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Abst rac t 

Gelfond and Lifschitz introduce a declarative 
language A for describing effects of actions and 
define a translation of theories in this language 
into extended logic programs(ELP ,s). The pur-
pose of this paper is to extend the language and 
the translation to allow reasoning about the ef­
fects of concurrent actions. Logic programming 
formalization of situation calculus with concur­
rent actions presented in the paper can be of in­
dependent interest and may serve as a test bed 
for the investigation of various transformations 
and logic programming inference mechanisms. 

1 In t roduc t i on 
Gelfond and Lifschitz [3] introduce a declarative lan­
guage A for describing effects of actions and define the 
semantics of this language based on the notion of a finite 
automata. The simplicity of the language and its seman­
tics makes it easier to describe the ontology of actions 
and contributes to establishing correctness (and some­
times completeness) of various logical formalizations of 
their effects. In particular, a theory of action stated in 
a language of extended logic programs(ELP's) [2] was 
described in [3] as a translation from a subset of A and 
proven to be sound w.r.t. the automata based seman­
tics. Soundness and completeness w.r.t. this semantics 
of the approaches to formalizing actions proposed earlier 
by Pednault [ l l ] , Reiter [13] and Baker [l] was recently 
proved by Kartha [5]. 

Although the language A is adequate for formalizing 
several interesting domains, its expressive power is rather 
l imited. In particular, every action is assumed to be ex­
ecutable in any situation and only one action can be 
performed at a time. In this paper we expand the syn­
tax and semantics of A to remove these limitations and 
to allow for a representation of concurrent actions. As 
in [3], we translate theories in the resulting language Ac 
into ELP's and prove correctness of this translation. The 
translation can be viewed as a logic programming coun­
terpart of situation calculus [0] and is interesting in its 
own right. The paper is organized as follows: In section 
two we define the syntax and semantics of the language 
Ac- Section three describes the translation of theories 

from Ac into ELP's while section four illustrates the 
translation by the way of examples. Due to space l im­
itations the proof of correctness of the translation and 
other results wi l l be presented in the ful l paper. 

2 A language Ac 
2.1 Syntax 
First let us recall the syntax of language A from [3]. The 
alphabet of A consists of two disjoint nonempty sets £i 
and E2 of symbols, called fluent names and action names. 
A fluent literal is a fluent name possibly preceded by -. 
A v-proposition is an expression of the form 

F af ter A 1 , . . . , A m (1) 

where F is a fluent literal, and A 1 , . , . , Am (m > 0) are 
action names. If m = 0, (1) is written as 

i n i t i a l l y F. 

An e-proposition is an expression of the form 

A causes F if P1,..., Pn (2) 

where A is an action name, and each of F, P 1 , . . . , Pn 
(n > 0) is a fluent literal. P 1 , . . . , Pn are called precon­
ditions of (2). If n = 0, we write this proposition as 

A causes F. 

A domain description in A is a set of propositions. 

The syntax of Ac differ from the syntax of A only in 
the definition of action names. By an action name of Ac 
we mean an arbitrary finite set {a1,..., an} of elements 
of £2. Intuitively, an action name {a,-} denotes a unit 
action while an action name A = {a1..., an] where n > 
1 denotes a compound action - a set of unit actions which 
are performed concurrently and which start and stop 
cotemporaneously. For simplicity we wi l l often identify a 
unit action name {a,} with a. To illustrate the notion of 
a domain description in Ac let us consider the following 
examples from 14]: 

Examp le 1. Mary is l i ft ing a bowl of soup from the 
kitchen table, while John is opening the door to the din­
ing room. 

To represent this story in Ac let us consider an alpha-
bet consisting of a fluent name Lifted and Opened and 
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i These rules are motivated by the "commonsense law of 
inertia," according to which fluents normally are not 
changed by actions. The rules 1(a) allow us to apply the 
law of inertia in reasoning "from the past to the future": 
The first—when a fluent is known to be true in the past, 
and the second—when it is known to be false. The rules 
1(b) play the same role for reasoning 'from the future 
to the past." The auxiliary predicate Nonineri is essen­
tially an "abnormality predicate" [8]. The axioms differ 
from those suggested in [3] only in the use of predicate 
"atomic" to restrict the inertia rules to unit actions. 
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5 Relat ion to other work. 
The language Ac and the translation of domain descrip­
tions in this language builds on the ideas from [3]. The 
treatment of concurrency in the language of situation 
calculus follows the lines suggested in [4j. The use of 
the syntax and semantics of ELP's instead of predicate 
calculus and circumscription allows us to come up with 
a more complete and computationally superior system 
of axiom. Another recent paper addressing the possi­
bil i ty of expressing the results of concurrent actions in 
situation calculus is [7]. The precise relationship be­
tween the two approaches is yet to be investigated. The 
important difference is again in the choice of the for­
malisms - the nonmonotonic approach of [7] seems to re­
quire combining two different non-monotonic formalisms 
- circumscription and default logic. In contrast our ap­
proaches use single formalisms of domain descriptions or 
that of ELP's. There are some other differences: for 
instance, in Example 8 expanded by a v-proposition 
" i n i t i a l l y Open", the formalism of Lin and Shoham uses 
inertia to entail Holds(Open, {Open.Close}) while we 
believe that "unknown" (produced by our systems) is 
the more intuitive answer. The nice feature of Lin and 
Shoham's formalization is so called epistemological com­
pleteness of their system [6]. Intuitively, a theory of a 
(deterministic) action is epistemologically complete if, 
given a complete description of the init ial situation, the 
theory enables us to predict a complete description of the 
resulting situation when the action is performed. Since 
some of our actions are not executable we can not ex­
pect to have precisely this property but it is possible to 
suitably modify the notion and show that both our for­
malisms are epistemologically complete w.r.t. executable 
actions. This wi l l be done in the ful l version of this pa­
per, in which we wi l l also elaborate on our treatment of 
non-executable and unknown actions. 
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