
Representing Concurrent Actions in Extended Logic Programming

Ch i t t a Bara l and Michael Gelfond
Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968, U.S.A.

{chitta,mgelfond}@cs.ep.utexas.edu

Abst rac t

Gelfond and Lifschitz introduce a declarative
language A for describing effects of actions and
define a translation of theories in this language
into extended logic programs(ELP ,s). The pur-
pose of this paper is to extend the language and
the translation to allow reasoning about the ef­
fects of concurrent actions. Logic programming
formalization of situation calculus with concur­
rent actions presented in the paper can be of in­
dependent interest and may serve as a test bed
for the investigation of various transformations
and logic programming inference mechanisms.

1 In t roduc t i on
Gelfond and Lifschitz [3] introduce a declarative lan­
guage A for describing effects of actions and define the
semantics of this language based on the notion of a finite
automata. The simplicity of the language and its seman­
tics makes it easier to describe the ontology of actions
and contributes to establishing correctness (and some­
times completeness) of various logical formalizations of
their effects. In particular, a theory of action stated in
a language of extended logic programs(ELP's) [2] was
described in [3] as a translation from a subset of A and
proven to be sound w.r.t. the automata based seman­
tics. Soundness and completeness w.r.t. this semantics
of the approaches to formalizing actions proposed earlier
by Pednault [l l] , Reiter [13] and Baker [l] was recently
proved by Kartha [5].

Although the language A is adequate for formalizing
several interesting domains, its expressive power is rather
l imited. In particular, every action is assumed to be ex­
ecutable in any situation and only one action can be
performed at a time. In this paper we expand the syn­
tax and semantics of A to remove these limitations and
to allow for a representation of concurrent actions. As
in [3], we translate theories in the resulting language Ac
into ELP's and prove correctness of this translation. The
translation can be viewed as a logic programming coun­
terpart of situation calculus [0] and is interesting in its
own right. The paper is organized as follows: In section
two we define the syntax and semantics of the language
Ac- Section three describes the translation of theories

from Ac into ELP's while section four illustrates the
translation by the way of examples. Due to space l im­
itations the proof of correctness of the translation and
other results wi l l be presented in the ful l paper.

2 A language Ac
2.1 Syntax
First let us recall the syntax of language A from [3]. The
alphabet of A consists of two disjoint nonempty sets £i
and E2 of symbols, called fluent names and action names.
A fluent literal is a fluent name possibly preceded by -.
A v-proposition is an expression of the form

F af ter A 1 , . . . , A m (1)

where F is a fluent literal, and A 1 , . , . , Am (m > 0) are
action names. If m = 0, (1) is written as

i n i t i a l l y F.

An e-proposition is an expression of the form

A causes F if P1,..., Pn (2)

where A is an action name, and each of F, P 1 , . . . , Pn
(n > 0) is a fluent literal. P 1 , . . . , Pn are called precon­
ditions of (2). If n = 0, we write this proposition as

A causes F.

A domain description in A is a set of propositions.

The syntax of Ac differ from the syntax of A only in
the definition of action names. By an action name of Ac
we mean an arbitrary finite set {a1,..., an} of elements
of £2. Intuitively, an action name {a,-} denotes a unit
action while an action name A = {a1..., an] where n >
1 denotes a compound action - a set of unit actions which
are performed concurrently and which start and stop
cotemporaneously. For simplicity we wi l l often identify a
unit action name {a,} with a. To illustrate the notion of
a domain description in Ac let us consider the following
examples from 14]:

Examp le 1. Mary is l i ft ing a bowl of soup from the
kitchen table, while John is opening the door to the din­
ing room.

To represent this story in Ac let us consider an alpha-
bet consisting of a fluent name Lifted and Opened and

866 Logic Programming

Baral and Gelfond 867

868 Logic Programming

i These rules are motivated by the "commonsense law of
inertia," according to which fluents normally are not
changed by actions. The rules 1(a) allow us to apply the
law of inertia in reasoning "from the past to the future":
The first—when a fluent is known to be true in the past,
and the second—when it is known to be false. The rules
1(b) play the same role for reasoning 'from the future
to the past." The auxiliary predicate Nonineri is essen­
tially an "abnormality predicate" [8]. The axioms differ
from those suggested in [3] only in the use of predicate
"atomic" to restrict the inertia rules to unit actions.

Baral and Gelfond 869

870 Logic Programming

5 Relat ion to other work.
The language Ac and the translation of domain descrip­
tions in this language builds on the ideas from [3]. The
treatment of concurrency in the language of situation
calculus follows the lines suggested in [4j. The use of
the syntax and semantics of ELP's instead of predicate
calculus and circumscription allows us to come up with
a more complete and computationally superior system
of axiom. Another recent paper addressing the possi­
bil i ty of expressing the results of concurrent actions in
situation calculus is [7]. The precise relationship be­
tween the two approaches is yet to be investigated. The
important difference is again in the choice of the for­
malisms - the nonmonotonic approach of [7] seems to re­
quire combining two different non-monotonic formalisms
- circumscription and default logic. In contrast our ap­
proaches use single formalisms of domain descriptions or
that of ELP's. There are some other differences: for
instance, in Example 8 expanded by a v-proposition
" i n i t i a l l y Open", the formalism of Lin and Shoham uses
inertia to entail Holds(Open, {Open.Close}) while we
believe that "unknown" (produced by our systems) is
the more intuitive answer. The nice feature of Lin and
Shoham's formalization is so called epistemological com­
pleteness of their system [6]. Intuitively, a theory of a
(deterministic) action is epistemologically complete if,
given a complete description of the init ial situation, the
theory enables us to predict a complete description of the
resulting situation when the action is performed. Since
some of our actions are not executable we can not ex­
pect to have precisely this property but it is possible to
suitably modify the notion and show that both our for­
malisms are epistemologically complete w.r.t. executable
actions. This wi l l be done in the ful l version of this pa­
per, in which we wi l l also elaborate on our treatment of
non-executable and unknown actions.

Acknowledgement
We would like to acknowledge the grants NSF-IRI-92-11-
662, NSF-CDA 90-15-006 and NSF-IRI 91-03-112. We
also thank V. Lifschitz, G. Kartha and the anonymous
referees for their valuable comments.

References
[I] Andrew Baker. Nonmonotonic reasoning in the

framework of situation calculus. Artificial Intelligence,
49:5-23, 1991.

[2] Michael Gelfond and Vladimir Lifschitz. Logic pro-
grams with classical negation. In David Warren and
Peter Szeredi, editors, Logic Programming: Proc. of
the Seventh Int'l Conf, pages 579-597, 1990.

[3] Michael Gelfond and Vladimir Lifschitz. Represent­
ing actions in extended logic programs. In Joint In­
ternational Conference and Symposium on Logic Pro-
gramming., 1992.

[4] Michael Gelfond, Vladimir Lifschitz, and Arkady Ra-
binov. What are the limitations of the situation calcu­
lus? In Robert Boyer, editor, Automated Reasoning:
Essays in Honor of Woody Bledsoe. Kluwer Academic,
Dordrecht, 1991.

[5] G. Kartha. Soundness and Completeness Theorems
to Three Formalizations of Actions. IJCAI 93.

[6] Fangzhen Lin and Yoav Shoham. Provably correct
theories of actions: preliminary report. In Proc. of
AAAI-91, 1991.

[7] Fangzhen Lin and Yoav Shoham. Concurrent actions
in the situation calculus. In Proc. of AAAI-92, pages
590-595, 1992.

[8] John McCarthy. Applications of circumscription to
formalizing common sense knowledge. Artificial Intel-
ligence, 26(3):89-116, 1986.

[9] John McCarthy and Patrick Hayes. Some philosoph­
ical problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463-502. Edinburgh Uni­
versity Press, Edinburgh, 1969.

[10] David Pearce and Gerd Wagner. Reasoning with
negative information 1 - strong negation in logic pro­
gramming. Technical report, Gruppe fur Logic, Wis-
sentheorie and Information, Freie Universitat Berlin,
1989.

[I I] Edwin Pednault. ADL: Exploring the middle
ground between STRIPS and the situation calculus.
In Ronald Brachman, Hector Levesque, and Raymond
Reiter, editors, Proc. of the First InVl Conf on Prin­
ciples of Knowledge Representation and Reasoning,
pages 324-332,1989.

[12] Raymond Reiter. A logic for default reasoning. Ar­
tificial Intelligence, 13(1,2):81-132,1980.

[13] Raymond Reiter. The frame problem in the situ­
ation calculus. In Vladimir Lifschitz, editor, Artifi­
cial Intelligence and Mathematical Theory of Compu­
tation, pages 359-380. Academic Press, 1991.

Baral and Gelfond 871

