
Average-Case Analysis of a 

PAT LANGLEY 
Learning Systems Department 
Siemens Corporate Research 

755 College Road East 
Princeton, NJ 08540 USA 

Abs t rac t 
In this paper we present an average-case analysis of the 
nearest neighbor algorithm, a simple induction method 
that has been studied by many researchers. Our analysis 
assumes a conjunctive target concept, noise-free Boolean 
attributes, and a uniform distribution over the instance 
space. We calculate the probability that the algorithm 
wil l encounter a test instance that is distance d from the 
prototype of the concept, along wi th the probability that 
the nearest stored training case is distance e from this 
test instance. From this we compute the probability of 
correct classification as a function of the number of ob­
served training cases, the number of relevant attributes, 
and the number of irrelevant attributes. We also explore 
the behavioral implications of the analysis by presenting 
predicted learning curves for artificial domains, and give 
experimental results on these domains as a check on our 
reasoning. 

1. Nearest Neighbor A lgo r i t hms 

Most learning methods form some abstraction from 
experience and store this structure in memory. The field 
has explored a wide range of such structures, includ­
ing decision trees (Quinlan, 1986), multilayer networks 
(Rumelhart & McClelland, 1986), and probabilistic sum­
maries (Fisher, 1987). However, in recent years there has 
been growing interest in methods that store instances or 
cases in memory, and that apply this specific knowledge 
directly to new situations. This approach goes by many 
names, including instance-based learning and case-based 
reasoning, and one can apply it to many different tasks. 

The simplest and most widely studied class of tech­
niques, often called nearest neighbor algorithms, origi­
nated in the field of pattern recognition (Cover & Hart, 
1967; Dasarathy, 1991) and applies to classification tasks. 
In the basic method, learning appears almost tr iv ial -
one simply stores each training instance in memory. The 
power of the method comes from the retrieval process. 
Given a new test instance, one finds the stored training 
case that is nearest according to some distance measure, 
notes the class of the retrieved case, and predicts the 
new instance wil l have the same class. 

Many variants exist on this basic algorithm. For in­
stance, Stanfill and Waltz (1986) have studied a version 
that retrieves the k closest instances and bases predic-
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tions on a weighted vote, incorporating the distance of 
each stored instance from the test case; such techniques 
are often referred to as k-nearest neighbor algorithms. 
Others (Cover & Hart, 1967; Aha, Kibler, & Albert, 
1991) have studied an alternative approach that stores 
cases in memory only upon making an error, thus reduc­
ing memory load and retrieval time with l i t t le reduction 
in accuracy. 

We would like to understand the learning behavior 
of this intriguing class of methods under various condi­
tions. Aha et al. present a PAC analysis of one such 
algorithm, but our aim is to obtain tighter bounds that 
we can directly relate to experimental results. To this 
end, we decided to pursue an average-case analysis along 
the lines developed by Hirschberg and Pazzani (1991) 
for logical induction methods and by Langley, Iba, and 
Thompson (1992) for probabilistic ones. For the sake 
of tractability, we focused our efforts on the most basic 
of the instance-based techniques, which stores all train­
ing cases and bases its prediction on the single nearest 
neighbor. 

However, the simplicity of this method does not mean 
it lacks power. Aha et al. (1991) report the results 
of an experimental study that compared the algorithm 
(which they called IBl) to Quinlan's (1986) more so­
phisticated C4 algorithm for inducing decision trees. Ta­
ble 1 contains the results on four natural domains, two 
of them ("Cleveland" and "Hungarian") involving pre­
diction of heart disease from symptoms, another con­
cerning the diagnosis of primary tumors, and a fourth 
involving prediction of party affiliations for members of 
Congress from their voting records. For each domain, 
Aha et al. trained the algorithms on approximately 80% 
of the cases and tested them on the remaining instances, 
averaging over 50 different partitions. On the Cleveland 
data, the two algorithms' performance was indistinguish­
able, and IB l ' s behavior on the tumor and voting records 
nearly reached C4's level. Although the basic nearest 
neighbor algorithm fared much worse on the Hungarian 
data set, simple modifications produce accuracy compa­
rable to that for C4 (Aha, 1990), and its performance on 
the other domains argues that it deserves closer inspec­
tion in any case. 

In the remainder of this paper, we report the init ial 
results of our average-case analysis of the simple near­
est neighbor method. We begin by presenting the as-
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Figure I. Regions of interest for computing the probability 
of correctly classifying a negative test case /d, distance d 
from prototype P, using the stored training case Je, which is 
distance e from Id- The inner region depicts the probability 
that e <d — i, the outer region shows the probability that 
e > d + i, and the central region indicates the probability 
that d - t < e < d + i. 

The second term from this equation, T(Jd- i ,d+i)n, 
the contribution to the accuracy when the distance to 
the nearest stored training instance Je is between the 
distances to the nearest possible positive instance and 
the farthest one (i.e., d—i < e < d + i ) . This corresponds 
to the central region in the figure. In this situation, con­
flicts can occur during the classification process, in that 
the algorithm may retrieve both positive and negative 
training cases at distance e from the test case. 

Ties are possible in this region because, given t irrele­
vant attributes, there are 2* positive instances that can 
be located i steps or less away from the prototype. For 
any given test case Id that is distance d from the pro­
totype, the nearest stored positive case may be t steps 
away from the prototype in the direction toward Id, i 
steps away from the prototype in the direction away from 
Id, or somewhere between these two extremes. Negative 
instances can also occur anywhere within this region, 
making the entire middle band in the figure open to the 
possibility of ties. 

To handle all possible ties, we must sum over all dis­
tances e between d — * and d + i, then sum over the 
possible numbers k of nearest instances (positive or neg­
ative) that have been stored at each such distance. In 
each case, we must mult iply the probability M(Je)nk 

of that number occurring by the accuracy E(Je)^ that 
results from such a tie. We can state this formally as 

(6) 

We can further decompose the first term in the product 
into the probability that exactly k of the n training cases 
are distance e from the test case and that the remaining 
n - A: are at some greater distance (since the k cases are 
the nearest ones), giving 

as the formal expression. To compute the accuracy given 
a tie among A: stored cases, we must sum over the possible 
numbers j of negative instances, in each case multiplying 
the subaccuracy by the probability of that occurrence. 
This gives 

where j/k is the expected accuracy when one selects a 
training case at random from a set that contains j out 
of k negative instances. The term V(C)-d represents 
the probability of a positive instance Je given that the 
instance is e steps away from negative test case /«*. which 
is in turn d steps away from the prototype. We caexpand this term to 

min( r ,d ) 

which is the probability that my given training case wil l 
fall at distance e or greater fom the test instance, taken 
to power n to generate the probability that every train­
ing instance seen so far satisfies this condition. 

Now we can turn to A(C)n, the accuracy on positive 
test cases after n training instances. The situation here is 
simpler than for negative test cases, but sti l l nontrivial. 
The algorithm is guaranteed to classify a positive test 
case Id correctly only when the nearest stored training 
instance is itself the test case (i.e., e = 0). Ties can occur 
anywhere in the range 1 < e < i, giving the expression 
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(11) 

Because one can treat any positive instance as the pro-
totype, there is no need to sum over different distances d 
here. Moreover, since no positive instance can be more 
than i steps away from any other, we can omit the th i rd 
term of equation (3), F ( J i + 1 ) n , which is always zero. 

The term for handling ties is analogous to equation 
(6) for the negative situation, but we must revise the 
definition for E(J e ) k in equation (8) to 

Note that here we must use the numerator k - j rather 
than k, in that we are dealing with positive test cases. 
Moreover, we must take a different approach to com­
puting V(C)+, the probability of a positive instance Je 
given that the instance is e steps away from positive test 
case Id- In this case, we have 

(13) 

when i > e, but zero in other situations. Taken together, 
the definitions for A ( C ) n , A( (c ) n , and their component 
terms let us predict the overall accuracy An for the near­
est neighbor algorithm as a function of the number of 
training instances n, the number of relevant attributes 
r, and the number of irrelevant attributes i. 

3. Behavioral Implications of the Analysis 
Although the equations in the previous sections pro­

vide a formal characterization of the nearest neighbor 
algorithm's behavior, their implications are not obvious. 
To better understand the effects of domain characteris­
tics, we systematically varied certain domain parameters 
and examined the predicted results. In addition to com­
puting theoretical predictions, we also collected experi­
mental learning curves that summarized the algorithm's 
actual behavior. Each datum on these curves reports the 
classification accuracy averaged over 100 runs on ran­
domly generated training sets, measured over the entire 
space of uniformly distributed noise-free instances. In 
each case, we bound the mean accuracy wi th 95% confi­
dence intervals to show the degree to which our predicted 
learning curves fit the observed ones. These experimen­
tal results provide an important check on our reasoning, 
and they identified a number of problems during devel-
opment of the analysis. 

Figure 2 shows the effects of the number of relevant 
attributes in the conjunctive target concept. For this 
study, we held the number of irrelevant attributes i con­
stant at one, and we varied both the number of training 
instances and the number of relevant attributes r. As 
typical w i th learning curves, the accuracy starts low and 
gradually improves as the algorithm encounters more 
training instances. The effects of target complexity also 
make sense. Increasing the number of relevant features 

Figure 2. Predictive accuracy of the nearest neighbor algo-
rithm on a conjunctive concept, assuming the presence of 
one irrelevant attribute, as a function of training instances 
and the number of relevant attributes. The lines represent 
theoretical learning curves, whereas the error bars indicate 
experimental results. 

should increase the overall number of negative instances, 
giving higher accuracy early in the induction process; 
however, this factor also increases the total number of 
possible instances, requiring more training cases to reach 
asymptote and producing a crossover effect. The learn­
ing rate seems to degrade gracefully wi th increasing com­
plexity, and the theoretical and actual learning curves 
are in close agreement, which lends confidence to the 
analysis. 

The sensitivity of the nearest neighbor algorithm to 
irrelevant attributes is more dramatic, as shown in Fig­
ure 3. This graph summarizes the results of a similar 
study of the interaction between the number of train­
ing instances n and the number of irrelevant attributes. 
Here we held the number of relevant attributes constant 
at two, and we examined three levels of the i parameter. 
As wi th the previous study, the degradation in learning 
rate is graceful, but the effect is somewhat greater. The 
difference between the two results appears more signifi­
cant when one realizes that increasing i does not reduce 
the proportion of positive instances, as does increasing 
the number of relevant attributes. These observations 
are consistent wi th Aha's (1990) reports on the sensitiv­
i ty of nearest neighbor methods to the number of irrele­
vant attributes. 

We can also compare the behavior of the nearest neigh­
bor algorithm to that of other induction methods for 
which average-case analyses exist. In particular, Pazzani 
and Sarrett (1992) have studied the W H O L I S T algorithm, 
which initializes its concept description to the conjunc­
tion of features in the first positive training instance, 
then removes any feature that fails to occur in later pos­
itive instances. Similarly, Langley, Iba, and Thompson 
(1992) have analyzed the behavior of the Bayesian clas-
sifier, a simple probabilistic method that stores observed 
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Figure 3. Predictive accuracy of the nearest neighbor algo-
rithm on a conjunctive concept, assuming the presence of 
two relevant attributes, as a function of training instances 
and the number of irrelevant attributes. The lines represent 
theoretical learning curves, whereas the error bars indicate 
experimental results. 

base rates and conditional probabilities. As Pazzani and 
Sarrett note, WHOLlST's learning rate is unaffected by 
the number of relevant attributes, so their algorithm 
clearly scales up better on this dimension than does the 
nearest neighbor technique. Comparison to the Bayesian 
classifier on this factor is more difficult, in that Lang-
ley et al.'s study examined equal probabilities for the 
two classes, whereas the current analysis assumes that 
they differ. 

In some domains, effective learning relies more on the 
ability to handle many irrelevant features than many rel­
evant ones. In this vein, we have shown analytically that 
the number of training instances required for WHOLIST 
to achieve a given level of accuracy increases only wi th 
the logarithm of the number of irrelevant attributes. A l ­
though we have not yet derived similar analytic relations 
for the nearest neighbor or probabilistic methods, we can 
use the existing analyses to estimate ability to scale on 
this dimension. 

Figure 4 graphs the predicted number of training in­
stances needed to achieve 90% accuracy for each algo­
r i thm as a function of the number of irrelevant attributes, 
assuming a target concept involving only one relevant 
feature and a uniform distribution of instances. The 
analyses do not provide these quantities directly, but 
one can interpolate them from the theoretical learning 
curves. The figure reveals that the Bayesian classifier 
scales well to increasing numbers of irrelevant attributes, 
wi th the dependent measure growing as an approximate 
linear function of this factor. In contrast, the num­
ber of training instances required by the nearest neigh-
bor method grows much faster, although we cannot yet 
determine the precise superlinear relation. These re­
sults are also consistent wi th Aha's (1990) conclusions 
about the response of standard instance-based methods 
to many irrelevant features. 

However, the above comparisons are not entirely fair. 
Neither the W H O L I S T algorithm nor the Bayesian clas­
sifier are designed to handle disjunctive concepts, which 
present no obstacles to even the simplest nearest neigh­
bor algorithm. Our focus on conjunctive concepts in the 
current analysis has obscured this strength. Also, Aha 
(1990) has developed a variant of the nearest neighbor 
algorithm that retains statistics on the usefulness of each 
attribute, and he has shown that this approach fares bet­
ter in domains with many irrelevant terms. Nevertheless, 
the ability to make comparisons of the above type is one 
advantage of careful formal analyses, and they have pro­
vided insights about the relative strengths of the differ­
ent learning algorithms. 

4. General Discussion 

In this paper we presented an average-case analysis of 
the most basic nearest neighbor algorithm. Our treat­
ment assumes that the target concept is conjunctive, 
that instances are free of noise, that attributes are Bool­
ean, and that instances are uniformly distributed. Given 
information about the number of relevant and irrelevant 
attributes, our equations let us compute the expected 
classification accuracy after a given number of training 
instances. 

To explore the implications of the analysis, we plotted 
the predicted behavior of the algorithm as a function of 
these three factors, finding graceful degradation as the 
number of relevants r and irrelevants i increased, but 
finding a stronger effect for the second. As a check on 
our analysis, we ran the algorithm on artificial domains 
with the same characteristics. The predicted behavior 
closely fit that found in the experiments, but only af­
ter correcting several errors in our reasoning that the 
empirical studies revealed. 
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These results begin to account for the wide range of 
performance observed for the algorithm by Aha and oth­
ers on natural domains. However, a ful l explanation wi l l 
require several extensions to the analysis. In particular, 
we must incorporate the influence of both class and at­
tr ibute noise, as we have done in earlier analyses (Iba & 
Langley, 1992; Langley et al . , 1992). We must also han­
dle situations in which each attr ibute follows a separate 
probability distr ibution, following the approach taken by 
Hirschberg and Pazzani (1991). 

Even more important, we must extend the framework 
to handle broader classes of target concepts. Nearest 
neighbor methods are well suited for M of N concepts, 
in which any M of the N features in the prototype are 
sufficient for membership in the class. Since distance 
from the prototype plays a central role in the current 
analysis, we believe extending it to handle such concepts 
wi l l be quite feasible. Similarly, because the algorithm 
stores many training instances in memory, it can easily 
acquire disjunctive concepts that require multiple pro­
totypes. Again, we hope that simple extensions to the 
existing framework wi l l handle this situation. We should 
also generalize the analysis to include fc-nearest neighbor 
methods, following the lead recently provided by Turney 
(in press). 

Another direction for future work would attempt to 
map the extended analysis onto natural domains in which 
there already exist experimental results wi th the method. 
Given information about the distributions of attributes 
(which are available in the data), along with estimates 
of the noise levels and target concepts (which require 
informed guesses), we can compare learning curves pre­
dicted by the theory wi th those observed in experimen­
tal runs. This approach would extend the applicability 
of our average-case model beyond the artificial domains 
to which we have limited our tests to date. 

In summary, we believe that our init ial analysis has 
provided some useful insights about the behavior of the 
basic nearest neighbor algorithm. These begin to explain 
why the algorithm compares favorably wi th more com­
plex induction methods on some domains but not oth­
ers, and our results are consistent wi th intuitions about 
the algorithm's sensitivity to irrelevant attributes. We 
also believe the existing theoretical framework can be ex­
tended to handle more challenging target concepts and 
other factors that complicate the learning task, thus pro­
viding a solid base on which to carry out further studies 
of instance-based learning. 
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