A Parameterised Module System
for Constructing Typed Logic Programs

P.M. Hill*

Division of Artificial Intelligence, School of Computer Studies
University of Leeds, Leeds, LS2 9JT, UK
hill@scs.leeds.ac.uk

Abstract

The paper is concerned with the design of a
module system for logic programming so as to
satisfy many of the requirements of software en-
gineering. The design is based on the language
Godel which is a logic programming language
which already has a simple type and module
system. The module system described here ex-
tends the Godel module system so as to include
parameterised modules. In particular, this ex-
tended system allows general purpose predi-
cates that depend on facts and rules for specific
applications to be defined in modules that are
independent of their applications.

1 Introduction

Logic programming has been used extensively
for representing and reasoning about knowledge
bases. For large knowledge bases we require
a means of segmenting the program so that
small component parts of the knowledge base
can be developed. These can then be used to
build larger components, and so on, until the
program is completed. These components are
called modules.

Modules can be researched from a number of
points of view including software engineering,
object-oriented programming, and theory con-
struction. We concentrate here on the software
engineering use of modules and, in particular,
the use of modules in program construction.
There are a number of requirements for such
a module system.

1. There must be a means of combining mod-
ules. Thisis normally achieved by allowing
one module to import another.

2. Part of a module should be protected from
unintended use by other modules. This is
called encapsulation. Usually a module is
divided into two parts. One part defines a
language that can be used by an importing

*Supported by SERC grant GR/H/79S62

874

Logic Programming

module. The other part extends this lan-
guage with symbols only required locally.

3. It should be possible to develop a mod-
ule independently of other modules that it
does not import. Thus the import relation
is normally restricted to defining a partial
order on the modules in a program. The
order of compilation of the modules must
then respect this ordering.

4. A module should be usable in as many con-
texts as possible. A module providing an
abstract data type such as a stack or a def-
inition of an abstract relation such as tran-
sitivity needs to be re-usable and not tied
to a specific application.

The reasons for having types in logic program-
ming languages are well known. The struc-
ture of the knowledge domain can be repre-
sented directly by means of type declarations.
These declarations also define the intended use
of the symbols and therefore protect the pro-
gram from syntactic errors caused by misuse
of the symbols. The language on which we
have based our ideas is the logic programming
language Godel [Hill and Lloyd, 1992]. Godel
has a parameterised type system that supports
generic but not inclusion polymorphism. More-
over, Godel has a simple module system that
supports importation, encapsulation, and sepa-
rate compilation as well as allowing for modules
defining abstract data types. The Godel mod-
ule system does not support re-usable modules
defining abstract relations such as transitivity.
The parameterised module system described
here extends the module system in Godel so as
to provide better facilities for defining abstract
relations in re-usable modules.

Other authors have investigated modules for
logic programming. [Miller, 1986] extends Pro-
log to provide a theory of modules over Horn
clauses. The modules are defined by nested im-
plication with the "semantics based on intuition-
istic logic. In this module system, the modules
are dynamic in the sense that they are created
and deleted at run time. Thus a modification



of SLDNF-resolution is required for the proce-
dural semantics.

The module system given in [O'Keefe, 1985]
only deals with untyped programs where the
predicates are considered to be local to the
modules but the functions are assumed to be
global. Thus abstract data types cannot be
defined. A number of Prolog implementations
supporting module systems similar to that de-
scribed by O'Keefe have been marketed.
[Sannella and Wallen, 1992] describe a Prolog
module system based on the theory of modu-
larity underlying the Standard ML module sys-
tem. This module system (extended to include
types) provides all the facilities provided by
Godel. It also allows for a form of parame-
terised modules although the parameterisation
is with respect to the module names instead
of the symbols. However, the main difference
is that a predicate must be defined in a sin-
gle module, whereas, in our system, predicates
that are parameterised can be defined in more
than one module. The system is less flexible
than the one described here but safer in that
the predicates are better protected from unin-
tended use.

[Goguen and Meseguer, 1984] present EqlLog
which combines functional and logic program-
ming. The language provides a parameterised
module system which appears to be similar
in function to the module system described
in [Sannella and Wallen, 1992]. However, it
is described in the framework of EqLog rather
than Prolog so that it is not immediately ap-
plicable to logic programming languages.
[Antoniou and Sperschneider, 1992] divide a
module into four parts; import, export, body,
and parameter. The import and export parts
use Horn Clauses to specify the imported and
exported predicates. These are only used for
the combination of the modules. Exported
predicates are also defined in the body part
of the module. It is these definitions that are
used in the execution of the program. The pa-
rameter part specifies generic predicates using
full first order logic. Importing modules sup-
ply the implementation for each of these pred-
icates. This must be correct with respect to
its specification. Since each module has to de-
note a complete theory, every predicate in the
module must be completely defined within the
module. This disallows the more flexible sys-
tem described in the current paper.

The paper’ is organised as follows. In the next
section, Godel's module system is explained.
We show how this can be extended to include
parameterised modules. In section 3, we give a

number of definitions associated with a module-
free typed logic program which are needed
later. Then, in section 4, we provide a formal
definition of a modular program with parame-
terised modules. Finally, section 5 outlines the
intended semantics for such a program.

2 The Godel Language

The module system in Godel is best explained
by means of an examplez.

EXPORT The JonesFamily.

BASE Person.

COISTAIT Eve,Pat.Bob,Tim,Mary: Person.
PREDICATE Mother,Father: Person*Person.

LOCAL ThedonesFaaily.
Father(Bob,Pat).
Mother(Pat,Mary)-

EXPORT TheJonesRels.
IMPORT ThedJonesFamily.
PREDICATE Anc: Person * Person.

LOCAL ThedJonesRels+

PREDICATE Par: Person * Person.
Par(x,y) <- Mother(x,y) V Father(x,y).
Anc(x.y) <- Par(x,z) * Anc(z,y).
Anc(x.y) <- Par(x,y).

In both of the above modules there are a num-
ber of declarations and statements. The state-
ments are formulas in the language defined by
the declarations. There are two kinds of dec-
laration: language and module. The language
declarations begin with a key word that indi-
cates the category® of symbol being declared.
In The JonesFaaily module, Person is declared
to be a base type; Eve, Pat, etc., are declared
to be constants of type Person; Mother and
Father are declared to be predicates with ar-
guments of type Person. In Godel, a symbol
name (for a given arity and category) must have
at most one declaration in a module.

Each module is in two parts called export and
local A part begins with a module declara-
tion stating whether it is the export or local
part and the name of the module. The export
part contains language declarations for symbols
that can be used in this module and also in
other modules that import it. Thus the type
Person can be used in TheJonesRels as well
as in either part of The JonesFamily. Symbols
declared in the local part of a module are only
available for use within this part. Hence, since
ThedonesRels declares Par in the local part,
Par cannot be used outside this module. State-
ments are only allowed in the local part of a

*Par, Rela, Anc are short for Parent, Relations, Ancestor.

3The categories are: type constructor, function, or predi-
cate. A base, constant, or proposition is regarded as a con-
structor, function, or predicate, respectively, of arity 0.

'A version of this paper with several longer examples
showing the use of parameterised modules is available as a
technical report. [Hill, 1993]

Hill 875



module. These define the predicates declared in
either part of the module. The JonesRels also
has a module declaration that begins with the
key word IMPORT. This makes all the symbols
declared in the export part of The JonesFamily
available for use in The JonesRels.

The example illustrates the many-sorted types
in Godel. However, in Godel, we can also de-
fine generic functions and predicates. A com-
mon example of such a data structure is a list,
which is defined to be a list of terms of a cer-
tain type, but the particular type to be used
is not specified. For example, Godel provides
a system module Lists. This module exports
the type constructor List, constant Mil, func-
tion Cons, and predicate Member with language
declarations:

COISTRUCTOR List/1.

COISTANT Mil: List(a).

FUNCTION Cons: a*List(a)->List(a).
PREDICATE Meaber: a*List(a).

Ifthe language included the base type Int, then
we have the types List(a), List(List(a)),
List(Int), List(List(Int)), etc. The tu-
ples of types in a declaration is called a de-
clared type. Other types for Wil, Cons,
and Member can be obtained from their de-
clared types by means of type substitu-
tions. Thus Wil also has types List(Int)
and List(List(Int)), Cons has types Int *
List(Int) -> List(Int) and List(Int) *
List(List(Int)) -> List(List(Int)), and
Member has types Int List(Int) and
List(Int) * List(List(Int)).

A definition of a constructor C is a set of func-
tion declarations with range type of the form
Ctl.ieeie. ,tn) (or C, ifthe aritynis 0). A def-
inition of a predicate P is a set of statements
with P in the head.

A Godel program for a module rn (called the
main module) is the smallest set of modules
that includes m and is closed wrt the mod-
ules named in the import declarations. The
program must satisfy the following three con-
ditions.

Ml The module names can be partially or-
dered so that if m’ occurs in an import
declaration in a module named m then
m' < m.

M2 Every symbol appearing in (the export
part of) a module, must be declared in
or imported into (the export part of) the
module*

M3 Each constructor or predicate with a non-
empty definition in a module must be de-
clared in that module.

These conditions enable independent com-
pilation and protect procedures defined in
one module from being modified by an-

876 Logic Programming

other. The set of modules {TheJonesFamily,
The JonesRels} form a Godel program.

In the example, a module containing general
rules about family relations was forced, by the
module system, to contain a declaration im-
porting a module defining a specific family
thereby preventing its reuse with other fami-
lies. Thus we propose to modify the above lan-
guage to allow parameterised modules. In the
next example, a Rels module is parameterised
wrt the base Person and predicates Mother and
Father. Note that, here it is the Thedones
module that imports the Rels module, whereas
in the previous example, the importation was
in the opposite direction.

EXPORT ThedJones.

IMPORT Rels(Jones,Ma,Pa).

BASE Jones.

PREDICATE Ma,Pa: Jones * Jones.
COISTAIT Eve,Pat,Bob,Tin,Mary: Jones.

LOCAL Thedones.
Pa(Bob,Pat).
Ma(Pat,Mary).

EXPORT Rels(Person,Mother,Father).
BASE Person.

PREDICATE Mother,Father: Person*Person.
PREDICATE Anc: Person * Person.

LOCAL Rels(Person,Mother.Father).
IMPORT Trans(Person, Par).
PREDICATE Par: Person * Person.
Par(x,y) <- Mother(x,y)\/Father(x,y).
Anc(x,y) <- Tr(x,y).

EXPORT Trans(Point,Connect).
BASE Point.

PREDICATE Connect: Point * Point.
PREDICATE Tr: Point * Point.

LOCAL Trans(Point, Connect).
Tr(x,y) <- Connect(x,y).
Tr(x,y) <- Connect(x,z) ft Tr(z,y).

The module name that follows the key words
EXPORT and LOCAL consists of an identifier
with O or more symbols as arguments. The
set of declarations for these symbols (which
must be in the export part of the module) is
called the signature of the module. For exam-
ple, Rels (Person, Mother, Father) is a mod-
ule name with identifier Rels and signature
BASE Person.

PREDICATE Mother,Father: Person*Person.
Symbols that are declared in a module but are
not in the signature are said to be completely
specified by the module. For example, the base
Jones is completely specified in Thedones.
The written module is the initial module, /n-
stances of these modules can be obtained by



substituting new symbols for symbols occur-
ring in the module name. The substituted sym-
bols must be distinct from symbols completely
specified by the initial module. Thus the fol-
lowing module is imported into Rels(Person,
Mother, Father).

EXPORT Trans(Person,Par).
BASE Person.

PREDICATE Par: Person * Person.
PREDICATE Tr: Person * Person.

LOCAL Trans(Person,Par).
Tr(x,y) <- Par(xsy).
Tr(x,y) <- Par(x,z) & Tr(z.y).

Note that if a symbol is completely speci-
fied in a module it is completely specified
in every module that is an instance of this
module. Thus the predicate Tr is com-
pletely specified by Trans(Point, Connect)
and Trans(Person,Par). (Trans(Person,Tr)
could not occur in an import declaration in
a module since Tr is completely specified in
Trans (Person, Connect).)

We define a modular program in a similar way
to the definition of a Godel program above. In-
formally, it is a set of initial modules with a
main module, closed wrt the identifiers in the
import declarations and satisfying similar mod-
ule conditions to those given above.

M1* The identifiers in the module names can be
partially ordered so that if I' is an identi-
fier in an import declaration in a module
with identifier | then J7 < /.

M2* Every symbol name appearing in (the ex-
port part of) a module m, must either be
declared in (the export part of) m or be
completely specified by the export part of
a module that is imported into (the export
part of) m.

M3* Each constructor or predicate name de-
clared in or imported into a module and
completely specified by an imported mod-
ule n may only have a non-empty definition
in n or in imported modules that are also
imported into n.

The set of modules

{ThedJones,

Rels (Person, Mother, Father),

Trans (Point, Connect) },

together form a modular program for the
ThedJones.

The previous example shows the way the mod-
ule system works where each module imports
no more than one module and each of the con-
structors and predicates is completely defined
within a module. However, the parameterised
module system allows for multiple inheritance
and also for a predicate or constructor defini-
tion to be split between several modules. To

illustrate this, we define another family named
Hill. Due to marriage between the families,
we create a new family with name HilUones.

EXPORT TheHilllJonss(HillJones,Ma,Pa).

BASE HillJones.

PREDICATE Ma, Pa: HilUones * Hill Jones.

IMPORT Thedones(HillJones,Na,Pa),
TheHills (HilJones ,Ma,Pa).

COISTAIT Pas: HilUones.

LOCAL TheHill Jones (HilUones, Ma, Pa).
Ma(Mary,Pam).
Pa(Tom,Paa).

EXPORT  TheHills(Hill,Ma,Pa).
BASE Hill.

PREDICATE Ma,Pa: Hill * Hill.
IMPORT  Rsls(Hill,Ma,Pa).
COMSTAIT Robin,Jill,Tom: Hill.

LOCAL TheHills(Hill,Ma,Pa).
Pa(Robin,Ton).

The set of modules
{TheHillJones(HillJones ,Ma, Pa),
TheHills(Hills ,Na,Pa),

Thelones{Jones ,Ka,Pa),

Rels(Parson, Mother,Fathar),
Trans{Point,Connect)}

forms the modular program with main module
TheHillJones. A goal for the program is

<= Anc(Bob,x) &k Anc(Robin,x).

3 Typed Logic Programs

The Gédel language is based on typed first or-
der logic, where each non-logical symbol has a
language declaration. This associates the sym-
bol with a tuple of symbols in another language,
called the ippe language.

In a type language for a parametric type system
as used in Godel, the types are structured ex-
pressions defined over disjoint sets of construc-
tors and parameters. Each constructor has an
arity associated with it. Thus the consirucior
declaration C/n (n 2 0) assigns the arity n to
a constructor C. A type in the type language
7 defined over a set of constructor declarations
C is defined recursively, to be either a parame-
ter or of the form C(t),...,1a), whexe C/n€C
and #;,...,¢, are types in 7.

Since, in this paper, we need to define type lan-
guages in & modular program, we must have
a means of constructing a new type language
from a set of existing type languages. Let
7.7, ..., Th be type languages defined over the
sets of constructor declarations C,(y,...,Cs,
respectively, using the same set of parameters.
Then we say that 7 is the join of the set
{Ti,.... ZW}HC=CU.--UGC. IfC.isa

Hill

877



sot of conetructors and 7/ a type language de-
fined on the set CUCy, then 7' is the exiension
of T using Co.
A first order typed language £ based on a type
age T consists of a set of formulas, where
the formulas are defined wrt a set of function
declarations F over T, a set of predicate decla-
rations P over T, and a set of variables V.
The function declaration F : vy » -2y -~ T
assigns a nonempty tuple of types ry,..., 7,7
called the declared type to a function F of ar-
ily n. It is assumed that every parameter in
the tuple occurs in the last type. The set of
functions in * must be disjoint from the set of
variables V.
‘The predicate declaration P : ry#-. -»1, aseigns
a tuple of types (7, ..., 7s) called the declared
iype to a predicate P of asrity n.
If © is a type substitution, the function F also
has the type (110, ..., 7.0, r0), renge type 70,
and domain iype (1 O,..., 72 8). Similarly, the
predicate P has fype (11©,...,7:0).
Using sets of function and predicate declara-
tions F and P and a set of assighments of types
to variables, called a variadle typing, we define
& term with its associated type and an atom.

1. A variable z is a term whose type is as-
signed to 2 by the variable typing.

2. If a function F has type (71,...,7,,7) and
As,..., A, are terms of types my,..., T,
then F(A;,...,An) is a term of type 7.

3. If a predicate P has type (11,...,7,) and
Ay, ..., An are termu of types 1, ..., 7,
then P(A;,...,An) is an atom.

It is now straightforward to define a formula in
£ (see [Hill and Topor, 1992]).

Language declarations with the same category
and arity in £ are similar. If each symbol has
a unique declared type, then £ is universal.
In this paper we assume that all the languages
are universal. Since the category and arity can
be used to distinguish symbols with the same
name, we require similar declarations that are
not identical to have distinct symbol names,
For each § € {1,...,k}, let £; be a first order
typed language defined wrt the sets of function
and predicate declarations F; and P;. Suppose
also that £ is a first order language defined wrt
the sets of function and predicate declarations
F and P. Then L is the join of {£,,..., L3} if
F=FU.-UF,and P =P U...UP. T F,
and Pp are sets of function and predicate dec-
larations, and £’ a first order language defined
wrt FoUF and PoUP, then L' is the eztension
of L using Fo and Pg.

Let £ be a universal first order language de-
fined wrt the sets * and P of function and

is a formula in L of the form P(A;,...,As) or
P{A;,...,Ay) — W with some assignment V
of types to the variables in the statement, where
W is a formula and A;,..., A, are terms of
type 1,...,7Ta using F and V. P(A;,...,4As)
is called the head of the statement.

A module-free program 11 consists of a set of
language declarations defining a type language
T (called the igpe language of II), a typed first
order language £ based on 7 (called the lan-
guage of II), and a sat of statements in £. A
goal G for 11 i either the empty clause or of
the form «— W where W is a formula in the

language of 1I.

The declarative semantics of a module-free
(typed) logic prograrn is based on a typed form
of the Clark completion of logic programs us-
ing an equality predicate that has declared type
(o, ) where a is a parameter. Details can be
found in {Hill, 1992) and {Hill and Topor, 1892].

4 A Modular Program:
Definition

We now define a module u(m)* and & modular
program II, with main module m4,

We first define a simple module m which is
a module with no import declarations and
has import depth 0. It consists of a set
{m, Ezp, Loc} where m is the name of the
module, The name m consists of an identifier
followed by 0 or more symbols. These sym-
bols must have their constructor Cp,, function
Fm, and predicate P,, declarations in Ezp.
The set Co, U F U P is called the signa-
ture of m. Ezp = {9,Cgep, FEop, PEcp)}, and
Loc = {ou Crocy FLoe, PLoc, S) Ezp is the ez-
port part and Loc is the local part for m. Cgap
and Cz,. are disjoint sets of constructor decla-
rations. Cgep — Cm defines the esport type lan-
guage for m and Cpep U Croc (resp., Cpyp) de-
fines the type language for m (resp., export part
of m). Fgap and Pgy, are sets of function and
predicate declarations in the type language for
the export part of m. Fr.. and Pr,. are sets of
function and predicate declarations in the type
language for m. Fpep — Fm and Pgep = Pm
define the export language. Fpep U Froc and
PEep UPLo define the language for m (which is
assumed to be universal). S is a set of program
statements in the language for m. A symbol »
with a declaration in m is completely specified
by m if 5 does not oceur in the name m,

The module, as written is called an initial sim-
ple module. Instances of initial modules can
be obtained by means of module substitutions.
A module substitution # for & module m is &
substitution whose domain is a subset of the

‘We use the module name m instead of p{m) if it is clear
from the context which module the name m is referring to.

prodicate declarations and P:my e -7, &
predicate declaration in P. A stetement for P

878 Logic Programming



symbols in m and whose range is any set of
names not completely specified by m. This set
must be such that u(m)é is a (simple) module.
In particular, the language for u(m)# must be
universal. Thus, if symbols #; and 53 have sim-
ilar declarations d; and dz, respectively, in m
and a1# = 238, then d;# and da28 must be the
same.

The modular program I1,,, for m is the singleton
set {ys(m)}.

Suppose we have a set A of initial modules
with distinct module identifiers such that, for
each module £ € A, a modular program II;
for i is in A and the import depth of ¢ is
< d. A module m is a set {m, Exp, Loc)
where Ezp = {IE.,,CE.p,?E.p,?E.’}, md
Lot = {Iroc,CLoe, FLoe, PLoe, S}. The name m
consists of an identifier not in A followed by 0 or
more symbols. These symbols must have their
constructor Cp, function F,,, and predicate Py,
declarations in Ezp. The set C,, UFn U P is
calied the signature of m. Ezp is the ezport
port and Loc is the local part for m. Iggp and
It oc are sets of module names. Every symbol in
Igep (resp., Ir..) that is not completely speci-
fied by an imported module should have a lan-
guage declaration in Ezp (resp., Ezp U Loc).
For each ¢ € I = Iggp U I1oc, there must be a
(unique) module u(#*) in A and a module sub-
stitution 8; such that i = i'8; and u{i’)9; is a
module (denoted by u(i)). The import depthk of
m is one more than the maximum of the im-
port depths of modules u(i) where i € 1. We
say that a module i is available 1o m (resp., the
export part of m) if either { = m or there is a
module j € I (resp., §j € Igsp) and i is available
to the export part of j.

Cesp 8nd Cp,. are disjoint sets of constructor
declarations. Let 77 (resp., 74,,) be the join
of the export type languages for i, § € I (resp.,
i € Iggp). The ezport type language for m is
the extension of T4, , using Cgep—Cm. The type
language for m (resp., the export part of m) is
the extension of 77 using Cgep U Croc (resp.,
CEsp). FEgp 80d Py, are sets of function and
predicate declarations in the type language for
the export part of m. Fi,.. and Pr,. are sets
of function and predicate declarations in the
type language for m. Let £f (resp., ﬁ’s‘?) be
the join of the export languages for i, s € I
(resp., i € Igep). The czport language for m
is the extension of £f,, using Fgep — Frm and
Prep — Pm and the language for m is the ex-
umion of C" u’in‘ }-B.p U }‘ng, pﬂg’ u pL“.
The language for m must be universal. Thus, if
module § is available to m and a aymbol s has
similar declarations d in m and d; in ¢, then d
and d; must be the same. Similarly, if modules
i and j are available to a module and a symbol
# has similar declarations d; in f and d; in j,

then d; and d; must be the same. Finally, the
set S is a set of statements in the language for
m such that every predicate in the head has &
declaration in Prep UPLoec.

We say that a symbol s is completely specified
by m if s does not occur in m and there is a
language declaration for s in u(m).

The module as written is called the inétisl mod.
ule. Instances of initial modules can be ob-
tained, as for simple modules, by means of
module substitutions.

‘The program I, is the union of {x(rn)} with
the union of the programs II,:, for each initial
module # in A such that, for some module sub-
stitution 8, § = i'6 and { € I. The language of
I1,, is that of m.

5 A Modular Program;
Semantics

In this section we define a mapping called a de-
modularisafion from a modular program to a
module-free program. The semantics of s mod-
ular program is then defined to be the seman-
tics of its demodularisation.

A symbol, declared in or imported into an ini-
tial module m, is assumed to be distincet from
any other symbol that is completely specified in
an imported module, If the programming lan-
guage (such as Godel) allows overloading, then
the overloaded names of distinct symbols de-
clared or imported into the initial module must
be standardised apart before the demodularisa-
tion mapping is applied.

The two components of a demodularisation are
the generating of imported modules from initial
modules and the standardising apart of names
in the local parts of the imported modules. The
demodularisation of a module is defined by in-
duction on its import depth.

We first define an associated simple module
o(m) for a modular program II,, for an ini-
tial module y(m) by induction on its import
depth. It is assurned that the character ‘!’ does
not occur within the declared symbols.

1. If p(m) is an simple module, then u(m) is
the associated simple module for ,,.

2. Suppose u(m) has import depth > 0. For
each initial module u(i’) such that, for
some module substitution ?, § = i'# occura
in an import declaration in u(m), obtain
the associated simple module o(§').

3. For each module name 5 in an import dec-
Jaration in (the export part of) u(m) con-
struct an imported simple module for (the
export part of) u(m) as follows. If i' is an
initial module name and @ is a module sub-
stitution such that i = i'4, let o(s) denote
o(i")0. ‘Then, for each symbol s in.o(s),

Hill

879



880

if & module 7 i available to u(f) but not
available to the export part of (i) and &
is completely specified by j, replace each
oceurrence of s in (<) by jls.

4. Let o(m) be the module with name and
signature of the module u(m) and contain-
ing all the language declarations and state-
ments in u(m) together with all the lan-
guage declarations and statements in the
imported simple modules for m. The ex-
port part of o{m) contains all the declara-
tions in the export part of u(m) and the
export parta of the imported simple mod-
ules for the export part of u(m).

The demodularised program for the modular
program II,, is the program obtained from
o{m) by removing the module declarations and
combining the local and export parts.

It can be shown that u(m) together with its
imported simple modules is a mmodular program
of import depth 1 and ¢(m) is a simple module
whose language is the same as that of Il,,.

We illustrate the demodularisation using the
modular program for TheJones in section 2.
First we give the associated simple module
o(Rels(Pexrson, Mother,Father)).

EXPORT Rels(Person Mother,Father).
BASE Person.

PREDICATE Mother ,Father: Perszon*Person.
PREDICATE Anc : Person * Persomn.

LOCAL Rels(Person Mother , Father).
PREDICATE

Par: Person+Person;

Trans(Person,Par)!Tr: Person*Person.
Par(x,y) <- Mother(x,y) \/ Father(x,y).
Anc(x,y)} <= Trans(Persom, Par)iTr(x,y).
Trans(Person,Par)iTr(x,y) <~

Par(x,z) & Trans(Person,Par}!Tr(z,y).
Trans(Parson,Par)!Tr(x,y) <~

Par(x,y).

The imported simple module Rels(Jones,
Na, Pa) for TheJones is obtained by apply-
ing the module substitution {Person/Jones,
Mother/Ma, Father/Pa} to the above module
and then replacing each occurrence of Par by
Rels(Jones,Ma,Pa)!Par. We conclude the pa-
per with the demodularisation of the modular
program with main module TheJones.

BASE Jones.
CONSTANT Bve,Pat,Bod,Tim, Naxy: Jones.
PREDICATE Ma,Pa: Jones * Jones.
PREDICATE Anc: Jones % Jones.
PREDICATE
Rels{Jones . Ma,Pa) !Par: Jones*Jones;
Trans(Jones,Rels{Jones Ma,Pa) !Par)!
Tr: JonsstJones.
Pa{Bob,Pat).
Na(Pat, Mary).

Logic Programming

Rels{Jones, Na, Pa)!Par(x,y) <-
Ma(x,y) \/ Pa(x,y).
Anc(xz,y) <-
Trans{Jones,Rels(Jones,Na,Pa) IPar)}!
Tr(x,y).
Trans(Jones ,Rels(Jones Na,Pa) |Par)!
Tr(:.’) <=
Rels(Jones ,Na,Pa)!Pax(x,x) &
Trans(Jones,Rels(Jones,Na,Pa)iPar)!
Tr(z,y).
Trans(Jones,Rels(Jones,Na,Pa)!Paz)!
Tr(xs,) <-
Rels(Jones ,Na,Pa)!Paxr(x.y).

References

[Antoniou and Sperschneider, 1992] G. Anto-
niou and V. Sperschneider. Modularity for
logic programs. In Proceedings of ALPUK-
92, pages 3-14. City University, London,
1992,

[Goguen and Meseguer, 1984]

J.A. Goguen and J. Meseguer. EQLOG:
Equality, types and generic modules for logic
programming. Journal of Logic Program-
ming, 1:68-131, 1984.

[Hill and Lloyd, 1992] P.M. Hill and J.W.
Lloyd. The Godel programming language.
Technical Report CSTR-92-27, Department
of Computer Science, University of Bristol,
UK, 1992.

[Hill and Topor, 1992] P.M. Hill and R.W.
Topor. A semantics for typed logic programs.
In F. Pfenning, editor, Types in Logic Pro-
gramming, pages 1-62. MIT Press, 1992.

[Hill, 1992] P.M. Hill. Data structures and
typed logic programs. In Bernd Neumann,
editor, Proceedings of the 10th European
Conference on Atrtificial Intelligence, Vi-
enna, Austria, pages 109-113. John Wiley &
Sons, 1992.

[Hill, 1993] P.M. Hill. A parameterised mod-
ule system for constructing typed logic pro-
grams. Technical Report 93.12, School of
Computer Studies, 1993.

[Miller, 1986] D.A. Miller. A theory of modules
for logic programming. In |[EEE Symposium
on Logic Programming, pages 106-115,1986.

[O'Keefe, 1985] R.A. O'Keefe. Towards an al-
gebra for constructing logic programs. In
Proceedings of the Symposium on Logic Pro-
gramming, Boston, pages 152-160. IEEE,
1985.

[Sannella and Wallen, 1992] D.T.Sannella and
L.A. Wallen. A calculus for the construc-
tion of modular Prolog programs. Journal
of Logic Programmimg, 12(1 & 2):147-177,
1992,



