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Abs t rac t 
This paper investigates alternative estimators 
of the accuracy of concepts learned from exam­
ples. In particular, the cross-validation and 632 
bootstrap estimators are studied, using syn­
thetic training data and the FOIL learning al­
gorithm. Our experimental results contradict 
previous papers in statistics, which advocate 
the 632 bootstrap method as superior to cross-
validation. Nevertheless, our results also sug­
gest that conclusions based on cross-validation 
in previous machine learning papers are unreli­
able. Specifically, our observations are that (i) 
the true error of the concept learned by FOIL 
from independently drawn sets of examples of 
the same concept varies widely, (i i) the esti­
mate of true error provided by cross-validation 
has high variability but is approximately unbi­
ased, and (i i i) the 632 bootstrap estimator has 
lower variability than cross-validation, but is 
systematically biased. 

1 In t roduc t i on 
The problem of concept induction (also known as the 
classification problem [Kononenko and Bratko, 1991] and 
known as the prediction problem in the statistical litera­
ture [Efron, 1983]) is perhaps the most intensively stud­
ied topic in machine learning. Given a training set of 
classified examples drawn from a certain domain, and a 
language for stating concept definitions, the problem is 
to invent a concept definition inspired by the training 
set that wi l l correctly classify new examples drawn from 
the domain. 

Various methods have been proposed to evaluate the 
accuracy of learned concept definitions. Most researchers 
have used methods whose objective is, explicitly or im­
plicitly, to approximate what we call true error: the 
expected error of the learned concept on new exam­
ples. Cross-validation is the method most often used, 
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as for example in [Towell et a/., 1990] and [Weinstein 
et a/., 1992]. However several Monte Carlo studies of 
cross-validation and alternative methods have been done 
[Fitzmaurice et a/., 1991; Sanchez and Cepeda, 1989; 
Efron, 1983], which tend to indicate that cross-validation 
is inferior to the other methods. 

Compared to previous studies of methods for evaluat­
ing the performance of learning algorithms, this paper 
has several novelties. First, in addition to investigat­
ing the variance and bias of estimators of true error, we 
also examine how randomness in the choice of training 
examples leads to variance in true error itself. To do 
this we need to be able to evaluate true error exactly, 
which we achieve with synthetic data sets of examples 
of known concepts. Knowledge of exact true error rates 
also underlies the second novelty of our work, which is 
that we investigate the correlation between estimators of 
error and true error, distinguishing between downward 
(optimistic) and upward (pessimistic) bias. The third 
novelty here is the learning algorithm used, FOlL[Quin-
lan, 1990]. Logical rule learning, sometimes called induc­
tive logic programming, is an active research area cur­
rently, and FOIL and its variants are the most widely used 
rule-learning algorithms. From a more general point of 
view, the novelty of FOIL is that it is almost completely 
insensitive to the presence of duplicate examples in a 
training set, unlike the learning algorithms used in pre­
vious studies. 

The rest of this paper is laid out as follows. The "true 
error" metric for evaluating learned concepts and meth­
ods of estimating this metric are described in Section 
2. The FOIL learning algorithm and the synthetic data 
sets used in our experiments are the topic of Section 3. 
Our experimental results are presented in Section 4, and 
finally, our conclusions appear in Section 5. 

2 Measur ing learned concept accuracy 

In the concept induction problem, the learning algorithm 
is given as input a training set X consisting of a set of 
examples x1, x2> • • • xn where each example consists of 
two parts Xi = (ti,yi), where ti is a vector of attributes 
and yi, is the class. The algorithm constructs a concept 
definition that uses the attributes to predict the class. 
We assume that the training set is selected randomly ac-
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cording to some (unknown) probability distribution F.1 

For the classification problem, the most commonly 
used criterion for the goodness of a concept definition 
is its true error rate: the probability that the concept 
definition wi l l incorrectly classify an example drawn ran­
domly from the same distribution F as the training set. 
This is sometimes referred to as the generalization error 
of the concept definition since it measures how well the 
concept definition generalizes to examples the learning 
algorithm did not see. 

T h e d e f i n i t i o n o f t r u e e r ro r . The following defini­
tions are essentially the same as those in [Efron, 1983]. 
Suppose a learning algorithm constructs prediction rule 
r)(t,X) from training set X. Let ni, = n ( t i ,X ) be the 
prediction of this rule on example xi, and let Q[yi, yi,] be 
the error of the learned rule on that example. Formally 

The true error rate Err is then the probability of in­
correctly classifying a randomly selected example XQ = 
(To, lo) , which is the expectation 

Readers familiar wi th PAC learning theory wi l l notice 
that this definition of true error rate subsumes the defi­
nit ion of the error of a hypothesis with respect to a target 
concept given in [Haussler, 1988] and often used by PAC 
theorists. The difference is that the PAC framework usu­
ally assumes that the examples are either " in " or "out" of 
a hypothesis: that the hypothesis and target concept are 
deterministic. We do not make that assumption about 
either the learned concept or the target concept (i.e. the 
source of examples). It is quite possible that two exam­
ples may have the same attribute values and yet have 
different classes in our framework. 

T h e issue of e s t i m a t i n g t r u e e r ro r . We must usu­
ally estimate true error rate Err since the distribution 
F is usually unknown. The most conceptually straight-
forward way to do this is to randomly draw a test set of 
examples (independent of the training set) and take the 
mean error to be the test error 

where m is the size of the test set. Terr approaches 
Err as m —► 00. Unfortunately, this test set method 
of estimating Err is often infeasible because collecting 
examples is expensive. Also, if the number of examples 
available is l imited, the user of the learning algorithm 
wi l l want to use them all in constructing the classification 
rule. Of course, if data is cheap and Err is very low, the 
test set approach may be used. 

Several methods for estimating Err exist for use when 
the test set method is unattractive. These methods use 

1 Notice that the distribution of the examples, F, is over 
both the class and the attributes of the examples. In much 
work in machine learning the distribution is just over the 
attributes, and the class is assumed to be deterministtcally 
dependent on the attributes. Our definition subsumes the 
usual definition as a special case. 

the training set X itself as the basis for estimating Err. 
[Efron, 1979] shows that the three methods known as 
bootstrap, jackknife and cross-validation are mathemat­
ically related. Bootstrap is a nonparametric maximum 
likelihood estimator,3 jackknife is a quadratic approxi­
mation to bootstrap, and cross-validation is similar in 
form and value to jackknife. Later work [Efron, 1983] 
argues empirically and analytically that a modified boot­
strap method known as 632 bootstrap is superior. There-
fore, we focused on cross-validation and 632 bootstrap 
estimators in our work. 

T h e cross-va l ida t ion m e t h o d . Cross-validation es­
timates Err by reserving part of the training set for test­
ing the learned theory. In general, v-fold cross-validation 
(randomly) splits the training set into v equal-sized sub­
sets, trains on v—1 subsets and tests on one subset. Each 
subset is left out of the training set and used as the test 
set once. A common choice for v is the size n of the orig­
inal training set. Since each subset is then a singleton, 
this is called "leave-one-out" or n-fold cross-validation. 

For a given amount of training data, leave-one-out 
cross-validation allows learning from the largest possible 
number of examples, while sti l l basing the estimation of 
accuracy on unseen data. Intuitively, the true error of 
concepts learned on n — 1 examples during leave-one-out 
cross-validation should be close to what we are trying to 
estimate, which is the true error of the concept learned 
from all n examples. Other methods which use smaller 
subsets for training, in particular v-fold cross-validation 
where v < n, should intuit ively be poorer estimates of 
Err when the number of training examples available is 
small. 

T h e 632 b o o t s t r a p m e t h o d . The 632 bootstrap 
technique [Efron, 1983] for estimating Err creates a "re-
sample" from a training set by choosing n samples with 
replacement from the training set. Resamples are typi­
cally multisets. The 632 bootstrap estimator is defined 
as e632 = 0.368er + 0.632eb where eb is the proportion of 
the examples not chosen in the resample that are mis-
classified by the rule learned on the resample, and er is 
the proportion of training set examples which are mis-
classified by the rule learned on the whole training set. 
In practice, eb is averaged over many resamples. 

P rev ious compar isons of m e t h o d s . The 632 boot­
strap method is reported in [Efron, 1983] to estimate true 
error better in five experiments than several other meth­
ods including the original bootstrap method and cross-
validation. More recent and comprehensive experiments 
using linear discriminant classifiers confirm the good per­
formance of the 632 bootstrap method [Fitzmaurice et 
a/., 1991; Sanchez and Cepeda, 1989]. The main crite-
rion for evaluating an estimator Err in these papers is 
mean squared error, defined as MSE = E(Err - Err)2. 
The MSE of an estimator is a combination of its bias 
and variance, and is insensitive to whether bias is up­
ward or downward. Here we examine variance, bias, and 
the direction of bias separately. 

2 The bootstrap estimate of Err replaces the true distribu­
tion F with its nonparametric maximum likelihood estimate 
F where F is the empirical probability distribution putting 
equal mass 1/n on each observed sample z,. 
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In experiments using nearest neighbor classifiers, both 
cross-validation and the 632 bootstrap method have 
been reported to perform poorly, and a composite 
method has been suggested [Weiss, 1991; Weiss and Ku-
likowski, 1991]. Linear classifiers and nearest neighbor 
methods are very different from symbolic concept induc­
tion methods such as F O I L or decision tree algorithms. 
In almost all symbolic learning work cross-validation has 
been used to estimate the accuracy of learned concepts. 
One exception is work using the CART decision tree learn­
ing algorithm, for which the original and 632 bootstrap 
methods are compared wi th cross-validation in [Craw­
ford, 1989], wi th the conclusion that 632 bootstrap is 
best. 

3 Exper imenta l f ramework 

This section describes the learning algorithm and the 
data sets that we used to study the performance of cross-
validation and the 632 bootstrap method as estimators 
of the true error of learned concepts. 

T h e F O I L a l g o r i t h m . This algorithm [Quinlan, 1990] 
produces concept definitions which are sets of function-
free Datalog-with-negation clauses. Training sets given 
to FOIL are encoded as relation extensions, i.e. as lists 
of ground tuples. One or more of the relations is desig­
nated as the target relation, and F O I L attempts to learn 
an intensional definition for it in terms of the other re­
lations. 

For example, FOIL might be given the relations linked-
to(X, Y) and can-get-to(X, Y) defined extensionally and 
asked to find an intensional definition of can-get-to(X, Y). 
If the extensions of the two relations are such that can-
get-to(X, Y) is the transitive closure of linked-to(X, Y), 
F O I L may succeed in finding the intensional definition, 

can-get-to(X,Y) -, linked-to(X, Y) 
can-get-to(X,Y) <--- linked-to(X,Z), inked-to(Z,Y). 

There are many possible encodings for a given classifi­
cation problem. The particular one chosen can greatly 
affect the efficiency of FOIL and whether or not a concept 
definition is found at al l . One advantage of FOIL over 
other learning algorithms is that background knowledge 
can be provided in the form of additional relations that 
can be used in forming the concept definition. 

F O I L uses a greedy algorithm that builds concept def­
initions one clause at a t ime. Each clause is built one 
literal at a t ime, trying all possible variabilizations of 
each possible relation, and adding the one wi th the high­
est "information gain" to the clause. There is l imited 
within-clause backtracking: if no literal can be found 
with positive information gain, the algorithm removes 
the last literal added to the clause and replaces it wi th 
another candidate wi th positive (but lower) gain. 

Syn the t i c da ta sets. We constructed synthetic data 
sets in order to be able to evaluate true error exactly. 
These data sets were designed to be similar to real molec­
ular biology data sets that we extracted from the EPD 
eukaryotic promoter genetic sequence database for other 
work. Each synthetic data set contained positive and 
negative examples of a single, short, disjunctive normal 

form concept (DNF). Each example was defined by 50 bi­
nary attributes. The DNF concepts chosen were all short 
(i.e., they contained few clauses and the clauses were 
short), so the majority of the 50 attributes are uncorre­
­ted wi th the concept: they are "noise" or "irrelevant" 
attributes. The actual concepts used are as follows. 

The distribution of training examples for each concept 
was the same. We randomly selected examples from a 
mixture distribution wi th positive and negative examples 
having equal probability. In other words, to generate an 
example we randomly chose to generate either a positive 
or negative example (with equal probability) and then 
randomly generated binary strings of length 50 unti l an 
example of the correct class was found. This example 
was then put in the training set and the process was 
repeated unti l the desired number of examples had been 
generated. 

4 Exper imenta l results 
We ran a number of Monte Carlo simulations using syn­
thetic data sets and FOIL as just described. In each 
experiment we measured true error rate Err, its cross-
validation estimate, and its 632 bootstrap estimate. In 
brief, we discovered that 632 bootstrap performs very 
poorly with this learning algorithm and these target 
concepts. 632 bootstrap had lower variance than cross-
validation, but it had very poor correlation with Err 
and was strongly biased. 

E x p e r i m e n t a l design. We performed a number of 
experiments using data generated by the target concepts 
dn f l , dnf2, dnf3 and dnf4. The basic procedure in each 
experiment for each distribution was, using FOIL as the 
learning algorithm, as follows. Except in Figure 1, be­
cause of space limitations results are plotted below for 
dn f l only. Qualitatively similar results were always ob­
tained for each concept. 

Computing the value of Err was accomplished by ex­
haustively comparing the value of the learned concept 
definition and the true concept definition for every pos­
sible combination of values of the relevant attributes. 
The relevant attributes were those mentioned in the true 
concept definition or in the learned concept definition. 
In general, the number of relevant attributes was only 
about 10, making it possible to exhaustively check all 210 

possible combinations. It would have been prohibitive to 
check all 250 possible combinations of attributes. 

Scat ter p l o t exper imen ts . In these experiments, 
the basic procedure was repeated 100 times for each dis-
tr ibution. The size of the training set in each experiment 
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True Error (Err) (%) 

Figure 1: Scatter plot and least-squares line fit for cross-
validation and 632 bootstrap estimates versus E r r . 

was 100 samples. A l l the experiments gave very similar 
results so we combined them into two scatter plots. The 
results are shown in Figure 1. We can see that both 
cross-validation and 632 bootstrap have high variance 
as estimators of E r r . It is also apparent that E r r , the 
quantity which we are trying to estimate, has high vari­
ance as well. FOIL often learns the DNF concepts per­
fectly from some training sets of a given size, but learns 
a concept wi th very high E r r on other training sets of 
the same size. This fact makes the correlation of the 
estimators wi th the quantity being estimated of signifi­
cant interest. The correlation of 632 bootstrap wi th E r r 
is close to zero, while the correlation of cross-validation 
wi th E r r is much better, around 0.76. Note that least-
squares regression of each estimator on E r r gives a line 
with positive intercept: this indicates that the expected 
estimate of E r r is nonzero even when the target concept 
is learned perfectly. 

The following table shows the mean and (sample) stan­
dard deviation of Err and its cross-validation and 632 
bootstrap estimates for the 100 runs in the scatter plot 
experiments. 

Clearly 632 bootstrap is biased upward for all four con­
cepts. The bias of cross-validation as an estimator of 
E r r , on the other hand, is very small. The variance 
of 632 bootstrap is generally much less than that of 

40 60 80 100 120 140 
Number of Training Examples 

Figure 2: Learning curve for F O I L on dn f l . 

cross-validation. This has always been a primary reason 
for considering bootstrap methods over cross-validation 
[Efron, 1983]. 

The scatter plot experiments show the basic pitfalls 
of cross-validation as a method of estimating E r r . The 
outliers in the scatter plots of cross-validation estimate 
of E r r versus E r r itself show that cross-validation es­
timates based on a single training set can greatly over-
or under-estimate true error. It is dangerous to conclude 
that one learned concept definition is better than another 
solely on the basis of cross-validation. However, the low 
bias and relatively high correlation of cross-validation 
with E r r indicates that, on average, cross-validation is 
a good estimator of E r r . 

Lea rn i ng curve expe r imen ts . To understand bet­
ter the reasons behind the poor performance of the 632 
bootstrap method, and to see how cross-validation per­
formed with different training set sizes, we conducted 
experiments to construct learning curves for FOIL on the 
four target concepts. 

The learning curve experiments consisted of repeating 
the basic procedure 10 times for a given training set size 
and a given distribution to get mean values for E r r , 
cross-validation and 632 bootstrap. This was repeated 
for various sizes of the training set and plotted. The 
results are shown in Figure 2 for dn f l . Error bars show 
plus and minus the sample standard deviations of the 
measured quantities. For visual clarity, only the error 
bars for E r r are shown. 

It can be seen that cross-validation does well over a 
large range of training set sizes at estimating the mean 
value of E r r for that training set size. Its bias is quite 
low. On the other hand, the bias of 632 bootstrap is 
downward for small training sets and upward for large 
training sets. 

The 632 bootstrap estimator has been reported to have 
lower variance than cross-validation. Figure 3 confirms 
this: the sample standard deviation (ssd) of 632 boot­
strap is lower than that of both cross-validation and 
E r r in almost all cases. For d n f l , the ssd of 632 boot­
strap tends to be flat over a wide range of training set 
sizes. For other target concepts, the ssd of 632 bootstrap 
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Figure 3: Sample standard deviation of error measures 
versus training set size for FOIL learning dnf1. 

Figure 4: Learning curve for FOIL on dnf l with bootstrap 
plotted against 0.632(number of samples). 

becomes larger than that of Err and cross-validation 
when the size of the training set becomes large and con­
sequently, the value of Err becomes small. The 632 
bootstrap method can thus lose its main advantage over 
cross-validation when the value of Err is small. 

E x p l a i n i n g t h e fa i l u re o f 632 b o o t s t r a p . The 
poor performance of 632 bootstrap is surprising in view 
of earlier, positive reports in the statistical literature 
[Fitzmaurice et a/., 1991; Efron, 1983]. However, that 
work measured the accuracy of 632 bootstrap for train­
ing data generated from two multivariate normal classes. 
The best rule for classifying such data wil l have nonzero 
true error since the attributes of an example are not suf­
ficient to determine which class it belongs to. By con­
trast, our data always came from classes which could be 
perfectly discriminated. 

The 632 bootstrap estimate of error, as mentioned pre-
viously, is a weighted average of erroreb on the samples 
left out during resampling and resubstitution error er. 
The FOIL algorithm tends to learn concepts that "cover" 
all the training examples. Thus, resubstitution error 
tends to be close to zero, so the 632 bootstrap estimate 
of error is essentially equal to 0.632eb. It is noticeable 
that eb is a good estimate of Err on 0.632n samples. 
This can be seen in Figure 4, which plots the values of 
eb measured on n samples at 0.632n on the x axis. 

Bootstrap resampling results in training sets which 
are multisets. The expected number of distinct points 
in a resample is about 0.632 times the size of the orig­
inal dataset.3 The effect shown in Figure 4 can be ex­
plained if FOIL learns essentially the same concept on 
the bootstrap resampled multiset as it would on the set 
obtained by removing duplicates from the resample. Fig­
ure 5 shows learning curves for F O I L applied to resamples 
with and without duplicates removed. The results con­
firm our suspicion. The poor performance of the 632 
bootstrap method used wi th FOIL appears to be due to 

3The probability of any given example in the original 
dataset being chosen during resampling is 1 - (1 - l / n ) n , 
which is approximately 1 - e-1 = 0.632. 

the fact that FOIL does not benefit from duplicates in 
a multiset of training examples. The concepts learned 
by FOIL are, however, different with and without dupli­
cates, as can be seen by the fact that the curves for eb 
are different. 

It is worth noting that the one-nearest-neighbor clas­
sification method, with which the 632 bootstrap method 
is reported to perform poorly [Weiss, 1991], is a learn­
ing algorithm for which by definition duplicates in the 
training set have no influence. Other learning algo-
rithms with which the 632 bootstrap method has been 
reported to work well, notably Fisher's linear discrim­
inant method used in [Fitzmaurice et a/., 1991] and 
[Efron, 1983] and the CART decision tree algorithm used 
in [Crawford, 1989], are strongly influenced by dupli­
cates. 

5 Discussion 
We studied the performance of cross-validation and 632 
bootstrap as estimators of the accuracy of concept defini­
tions learned from synthetic data by FOIL. We observed 
the following. 
(i) The true accuracy Err of learned concepts has high 

variance. That is, the error of the concept learned 
by FOIL from independently-drawn sets of examples 
of the same concept varies widely. 

(i i) The 632 bootstrap estimator has lower variance 
than cross-validation, but it is biased. In our ex­
periments, this bias was upward when the value of 
Err was below 15%, and downward when Err was 
above 30%. 

(i i i) The estimate of Err provided by cross-validation 
has high variance but is approximately unbiased. 

Each of these observations carries implications for future 
experimental work comparing learning algorithms. The 
first observation, if it also applies to algorithms other 
than FOIL , implies that standard statistical tests are in­
valid for deciding whether one algorithm is significantly 
better than another, when the available data concerns 
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Figure 5: FOIL learns poorly on multisets. Average E r r 
for 10 training sets, multiset resamples and resamples 
with duplicates removed. 

both algorithms learning from single data sets. In [We-
instein et a i , 1992], for example, backpropagation in a 
neural network wi th 7 hidden units is compared with 
Fisher's linear discriminant method using a single com-
mon data set of 141 examples. The following leave-one-
out cross-validation data are given: 

NN with 7 hidden units 
[ Linear discriminant 

correct incorrect 
129 12 
121 20 

The authors apply a statistical test similar to the x2 

test to conclude that backpropagation in a neural net­
work wi th 7 hidden units performs significantly better 
than Fisher's linear discriminant method. The null hy­
pothesis in this test is that the concept learned by each 
algorithm has the same accuracy, and that the observed 
correct/incorrect numbers are therefore the result of two 
sets of 141 binomial trials with the same probability of 
success. However, an extra level of randomness is in­
volved here. The training set used to measure the perfor­
mance of both algorithms may by chance be one on which 
backpropagation performs well, whereas the linear dis­
criminant method performs poorly. Despite the signifi­
cant difference in performance of the two algorithms on 
this data set, the algorithms may well be indistinguish­
able on independent data sets identically distributed to 
this data set. 

The second observation above is disappointing because 
previous work has concluded that 632 bootstrap per­
forms better than cross-validation. The poor perfor­
mance of 632 bootstrap here appears to be caused by 
the fact that the FOIL algorithm learns almost the same 
concept on a multiset as on its projection. Future ex­
perimental work on learning algorithms should not use 
the 632 bootstrap method unless all learning algorithms 
being tested are sensitive to repeated training examples. 

Despite the caution required given the first observa­
tion listed above, the th i rd observation leads us to rec­
ommend continuing to use cross-validation for evaluat-
ing the performance of learning algorithms. We recom­

mend cross-validation in particular because of its strong 
(but not perfect) correlation with E r r . However, exper­
imenters must keep in mind that unfortunately, which 
estimator of learned concept accuracy is best depends 
on which learning algorithm is used. 
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