the successor rule to

In backtracking on demand a failure object is defined
which can be returned by any rewrite rule. When is
returned, SEQUEL unwinds the current environment E
back to a previous environment E' such that:-

1 . w a s the environment in force when a rewrite rule
was applied,

2. was signalled in the SEQUEL program as a
choice point rewrite rule*

3. Ri was the last such choice point rewrite rule ap­
plied.

Such choice point rewrite rules are signalled by the use
of instead of within a function definition. If no
such can be found, then is returned, else the rule

becomes the highest priority rule to be applied in
environment E'.

Backtracking on demand is a very powerful feature of
core SEQUEL which gives SEQUEL the kind of facil­
ity with non-deterministic algorithms that Prolog pos-
sesses, but with far more control. Backtracking rewrite
rules can be selected to deal with the choice points in
the program, leaving the deterministic parts of the pro­
gram free from the unnecessary backtracking that forces
Prolog programmers to resort to the use of the cut. A
nice illustration of core SEQUEL's power is shown in
this short program which simulates a non-deterministic
finite state machine (NDFSM).

Figure 2. An NDFSM

Unlike the cut in Prolog, backtracking on demand has
a clean semantics since all functions that use <- can be
statically transformed into extensionally equivalent func­
tions that do not use <-.

Core SEQUEL is compiled into Common Lisp via an
abstract machine SLAM3 that produces Lisp code of a
size and efficiency comparable to that of hand-written
code. The best testimony to the efficiency of a language
is that the author should choose to implement the lan­
guage in itself. Though the SEQUEL system consists of
22,000 lines of Common Lisp, only 600 lines of it were
written in Common Lisp. The remainder was generated
from 4,000 lines of SEQ UEL.

4 Flexible Typing
SEQUEL is currently the unique inhabitant of the class
of flexibly-typed languages. A flexibly-typed language is
one in which:-

3SequeL Abstract Machine

840 Logic Programming

• Static and strong type-checking is optional

• The type-discipline is visible, declarative and logic-
driven rather than procedurally encoded and invis­
ible from the user.

The type discipline of SEQUEL, X T T 4 , describes the
types of 200 Common Lisp functions and is encoded in
Horn clause logic. Since SLAM is an abstract machine
for the compilation of Horn clauses, these Horn clauses
are reduced to efficient Lisp using techniques derived
from W A M (Maier & Warren (1986)). Efficient occurs-
check unification is required for type-checking and this
is enabled using compilation techniques pioneered by
Stickel (1986) and Plaisted (1984). Wi th type-checking
switched on, SEQUEL has the capabilities of a stati­
cally typed functional language like SML. However since
SEQUEL exploits conceptual relations between sequent
calculus and Horn clause logic to allow the specification
of types in sequent calculus notation, SEQUEL'S ability
to rapidly prototype ATPs and PAs exceeds that of SML
by at least an order of magnitude.

Tarver 841

3. A logic has a semantic* or model theory. A seman­
tics gives rules for assigning interpretations to wffs.
For example, in arithmetic we may interpret a, b, c
as denoting 1,2 and 3 respectively, but not Tom,Dick
and Harry. The semantics of the language of arith­
metic forbids this sort of interpretation.

4. A logic has a pragmatics; or a set of principles to
help people (or computers) reason with it. For ex­
ample, in algebra we have a principle that tells us
to isolate all occurences of an unknown on one side
of an equation. This is part of the pragmatics of
algebra.

In SEQUEL there is a structure called a framework that
maps onto the computationally relevant parts of a logic.
Specifically a framework is a triple F = <S,P,T> where:-

1. S is a syntax.
2. P is a proof theory which consists of a series of se­

quent calculus axioms and a set of rewrite rules.
3. T is a pragmatics which consists of a series of tactics

for solving problems couched in F.
The syntax of a logic L is laid down by axiomatising
what counts as a T-expr (typed expression). A T-expr
is of the form p * r where p is a wff and r is a type.
The syntax is determined by axiomatically defining the
types type and wff as type theories in the form of sequent
calculus axioms in exactly the same way as we have seen
for binary. Once the syntax has been defined in this way,
it is animated by SEQUEL into a decision procedure for
checking that all expressions submitted as T-exprs are
in fact T-exprs. In particular, no proof-theoretic axiom
or rewrite rule of L can be defined that produces non-T-
exprs as outputs.

The proof theory itself is written in a mixture of SE­
QUEL and sequent calculus. For instance, the axiom
called BRANCH in the framework TABLEAU for first-
order logic is characterised by the following axiom.

842 Logic Programming

6. ROTATE The command ROTATE followed by inte-
gers m and n exchanges the mth and nth sequents
in the stack of remaining unsolved sequents with
each other. The type of ROTATE is integer integer
proof proof.

The execution of one of these primitives is called a tac­
tical inference and the performance of ATPs built under
SEQUEL is measured in TIPS or tactical inferences per
second. Due to the efficient compilation techniques from
rewrite rules and sequent calculus to Lisp and finally to
machine code, SEQUEL-generated ATPs can run over
2,000 TIPS on a SPARC I I .

Any tactic constructed out of these 8 primitives that
can be verified as having the type proof- proof wi l l
be admitted as a sound or type 2 tactic.SEQUEL also
recognises type 0 and type 1 tactics9 according to the fol­
lowing classification.

T y p e 0: these are tactics which consist of raw unchecked
code of no established signature. Type 0 tactics can be
declared to the system and used as such, but SEQUEL
wil l warn the user that the tactics are type 0 before ad-
mitt ing them into its library.
T y p e 1: these are tactics which are established as out-
putting a syntactically well-formed stack of sequents as
an output if supplied with a syntactically well-formed
stack of sequents as an input. Type 1 tactics are also
referred to in SEQUEL as syntactically correct tactics.
T y p e 2: these are tactics which are established as map­
ping proofs to proofs. This means that given a proof P
as an input, type 2 tactics wi l l output a proof P' as an
output where if P' can be proved then so can P. Type
2 tactics correspond to safe or validity-preserving moves
in a proof.

8 The type term is undefined in XTT which means that it
is the responsibility of the user to define this type in suck a
way that INST preserves its signature. In effect, the result of
replacing a variable in a T-expr by a term must be to creates
another T-expr. INST is the only primitive which makes this
sort of requirement. If the first argument is not a variable
then INST acts as the identity function.

9 In an early report, type 3 tactics were recognised. These
were tactics that not only mapped proofs to proofs, hut were
guaranteed to produce an output that was provable if and
only if the input was. In Paulson (1986) type 3 tactics are
referred to as conservative tactics. SEQUEL does not ac­
knowledge type 3 tactics, although it would be possible to
effectively recognise some kinds of type 3 tactics.

Tarver 843

SEQUEL tactics, properly constructed, display a clean
division between declaretive clarity, donated from the
sequent calculus, and procedural control, donated from
the atomic operations allowed on them.

9 Derived Rules
Once a proof has been secured then the theorem can be
turned into a derived rule. The non-logical constants
in the theorem are uniformly replaced by variables and
the theorem becomes a sequent calculus rule. The non-
logical constants are specified by the user. The facility
is modelled after the Edinburgh Interactive Proof Editor
(Lindsay etal . (1986)).

10 Graphical Interface
ATPs and proof assistants are much improved by a
graphical interface and the ability to drive proof using
a mouse. SEQUEL includes a C-based graphical inter­
face based on the highly portable ATHENA Widgets l i­
brary designed for X-Windows by M.I.T. Any framework
designed under SEQUEL will generate the appropriate
graphical interface with all the rewrite rules and tactics
displayed and proofs are driven by 'point and click'. Fa­
cility is included whereby the user can attach help to tac-
tics by associating information-holding strings with the
names of tactics and rewrite rules and this information
is fed into pop-up help windows which are summoned by
using the mouse.

Figure 3. A Graphical Interface for the Logic TTO

11 Productivi ty and Applications
About half-a-dosen ATPs and proof assistants have now
been built under SEQUEL including theorem-provers for
first-order logic without equality/ simple algebraic set
theory, a calculus for spatial relations, and experimental
systems for partial evaluation and constructive type the­
ory - all with graphical interfaces and mouse-controlled
on-line help. Most of these systems are available under
ftp.

In a conventional language this output would represent
the combined efforts of a research team of three people
working solidly for at least a year. In fact the sum of all
these systems in SEQUEL represented an investment of
6 working weeks for the author.

12 Obtaining SEQUEL
SEQUEL is free for all educational activities that do not
involve commercial profit. SEQUEL currently runs un­
der Lucid Common Lisp version 4.01 and Kyoto Com­
mon Lisp. SEQUEL is available with a basic manual by
ftp from the University of Leeds. To obtain SEQUEL,
ftp to the address agora.leeds.ac.uk, cd to scs/logic, type
'binary9 and then 'mget *' and finally 'quit'. The file
README contains instructions on what to do with the
software. There is a SEQUEL interest group that re­
ceives e-mail on new implementations of and in SE­
QUEL; interested parties should e-mail the author at
Leeds.

Acknowledgements
I should like to acknowledge the support given by Peter
Dew, David Hogg and Tony Cohn to my work. Thanks
also to Jeremy Littler who managed the intricacies of
the ATHENA Widgets library and the challenges of in­
terfacing C to Common Lisp.

References
[Abrial, 1986] J.R. Abrial B User Manual, Oxford,

1986.
[Baeten and Bergstra, 1987] J. Baeten and J. Bergstra,

Term Rewriting Systems with Priorities, Rewriting
Techniques and Applications, LNCS 256,1986.

[Boyer and Moore, 1979] Boyer R.S. and Moore J.S. A
Computational Logic, Academic Press, 1979.

[Cohen and Feigenbaum, 1982] P.R. Cohen and E.A.
Feigenbaum The Handbook of Artificial Intelligence
Pitman, 1982, p95-101.

[Constable et al., 1986] R.L. Constable et al. Imple-
menting Mathematics with the NuPrl Proof Develop­
ment System, Prentice-Hall, 1986.

[Kowalski, 1986] R. Kowalski, SIGART Newsletter,
Special Issue on Knowledge Representation 1986 p44.

[Lindsay et al., 1988] P.A. Lindsay, R.C. Moore, B.
Ritchie Review of Existing Theorem Provers, IPSE 2.5
report, Dept. of Comp. Science, University of Manch­
ester 1988.

[Miller, 1990] D. Miller Abstractions in Logic Programs,
Odifreddi (ed)., Logic and Computer Science, Aca­
demic Press, 1990.

[Milner, Gordon and Wadsworth, 1979] R. Milner, M.
Gordon and C. Wadsworth Edinburgh LCF, Springer-
Verlag, LNCS, 1979.

[Paulson, 1987] Logic and Computation: Interactive
Proof with the Cambridge LCF, CUP, 1987.

[Thompson, 1991] Type Theory and Functional Pro-
gramming, Addison-Wesley, 1991.

844 Logic Programming

