Representing Concurrent Actions in Extended Logic Programming

Chitta Baral and Michael Gelfond
Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, U.S.A.
{chitta,mgelfond}@cs.ep.utexas.edu

Abstract

Gelfond and Lifschitz introduce a declarative
language A for describing effects of actions and
define a translation of theories in this language
into extended logic programs(ELP's). The pur-
pose ofthis paper is to extend the language and
the translation to allow reasoning about the ef-
fects of concurrent actions. Logic programming
formalization of situation calculus with concur-
rent actions presented in the paper can be ofin-
dependent interest and may serve as a test bed
for the investigation of various transformations
and logic programming inference mechanisms.

1 Introduction

Gelfond and Lifschitz [3] introduce a declarative lan-
guage A for describing effects of actions and define the
semantics of this language based on the notion of a finite
automata. The simplicity of the language and its seman-
tics makes it easier to describe the ontology of actions
and contributes to establishing correctness (and some-
times completeness) of various logical formalizations of
their effects. In particular, a theory of action stated in
a language of extended logic programs(ELP's) [2] was
described in [3] as a translation from a subset of A and
proven to be sound w.r.t. the automata based seman-
tics. Soundness and completeness w.r.t. this semantics
of the approaches to formalizing actions proposed earlier
by Pednault [I1], Reiter [13] and Baker [I] was recently
proved by Kartha [5].

Although the language A is adequate for formalizing
several interesting domains, its expressive power is rather
limited. In particular, every action is assumed to be ex-
ecutable in any situation and only one action can be
performed at a time. In this paper we expand the syn-
tax and semantics of A to remove these limitations and
to allow for a representation of concurrent actions. As
in [3], we translate theories in the resulting language Ac
into ELP's and prove correctness of this translation. The
translation can be viewed as a logic programming coun-
terpart of situation calculus [0] and is interesting in its
own right. The paper is organized as follows: In section
two we define the syntax and semantics of the language
Ac- Section three describes the translation of theories

866 Logic Programming

from Ac into ELP's while section four illustrates the
translation by the way of examples. Due to space lim-
itations the proof of correctness of the translation and
other results will be presented in the full paper.

2 A language Ac

2.1 Syntax

First let us recall the syntax of language A from [3]. The
alphabet of A consists of two disjoint nonempty sets £i
and E2 of symbols, called fluent names and action names.
A fluent literal is a fluent name possibly preceded by -.
A v-proposition is an expression of the form

F after Aq,...,An (1)
where F is a fluent literal, andA1,.,., A, (m > 0) are
action names. If m =0, (1) is written as
initially F.

An e-proposition is an expression of the form

A causes Fif P1,..., P, (2)
where A is an action name, and each of F, P1,..., P,
(n > 0) is a fluent literal. P1,..., P, are called precon-

ditions of (2). If n = 0, we write this proposition as
A causes F.
A domain description in A is a set of propositions.

The syntax of Ac differ from the syntax of A only in
the definition of action names. By an action name of Ac
we mean an arbitrary finite set {af,..., an} of elements
of £2. Intuitively, an action name {a,-} denotes a unit
action while an action name A = {af..., a,] where n >
1 denotes a compound action - a set of unit actions which
are performed concurrently and which start and stop
cotemporaneously. For simplicity we will often identify a
unit action name {a,} with a. To illustrate the notion of
a domain description in Ac let us consider the following
examples from 14]:

Example 1. Mary is lifting a bowl of soup from the
kitchen table, while John is opening the door to the din-
ing room.

To represent this story in Ac let us consider an alpha-
bet consisting of a fluent name Lifted and Opened and

two unit actions Lift and Open. The initial situation is
described by v—propositiona:

initially —~Lifted initially ~Open

The effects of the actions can be described by the axioms:
{Lift} causes Lifted

The resulting domain description will be denoted by D;.
Intuitively, the effects of the two actions of D; are com-
pletely independent and so both Lifted and Opened
should hold after the execution of the compound ac-
tion {Lift,Open}. The next example describes actions
whose effects are mutually dependent.

Example 2. Whenever Mary tries to lift the bowl with
one hand, she spills the soup. When she uses both hands,
she does not spill the soup.

{Open} causes Opened

This time let us consider an alphabet consisting of a flu-
ent name Spilled and two unit actions Lift.l and Lift_r.
The initial situation may be described by a proposition:

initially — Spilled

and the effects of actions are represented by propositions:
{Lift.i} causes Spilled

{Liftr} causes Spilled

{Liftd, Lift_r} causes - Spilled

The resulting domain description will be denoted by D-.

2.2 Semantics

To describe the sernantics of Ag, we will define “models”
of a domain description, and when a v-proposition is
“true” in a model. If a v-proposition P is true in all
models of & domain description D, we say that D entails
P. As defined in [3], a state is a set of fluent names; given
a fluent name F and a state o, we say that F holdsin &
ifFeo,~Fholdsinecif Fgo.

A transition function is a mapping ® of a subset of the
set of pairs (A,), where A is an action name and ¢ is
a state, into the set of states.! As in [3], a structure is a
pair {og, @), where oy is & state (the initial state of the
structure), and & is a transition function. We say that
a sequence of action names A,,..., Ay, 18 executable in
a structure M = (g, P) fforevery 1 < k< m

D(Ax, ®(Ap_y,. . ., ®(A1,00)...)

is defined. The resulting state will be denoted by
M(Ah---:l‘n)'

We aay that a v-proposition (1) is true (false} in a struc-
ture M if

1. Ay,..., Am is executable in M,

2. F holds (does not hold) in Mt41,-4m),

In particular, the proposition “initially F” is true in M
iff F holds in the initial state of M.

10ecall that in the definition of a transition fanction in
the semantics of 4, ® must be defined on the set of all such

We say that execution of an action A in a state ¢
immediately causes a fluent literal F if

There in an e-proposition “A causes F if Py,..., P,"
from the domain D) such that for every i, 1 < i < n, B
holds in o,

We say that execution of an action A in a state ¢
causes a fluent literal F if

1. A immediately causes F, or

2. There is & B C A, such that execution of B in ¢
immediately causes F' and there is no C such that B C
C C A where execution of C in o causes ~F,

Let A be an action and o be a state and consider:

By{A,e¢) = {f : f is & fluent name and execution of 4
in o causes f},

Bj(A,0) = {f : [is a fluent name and execution of A
in o causes ~f }.

A structure {og,) will be called a model of a domain
description D if the following conditions are satisfied:

1. Every v-proposition from D is true in (¢q, ®);
2. For every action A = {a),...,a,} and every state o
(i) if By(A,0) 0 B}(A, o) = @ then ®(A, ¢) is defined
and
O(A,0) = U By(A,r)\ B}(A, a).
(ii) otherwise ®(A,) is undefined.

It is clear that there can be at most one transition func-
tion ® eatisfying conditions {i)-(ii). Consequently, dif-
ferent models of the same domain description can differ
only by their initial states.

Example 3. Consider the domain description D, from
Example 1, the initial state o9 = @ and the transition
function ¥ defined a8 follows:

®(d,0)=0

®(Open, o) = 0 U {Opened}

O(Lift,0) = o U{Lifted}

®({Open, Lift}, o) = o U {Opened, Lifted)

It is easy to see that the structure {¢o,®) is the only
model of the domain description DY, and therefore Dy
entails v-propositions Opened after {Open, Lift} and
Lifted after {Open, Lift}.

Example 4. Consider a domain description [y con-
taining three unit actions Paint, Close and Open, and
two fluents, Opened and Painted, The effects of these
actions are defined by the following e—propositions:

Close causes ~Opened

Open causes Opened

Paint causes Painted.

Let 2 transition function ¥ be defined as follows:
¢@,0)=0c o

Baral and Gelfond 867

@(Paint, o) = o U { Painted}

®(Close,v) = 0\ {Opened}

®(Open,o)=0 U {Opened}

®({Paint, Close}, c) = o U { Painted} \ {Opened}
@&({ Paint, Open}, o) = o U { Painted} U {Opened}

Notice, that for a pair (A, o) where ¢ is an arbitrary state
and A = {Open,Close} or A = {Open,Close, Paint},
& is undefined.

It is easy to see that any structure {o, ®} where ¢ C
{Opened, Painted} ie & model of D3 and that Dy has no
other models.

A domain description is consistent if it has a model, and
complete if it has exactly one model. For instance, do-
main descriptions Dy and Ds from Examples 1 and 4
are consistent, D, is complete, and & domain deacription
containing the v-propositions initially F and initially
«F is inconsistent.

It is interesting io compare a new semantics with that
defined in [3]. The comparison of course is only pos-
sible for the domain descriptions not containing names
for compound actions. But, as demonstrated by the fol-
lowing example, even in this case the new semantics is
somewhat more powerful than the old one.

Example 5. Consider a domain description Dy con-
taining an action name A, a fluent name F and two
e~propositions

A causes F A causes = F

According to the semantics from [3] D is inconsistent
while it is easy to check that M = (9, ®) where ®(8,0) =
o is a mode] of D.

The following proposition shows that for descriptions
consistent in the sense of [3] both semantics coincide.
Models of D in the sense of [3] will be called s-models.

Proposition 1. Let D be a domain description not
containing compound actions and assume that D has
an s-model. Let M = (o, ®) be a structure of M, and
M* = (o,®") where ®* is § restricted to unit actions.
Then M is a model of F iff M"* is an s—mode] of D
and for every s-model N of D there is a model M of D

such that N = M*, o
3 From A to Extended Logic
Programs

3.1 Extended Logic Programs

Extended logic programs were introduced in [2] (see also
[10]) as a tool for reasoning in the presence of incomplete
ixl:fo;mation. They are defined as collections of rules of
the form

(1) Lo—Ly,...,Ley, 00t Lypyr,..., 00t Ly

where each L; is a litezal, i.e. an atom possibly preceded
by ~, and not is the negation as failure. Intuitively the
rule can be read as: if L;, ..., Im are believed and it is

868 Logic Programming

not true that Lpmgy,. .., Lo are believed then Lo is be-
lieved. A program determines a collection of answer sets
- sets of ground literals representing possible beliefs of
the program. A program ie consistent if it has an an-
swer set not containing contradictory literals. A ground
literal L is entailed by an ELP if it belongs to all of its
answer sets, The rules of ELP’s can be identified with
defaults [12]

LIA---ALm:Im+I,--°|r:/L0

(L stands for the literal complementary to L.) As was
shown in (2] a literal L is entailed by a program II iff
it belongs to all extensions of the corresponding default
theory.

In our further discussion we will need the following sim-
ple Lemma about ELP’s:

Lemma 1. For any answer set A of an ELP II:

(a) For any ground instance of rule from II, if
{Ls,....Lm} C A and
{Lms1,-- -, Ia}NA=8then Ly € A.

(b) If A is consistent and Lo € A then there ex-
ist a ground instance of a rule from II such that
{L], . .-,Lm} g A and {Lm+1,-- 1,Ln} nA = a.

3.2 The translation »

In this section we describe the transiation = from domain
descriptions to ELP’s and prove the soundness of thig
translation.

The ELP 7D, corresponding to a domain descrip-
tion D, uses variables of three sorts: situation variables
8,8,..., fluent variables f, f',..., and action variables
a,a',...2. We also need a sort for fluent literals whose
terms are of the form F or F where F is a term of the
type fluent. [ts language includes the situation constant
So, and the fluent names and action names of D, that be-
come object constants of the corresponding sorts. There
are aleo gome predicate and function symbols; their sorts
will be clear from their use in the rules below. Of special
importance is a function symbol {} which will be used
to form terms of the action type and a function result
used to form the terms of the type situation.

The program x I} will consist of the translations of the
individual propositions from D along with other axioms.

1. Inertia Axioms:

(a) Holds(f, Resuit(a, 5)) — Holds(f,s),
nol Noninert(f, a,s), atomic(a)

- Holds(f, Resuli(a, 8)) — —~Holds(f, 5},
not Noninert(f,a,s), atomic(a)

(b) Holds(f,s) — Holds(f, Resuli(a, 8)),
not Nonineri{f, a, 8), atomic(a)

—Holds(f, 8) «— ~Holds(f, Resuit{a, 5)),
not Noninert(f,a,s), atomic(a)

#Uning a sorted language implies, that all atoms in the
program are formed in accordance with the syntax of sorted
Predicate logic. Moreover, when we speak of an instance of a
rule, we assume that the terms substituted for variables are
of the appropriate sorts.

i These rules are motivated by the "commonsense law of
inertia," according to which fluents normally are not
changed by actions. The rules 1(a) allow us to apply the
law of inertia in reasoning "from the past to the future":
The first—when a fluent is known to be true in the past,
and the second—when it is known to be false. The rules
1(b) play the same role for reasoning 'from the future
to the past." The auxiliary predicate Nonineri is essen-
tially an "abnormality predicate" [8]. The axioms differ
from those suggested in [3] only in the use of predicate
"atomic" to restrict the inertia rules to unit actions.

2. Translating v-propositions:

'_'.['he translation of & v-proposition “F after Ay,..., A"
is

Holds(F,[Ay,..., Am)).

where [A;,..., Am] stands for the ground term
Result(Am, Result(Apm-y, ..., Resuli(A1,5)...)).

3. Translating e—propositions:

The translation of an e—proposition “A causes F if
Py, ..., Py” consists of the rules:

(a) Effect Aziom:
Holds(F, Result(A, s)) — Holds(Py,s), ..., Holds(P,, 5)

It allows us to prove that F will hold after A, if the
preconditions are satisfied.

(b) Cancellation axiom for inertia:

Noninert(|F|, A, 8) — not Holds(Py,s),...,
not Holds(P,, s);

Holds(P;, 5) is a literal complementary to Holds(F;, s).
For any fluent F, |F|= F and |-F|=F.

The rule disables the inertia rules (1) in the cases when
F can be affected by A.

(c) Forward Reasoning Arioms:
Holds(P,;, 8) — Holds(F, s), Holds(F, Result(A, s))

The above rules justify the following form of reasoning:
If the value of F has changed after performing A, then we
can conclude that the preconditions were satisfied when
A was performed.

(d)Backward Ressoning Azioms:

Holds(F;, 6) — Holds(F, Resull(A, 8)),
Holds(Py,8),..., Holds(Pi.1,8),
Holds(Piy1,8),. .., Holds(Py, 8).

The above rules allow us to conclude that a precon-
dition was falee from the fact that performing an action
did not lead to the result described by an effect axiom,
and all other preconditions were true.

The axioms above differ from those suggested in [3] only
by allowing terms for compound acticns. The next ax-
ioms are new, They describe how the effects of indi-
vidual actions are related to the effects of these actions
performed concurrently.

4, Inheritance axioms:

(a) Holds(f, Resuit(a,s)) « subsetof(b,a),

Holds(f, Result(d, 5)), not Noninherit(f,a,b,s)

(b) ~Holds(f, Result(a, s)) — subsetof(}, a),
~Holds(f, Result(b, 5)), not Noninherit(f,a,d,)
where Noninhkerit(e,a,b, 5) means “action a does not
inherit fluent literal e from subaction b in situation s.”

According to these axioms compound actions normally
inherit the effects of their components.

The next collection of axioms is concerned with c¢an-
cellation of Inheritance axiom. For every e-proposition
A causes Fif P,..., P,, we introduce a rule

() ¥ oninherit(?, z,y, 8) — subsetof(y, z),
subsetof(A, z), ~subsetof(A, y),
not Holds(P,,s),...,not Holds(P,, s).

5. Defining subsetof and atomic:

For any two actions A and B we add subsetof(A, B) if
A C B, ~subsetof(A, B) if A B and atomic(A) if A
is a singleton and —atomic(A) otherwise,

The noninheritance axiom in 4 (c) is essential for the
correct treatment of concurrent actions and is one of the
major coniribution of this paper. It may be instructive
to consider several weaker forms of this axiom.

(a) Consider an e-proposition A causes F if Py, ..., P,
The rule

Noninherit(F, A, b, 8) «— subsetof(b, A),
not Holds(Py,s)...nol Holds(P,, s).

says that if preconditions of A may be satisfied then A
does pot inherit from its subactions.

(b) Inheriting the non-inheritance

Noninherit(f,a,c, 8) — Noninherit(f,b,c,8),
subsetof(b, a), subsetof(c,b)

This rule states that if b does not inherit f from ¢ then
any superset a of & does not inherit f from ¢.

(c) Taking care of any inconsistency that may arise due
to inheritance:
Consider a pair of e-propositions
“Acauses F if Py,..., P,"
“B causes ~F if Qy,...,Qmn"
The rules
Noninherit(F,a, A, 8) — subsetof(A, a),
subsetof(B, a), ~subsetof(B, A),
nol Holds(Q1,8), ..., not Holds(@m, s)

Noninherit(~F, o, B, 8) — subsetof(A,a),
subselof(B,a), ~subsctof(A, B),

not Holds(P,,s),...,not Holds(Pn, 8).

say that for any action a containing A and B if precon-
ditions of 4 (B) may hold than a does not inherit ~F
(F) from B (A).

Baral and Gelfond 869

The following proposition gusrantees that the above
rules are subsumed by the axiom 4(c).

Proposition 2. Let II; = xD be the transiation of a
domain description D and let JI; be an extension of II;
by the rules of the form (a)-(c) above. Then, A is an
answer set of II; iff it is an answer set of . (v}

The following theorem is the main technical result of this
paper. '

Soundness Theorem. For any v-proposition P =
F after A,,..., A, and arbitrary domain description D
such that A,,..., A, is execuiable in any model of D
then if xD entails #P, then D entails P. (]

The inheritance axioms do not contribute to the incom-
pleteness which is caused by the incompleteness of the
theory of atomic actions [3].

4 Examples

Example 6 Independent Actions
Consider the domain description D, from Example 1.
The translation xD; of this domain consists of the In-

ertin and Inheritance axioms and the following axioms
obtained from propositions of D;:

X1 ~Holds(Lifted, So) (2)

X2 —Holds(Opened, Sp) (2)

X3 Holds(Lifted, [Lift]) (3.a)

X4 Holds(Opened, [Open]) (3.8)

Xb6 Noninert(Opened, Open, s) «— (3.b)
X8 Noninert(Lifted, Lift,s) — (3.b)

X7 Noninherit(~Opened, z,y, S) — subsetof(y, z),
subsetof({Open}, z), ~subsetof({Open},y) (4.c)

X8 Noninherit(—~Lifted,z,y, S) — subsetof(y, z),
subsetof({Lift}, z), —subsetof({Lift},y) (4.c)

In Example 3 we have shown that the domain descrip-
tion D, eniails the v-propoeitions “Lifted after {Lift,
Open)” and “Opened after {Lift, Open}”. Let us
demonstraie that the translation of these propositions
is entailed by xDy.

Let A be an arbitrary answer set of #D). According
to the inheritance axiom 4.a and Lemma 1, to show that
Holds(Lifted,[{Lift,Open}]) € A it suffices to show
that

(8) Holds(Lifted, [Lift]) € A while
(b) Noninherit(Lifted, {Lift, Open}, {Lift},) & A.

(a) follows immediately from X3. To prove (b)
recall that D; is consistent (see Example 3) and
therefore, by the Soundness Theorem, xD; has a
consistent snswer set. Now (b} is the immedi-
ate consequence of Lemma 1, and the fact that
Noninherit(Lifted, {Lift, Open}, {Lift}, S5) does not
occu? in the head of any ground instance of & rule from
xD,. Similar argument can be used to show that »D,
entails Holds(Opened, ({Lift, Open}]).

870 Logic Programming

In the following example we show how our formalism
‘handles the case when the effect of a compound action
cancels the effect of the atomic actions.

Example T Dependeni Actions: Cancellation
Consider the domain description D3 of Example 2. 1t is
easy to see that Dy entails

(a) = Spilled after {Lift_r, Lift1}.

xD; entails the translation of (a) since it contains the
rule

Holds{— Spilled, [{Lift_r, Lift.i}]) —
obtained from e-proposition

{Liftd, Lift_r} causes —~Spilled

from D,.

To see why the Inheritance axiom does not cause incon-
sistency by inheriting, say, Holds(Spilled, [{Lift{}]) as
the result of the action {{Lift.], Liftr}] it suffices to no-
tice that the rule

Noninherit(Spilled, {Lift.d Lift.r}, Lifti, s) —
subsetof(Lift_Left, {Lift.l, Lift_r}),
subsetof({Lift 1, Lift.r}, {Liftd, Lift_r}),
—subsetof({Lift_r, Liftd}, Lift.])

belongs to Dy as a ground instance of 4.c., therefore
Noninherit(Spilled, {Lifi_l, Lift_r},Lift.l 8) is en-
tailed by 7Dy for any situation s.

The effects of compound actions are cancelled in essen-
tially the same way. Consider a domain description Dq,
obtained from Dy by adding an e-proposition

{Flip, Lifi_r, Lift1} causes Spilled.
x>y 1 will contain the rules:

Holds(Spilled, [{ Flip, Lift_», Lift 1}])

Noninherit(—~Spilled, z, y, 8) +— subsetof(y, z),
subsetof({Flip, Lift.r, Lifi.1}, 2),
~subsetof({Flip, Lift.r, Lift.1},y) (4.c)

These rules entail

Noninherit(~Spilled, { Flip, Lift_r, Lift 1},
{Liftr, Lift 1}, s)

which blocks the inheritance axioms (4.b) and hence
{Fﬁp, Lift_r, Lift I} does not inherit “~Spilled” from
Liftr, Liftl}.
In the next example we show how to represent a com-
pound action whose subactions have conflicting effects.

Example 8 Conflicling Subactions

Connider the domain description Dy of Example 4. Since
for any state o the transition function ® of Ds is un-
defined on ({Open, Close}, o) the effect of performing
“Close” and *Open” concurrently is unknown. Accord-
ingly, no information about the state [{Open, Close}] is
entailed by xDs. To show that this is indeed the case
let us notice that the following rules belong to xDjs:

Z1 ~Holds(Opened, [{Close}]) (3.2)
Z2 Holds(Opened, [{Open}]) (3.8)

_f

Z3 Noninherit(~Opened, z,y,s) — subsetof(y, =),
a;::::to}({OPc:}e:‘ :). :aﬁbz)etofz{(;pe:‘}f,(:) (?!c)

Z4 Noninherit(Opened, z,y, s) — subsetof(y, 2),
subsetof({Close}, z), ~subsetof({Close}, y; (4.c)

By instantiating Z4 with z = {Open,Close} and y =
{Open} we obtain the clause:

Noninherit(Opened, {Open, Close}, {Open}, s)
Similarly, from Z3 we obtain the clause
Noninherit(~Opened, {Open, Close}, {Close}, 5)

Hence, neither Holds(Opened, [{Open, Close}]) nor
—Holds{Opened, E{Open,Cfose}]) can be derived from
#Ds using (4.b). From Lemma 1 and consis
tency of =Dy we can conclude that it is un-
known if “Opened” holds or does not hold in
[{Open, Close}]. Notice however, that our program en-
taile Holds(Painted, [{Open, Close, Paint}]) -

a translation of the v-proposition

Painted after {Open, Close, Paint} not entailed by D.
{since {Open, Close, Paint} is not executable in models
of D). This explains the executability condition in the
Soundness Theorem.

5 Relation to other work.

The language Ac and the translation of domain descrip-
tions in this language builds on the ideas from [3]. The
treatment of concurrency in the language of situation
calculus follows the lines suggested in [4j. The use of
the syntax and semantics of ELP's instead of predicate
calculus and circumscription allows us to come up with
a more complete and computationally superior system
of axiom. Another recent paper addressing the possi-
bility of expressing the results of concurrent actions in
situation calculus is [7]. The precise relationship be-
tween the two approaches is yet to be investigated. The
important difference is again in the choice of the for-
malisms - the nonmonotonic approach of [7] seems to re-
quire combining two different non-monotonic formalisms
- circumscription and default logic. In contrast our ap-
proaches use single formalisms of domain descriptions or
that of ELP's. There are some other differences: for
instance, in Example 8 expanded by a v-proposition
"initially Open", the formalism of Lin and Shoham uses
inertia to entail Holds(Open, {Open.Close}) while we
believe that "unknown" (produced by our systems) is
the more intuitive answer. The nice feature of Lin and
Shoham's formalization is so called epistemological com-
pleteness of their system [6]. Intuitively, a theory of a
(deterministic) action is epistemologically complete if,
given a complete description of the initial situation, the
theory enables us to predict a complete description ofthe
resulting situation when the action is performed. Since
some of our actions are not executable we can not ex-
pect to have precisely this property but it is possible to
suitably modify the notion and show that both our for-
malisms are epistemologically complete w.r.t. executable
actions. This will be done in the full version of this pa-
per, in which we will also elaborate on our treatment of
non-executable and unknown actions.

Acknowledgement

We would like to acknowledge the grants NSF-IRI-92-11-
662, NSF-CDA 90-15-006 and NSF-IRI 91-03-112. We
also thank V. Lifschitz, G. Kartha and the anonymous
referees for their valuable comments.

References

[11 Andrew Baker. Nonmonotonic reasoning in the
framework of situation calculus. Artificial Intelligence,
49:5-23, 1991.

[2] Michael Gelfond and Vladimir Lifschitz. Logic pro-
grams with classical negation. In David Warren and
Peter Szeredi, editors, Logic Programming: Proc. of
the Seventh Intl Conf, pages 579-597, 1990.

[8] Michael Gelfond and Vladimir Lifschitz. Represent-
ing actions in extended logic programs. In Joint In-
ternational Conference and Symposium on Logic Pro-
gramming., 1992.

[4] Michael Gelfond, Vladimir Lifschitz, and Arkady Ra-
binov. What are the limitations of the situation calcu-
lus? In Robert Boyer, editor, Automated Reasoning:
Essays in Honor of Woody Bledsoe. Kluwer Academic,
Dordrecht, 1991.

[5] G. Kartha. Soundness and Completeness Theorems
to Three Formalizations of Actions. IJCAI 93.

[6] Fangzhen Lin and Yoav Shoham. Provably correct
theories of actions: preliminary report. In Proc. of
AAAI-91, 1991.

[7] Fangzhen Lin and Yoav Shoham. Concurrent actions
in the situation calculus. In Proc. of AAAI-92, pages
590-595, 1992.

[8] John McCarthy. Applications of circumscription to
formalizing common sense knowledge. Artificial Intel-
ligence, 26(3):89-116, 1986.

[9] John McCarthy and Patrick Hayes. Some philosoph-
ical problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463-502. Edinburgh Uni-
versity Press, Edinburgh, 1969.

[10] David Pearce and Gerd Wagner. Reasoning with
negative information 1 - strong negation in logic pro-
gramming. Technical report, Gruppe fur Logic, Wis-
sentheorie and Information, Freie Universitat Berlin,
1989.

[I1] Edwin Pednault. ADL: Exploring the middle
ground between STRIPS and the situation calculus.
In Ronald Brachman, Hector Levesque, and Raymond
Reiter, editors, Proc. of the First InVI Conf on Prin-
ciples of Knowledge Representation and Reasoning,
pages 324-332,1989.

[12] Raymond Reiter. A logic for default reasoning. Ar-
tificial Intelligence, 13(1,2):81-132,1980.

[13] Raymond Reiter. The frame problem in the situ-
ation calculus. In Vladimir Lifschitz, editor, Artifi-
cial Intelligence and Mathematical Theory of Compu-
tation, pages 359-380. Academic Press, 1991.

Baral and Gelfond 871

