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Abst ract 
SEQUEL is a new-generation functional pro­
gramming language, which allows the specifica­
tion of types in a notation based on the sequent 
calculus. The sequent calculus notation suffices 
for the construction of types for type check­
ing and for the specification of arbitrary log­
ics. Compilation techniques derived from both 
functional and logic programming are used to 
derive high-performance ATPs from these spec­
ifications. 

1 In t roduc t ion 
Many of the seminal advances in the field of automated 
deduction are encapsulated in certain landmark imple­
mentations; Bledsoe's IMPLY (Cohen & Feigenbaum 
(1982)), the Boyer-Moore Theorem Prover (Boyer & 
Moore 1979), and NuPrL (Constable et al. 1986). In 
each of the cited cases, the implementation of these sys­
tems required thousands of lines of code and many man 
months or years of effort before systems of an acceptable 
degree of reliability could be constructed. The sheer ef­
fort in implementing a good ATP 1 or PA2 can be gauged 
by sampling some of the better-known implementations. 

Figure 1. Code Profile of Some Leading ATPs. 
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expressed than to continually reimplement logics from 
scratch. 

The problem is that scientists and logicians are in 
disagreement about what that generic logic should be; 
whereas Kowalski (1980) speaks for an older tradition in 
advocating first-order logic, more recent developments 
covered in Thompson (1991) point towards some form of 
constructive type theory. However there are many differ­
ent systems of constructive type theory and no single sys­
tem has yet emerged as predominant. The upshot is that 
although scientists agree that traditional ways of build­
ing proof-assistants and theorem-provers is costly, and 
that better ways should be found, no single logic com­
mands sufficient support to be recognised as a generic 
logic suitable for all purposes. 

A more promising approach is to try to isolate what 
all logics have in common and then build a shell. This 
approach is encapsulated by Abrial's B-Tool (Abrial 
(1986)). Logics are built in the B-Tool by entering the 
appropriate axioms into the machine. This is indeed a 
welcome alternative to typing in thousands of lines of 
code. But since the B-Tool is not itself a programming 
language, but a tool written in Pascal it lacks the flexibil­
i ty of control that a programming language such as SML 
would provide. A better solution would be to integrate 
the solution of the specification of an arbitrary logic into 
a functional programming language of a new generation 
that would absorb the lessons to be learnt from Abrial's 
B-Tool and languages like Standard ML . This is a good 
description of the SEQUEL programming language. 

2 The Structure and Philosophy of 
SEQUEL 

SEQUEL fairly neatly separates into two parts; 

1. A core functional language that is highly suited to 
the symbolic manipulation of logical formulae. 

2. An approach to type theory via the sequent calculus 
that allows the high-level specification of arbitrary 
logics through sequent calculus notation. 

The two are tied together by a philosophy that insists 
that the specification of logics can be reduced to the 
specification of types, and that proof within a given logic 
is equivalent to proving that a type is inhabited* The 
process of proof in a logic is thus nothing more than 

LLAMA 4K Many Sorted Logic Lisp 
ITP 60K First Order Logic Pascal 
Boyer-Moore 100K Recursive Functions Lisp 
NuPrL 114K Martin-Lof Lisp/ML 
Oyster 4K Martin-Lof Prolog 

The recognition that much effort was required to imple­
ment any significant proof-assistant or theorem-prover 
has led computer scientists to take an interest in generic 
logics that are capable of representing a wide number of 
formal systems. It would be more sensible to implement 
one generic logic within which all other logics could be 

1 Automated theorem prover. 
2Proof Assistant. 
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* form of type-checking, different from that found in 
languages like SML because the control mechanisms for 
driving a proof in a logic are more complex, but alike 
in kind. One single notation, derived from the sequent 
calculus, suffices to specify logics and to define the types 
against which SEQUEL programs can be verified as well-
typed. 

3 Core SEQUEL 
Core SEQUEL runs on top of Common Lisp for both 
portability and the richness that the Lisp environment 
has to offer. The core language is a conditional priority 
rewrite language modelled after Prolog syntax with the 
novel feature of allowing a version of backtracking called 
backtracking on demand. 

A rewrite language is a functional language in which 
functions are defined by means of rewrite rules. A SE­
QUEL rewrite rule takes the form i1,...,in o which 
meets the variable condition that all variables in o also 
appear in i i , . . , i n - A rewrite rule is triggered by a series 
of inputs matching i1,...,in and the appropriate variable 
instantiations are made in evaluating the output. Two 
rewrite rules are said to conflict on an input when they 
both match to an input, but the results of applying the 
two rewrite rules are different. A solution to the problem 
of conflict is to order the rewrite rules so that when two 
conflict, only one is allowed to fire. Such a rewrite sys­
tem is called a priority rewrite system in Baeten et al. 
(1987) where it is shown that priority rewrite systems 
have an expressive capacity in excess of rewrite systems 
that lack priority. As an example, the following pair of 
rewrite rules defines the equality relation only with the 
proviso that the first has priority over the second. In a 
non-priority rewrite system this relation cannot be de­
fined. 

I I t rue 
X Y fa lsa 
By organising such rules into function definitions with 
the capacity to call other functions and letting the order 
of appearance determine priority, a language very like 
core SEQUEL is created. A rewrite rule appearing 
immediately after another rewrite rule in a function 
definition is the successor rule to 

In backtracking on demand a failure object is defined 
which can be returned by any rewrite rule. When is 
returned, SEQUEL unwinds the current environment E 
back to a previous environment E' such that:-

1 . w a s the environment in force when a rewrite rule 
was applied, 

2. was signalled in the SEQUEL program as a 
choice point rewrite rule* 

3. Ri was the last such choice point rewrite rule ap­
plied. 

Such choice point rewrite rules are signalled by the use 
of instead of within a function definition. If no 
such can be found, then is returned, else the rule 

becomes the highest priority rule to be applied in 
environment E'. 

Backtracking on demand is a very powerful feature of 
core SEQUEL which gives SEQUEL the kind of facil­
ity with non-deterministic algorithms that Prolog pos-
sesses, but with far more control. Backtracking rewrite 
rules can be selected to deal with the choice points in 
the program, leaving the deterministic parts of the pro­
gram free from the unnecessary backtracking that forces 
Prolog programmers to resort to the use of the cut. A 
nice illustration of core SEQUEL's power is shown in 
this short program which simulates a non-deterministic 
finite state machine (NDFSM). 

Figure 2. An NDFSM 

Unlike the cut in Prolog, backtracking on demand has 
a clean semantics since all functions that use <- can be 
statically transformed into extensionally equivalent func­
tions that do not use <-. 

Core SEQUEL is compiled into Common Lisp via an 
abstract machine SLAM3 that produces Lisp code of a 
size and efficiency comparable to that of hand-written 
code. The best testimony to the efficiency of a language 
is that the author should choose to implement the lan­
guage in itself. Though the SEQUEL system consists of 
22,000 lines of Common Lisp, only 600 lines of it were 
written in Common Lisp. The remainder was generated 
from 4,000 lines of SEQ UEL. 

4 Flexible Typing 
SEQUEL is currently the unique inhabitant of the class 
of flexibly-typed languages. A flexibly-typed language is 
one in which:-

3SequeL Abstract Machine 
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• Static and strong type-checking is optional 

• The type-discipline is visible, declarative and logic-
driven rather than procedurally encoded and invis­
ible from the user. 

The type discipline of SEQUEL, X T T 4 , describes the 
types of 200 Common Lisp functions and is encoded in 
Horn clause logic. Since SLAM is an abstract machine 
for the compilation of Horn clauses, these Horn clauses 
are reduced to efficient Lisp using techniques derived 
from W A M (Maier & Warren (1986)). Efficient occurs-
check unification is required for type-checking and this 
is enabled using compilation techniques pioneered by 
Stickel (1986) and Plaisted (1984). Wi th type-checking 
switched on, SEQUEL has the capabilities of a stati­
cally typed functional language like SML. However since 
SEQUEL exploits conceptual relations between sequent 
calculus and Horn clause logic to allow the specification 
of types in sequent calculus notation, SEQUEL'S ability 
to rapidly prototype ATPs and PAs exceeds that of SML 
by at least an order of magnitude. 
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3. A logic has a semantic* or model theory. A seman­
tics gives rules for assigning interpretations to wffs. 
For example, in arithmetic we may interpret a, b, c 
as denoting 1,2 and 3 respectively, but not Tom,Dick 
and Harry. The semantics of the language of arith­
metic forbids this sort of interpretation. 

4. A logic has a pragmatics; or a set of principles to 
help people (or computers) reason with it. For ex­
ample, in algebra we have a principle that tells us 
to isolate all occurences of an unknown on one side 
of an equation. This is part of the pragmatics of 
algebra. 

In SEQUEL there is a structure called a framework that 
maps onto the computationally relevant parts of a logic. 
Specifically a framework is a triple F = <S,P,T> where:-

1. S is a syntax. 
2. P is a proof theory which consists of a series of se­

quent calculus axioms and a set of rewrite rules. 
3. T is a pragmatics which consists of a series of tactics 

for solving problems couched in F. 
The syntax of a logic L is laid down by axiomatising 
what counts as a T-expr (typed expression). A T-expr 
is of the form p * r where p is a wff and r is a type. 
The syntax is determined by axiomatically defining the 
types type and wff as type theories in the form of sequent 
calculus axioms in exactly the same way as we have seen 
for binary. Once the syntax has been defined in this way, 
it is animated by SEQUEL into a decision procedure for 
checking that all expressions submitted as T-exprs are 
in fact T-exprs. In particular, no proof-theoretic axiom 
or rewrite rule of L can be defined that produces non-T-
exprs as outputs. 

The proof theory itself is written in a mixture of SE­
QUEL and sequent calculus. For instance, the axiom 
called BRANCH in the framework TABLEAU for first-
order logic is characterised by the following axiom. 
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6. ROTATE The command ROTATE followed by inte-
gers m and n exchanges the mth and nth sequents 
in the stack of remaining unsolved sequents with 
each other. The type of ROTATE is integer integer 
proof proof. 

The execution of one of these primitives is called a tac­
tical inference and the performance of ATPs built under 
SEQUEL is measured in TIPS or tactical inferences per 
second. Due to the efficient compilation techniques from 
rewrite rules and sequent calculus to Lisp and finally to 
machine code, SEQUEL-generated ATPs can run over 
2,000 TIPS on a SPARC I I . 

Any tactic constructed out of these 8 primitives that 
can be verified as having the type .... proof- proof wi l l 
be admitted as a sound or type 2 tactic.SEQUEL also 
recognises type 0 and type 1 tactics9 according to the fol­
lowing classification. 

T y p e 0: these are tactics which consist of raw unchecked 
code of no established signature. Type 0 tactics can be 
declared to the system and used as such, but SEQUEL 
wil l warn the user that the tactics are type 0 before ad-
mitt ing them into its library. 
T y p e 1: these are tactics which are established as out-
putting a syntactically well-formed stack of sequents as 
an output if supplied with a syntactically well-formed 
stack of sequents as an input. Type 1 tactics are also 
referred to in SEQUEL as syntactically correct tactics. 
T y p e 2: these are tactics which are established as map­
ping proofs to proofs. This means that given a proof P 
as an input, type 2 tactics wi l l output a proof P' as an 
output where if P' can be proved then so can P. Type 
2 tactics correspond to safe or validity-preserving moves 
in a proof. 

8 The type term is undefined in XTT which means that it 
is the responsibility of the user to define this type in suck a 
way that INST preserves its signature. In effect, the result of 
replacing a variable in a T-expr by a term must be to creates 
another T-expr. INST is the only primitive which makes this 
sort of requirement. If the first argument is not a variable 
then INST acts as the identity function. 

9 In an early report, type 3 tactics were recognised. These 
were tactics that not only mapped proofs to proofs, hut were 
guaranteed to produce an output that was provable if and 
only if the input was. In Paulson (1986) type 3 tactics are 
referred to as conservative tactics. SEQUEL does not ac­
knowledge type 3 tactics, although it would be possible to 
effectively recognise some kinds of type 3 tactics. 
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SEQUEL tactics, properly constructed, display a clean 
division between declaretive clarity, donated from the 
sequent calculus, and procedural control, donated from 
the atomic operations allowed on them. 

9 Derived Rules 
Once a proof has been secured then the theorem can be 
turned into a derived rule. The non-logical constants 
in the theorem are uniformly replaced by variables and 
the theorem becomes a sequent calculus rule. The non-
logical constants are specified by the user. The facility 
is modelled after the Edinburgh Interactive Proof Editor 
(Lindsay etal . (1986)). 

10 Graphical Interface 
ATPs and proof assistants are much improved by a 
graphical interface and the ability to drive proof using 
a mouse. SEQUEL includes a C-based graphical inter­
face based on the highly portable ATHENA Widgets l i­
brary designed for X-Windows by M.I.T. Any framework 
designed under SEQUEL will generate the appropriate 
graphical interface with all the rewrite rules and tactics 
displayed and proofs are driven by 'point and click'. Fa­
cility is included whereby the user can attach help to tac-
tics by associating information-holding strings with the 
names of tactics and rewrite rules and this information 
is fed into pop-up help windows which are summoned by 
using the mouse. 

Figure 3. A Graphical Interface for the Logic TTO 

11 Productivi ty and Applications 
About half-a-dosen ATPs and proof assistants have now 
been built under SEQUEL including theorem-provers for 
first-order logic without equality/ simple algebraic set 
theory, a calculus for spatial relations, and experimental 
systems for partial evaluation and constructive type the­
ory - all with graphical interfaces and mouse-controlled 
on-line help. Most of these systems are available under 
ftp. 

In a conventional language this output would represent 
the combined efforts of a research team of three people 
working solidly for at least a year. In fact the sum of all 
these systems in SEQUEL represented an investment of 
6 working weeks for the author. 

12 Obtaining SEQUEL 
SEQUEL is free for all educational activities that do not 
involve commercial profit. SEQUEL currently runs un­
der Lucid Common Lisp version 4.01 and Kyoto Com­
mon Lisp. SEQUEL is available with a basic manual by 
ftp from the University of Leeds. To obtain SEQUEL, 
ftp to the address agora.leeds.ac.uk, cd to scs/logic, type 
'binary9 and then 'mget *' and finally 'quit'. The file 
README contains instructions on what to do with the 
software. There is a SEQUEL interest group that re­
ceives e-mail on new implementations of and in SE­
QUEL; interested parties should e-mail the author at 
Leeds. 
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