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Abs t rac t 

Vi ta l information for corporate activities is gen­
erally stored in large databases. While conven­
tional data-base management systems offer l im­
ited query flexibility, systems capable of gen­
erating similarity-based queries, such as those 
seen in case-based reasoning research, would 
certainly enhance the ut i l i ty of data resources. 
This paper describes a method for building 
case-based systems using a conventional rela­
tional data-base (RDB). The core of the algo­
r i thm is a novel approach to similarity comput­
ing in which database query form similarities, 
rather than similarities of individual cases, are 
computed. The method uses Standard Query 
Language (SQL) to achieve nearest neighbor 
matching, thus allowing similarity-based data­
base retrieval. It has been implemented as a 
part of the CARET case retrieval tool and eval­
uated through the use of a newly developed 
corporate-wide case-based system for a soft­
ware quality control domain. Experiments have 
shown the proposed method to provide retrieval 
results equivalent to those of non-RDB imple­
mentation at a sufficiently fast response time. 

1 In t roduc t i on 
This paper describes the architecture and performance 
evaluation of a case-based reasoning system built on 
a commercial relational data-base management sys­
tem (RDBMS). Specifically, the authors have developed 
CARET (Case Retrieval Tool), a tool which generates 
appropriate SQL [ANSI, 1989] expressions to carry out 
similarity-based retrieval on a commercially available 
RDBMS, such as ORACLE [Oracle, 1989]. The core of 
the algorithm is a novel approach to similarity comput­
ing which pre-computes query form similarities, rather 
than the similarities of individual cases. 

The motivation behind this research was two-fold. 
First, the use of a RDBMS, or a mechanism with equiv­
alent functions, was found to be the minimum require­
ment for CBR systems to be installed as part of a 
corporate-wide information system. This requirement 
was pointed out by engineers and managers in corporate 
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data processing divisions and other administrative divi­
sions. Important reasons include the need for security 
control and integrity management. 

Second, significantly large data-bases in various do­
mains presenly available in many corporate information 
systems are built on commercial RDBMSs. Applications 
using CBR would allow exploring new horizons in cor­
porate information systems, since current RDBMSs only 
provide relatively primitive (i.e. only exact match) query 
capability. Efforts to convert these data-bases into in­
dependent CBR systems, however, wi l l inevitably un­
dermine security control and waste computing resources 
(memory and CPU). In addition, since two separate 
data-bases would be created in such a conversion, the in­
tegrity of the case-base would not be maintained because 
the mechanism for automatically reflecting changes in 
the RDB to case-base would, for both technical and se­
curity reasons, not be installed 

The underlying belief behind these observations is the 
mainstream dogma, which claims that a CBR system 
should be integrated into a mainstream corporate-wide 
strategic information system. This idea was first advo­
cated in [Kitano et a/., 1992; Kitano et a/., 1993] and has 
been the central core of the CBR-related research activ­
ities at NEC Corporation. Development of a CBR ar­
chitecture using RDBMS would be a major step forward 
toward achieving the goals of the mainstream dogma. 

Unfortunately, however, no existing CBR system uses 
RDBMS as its case-base manager. Even commercial 
tools, such as CBR Express on ART- IM, ReMind, and 
ESTEEM, do not incorporate RDBMS. Of course, not all 
CBR systems require t ight security control and integrity 
management. Nevertheless, the advantages inherent in 
building CBR systems using RDBMS are remarkable. 
The authors argue that this is one of the most signifi­
cant unexplored avenues in CBR research and describe 
the architecture and evaluation results of their proposed 
CBR system for RDBMS. 

2 Problems in Cur ren t Case-Base 
Management 

The case-base management concept is critically lacking 
in the current research on CBR systems. This is mainly 
due to the fact that a vast majority, if not all, of CBR 
systems have been built as task-specific domain problem 
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solvers. These systems, similar to most expert systems, 
are detached f rom mainstream information systems for a 
corporation. However, as has been clearly demonstrated 
in the wide-spread use of data-base management systems 
(DBMS), data resource management is an essential issue 
the corporate information systems. 

lb be more specific, the following issues have not been 
addressed in previous studies on CBR systems. 

Secur i t y C o n t r o l : In real applications, collected cases 
include secret information for a corporation or a de­
partment. No CBR systems developed so far in­
corporated any security measures. In the absence 
of the security control, the system can not be used 
for highly confidential information where maximum 
value can be exploited. 

Sca lab i l i t y The efficiency of a CBR application heavily 
depends on the number of cases collected. In some 
real applications, collected cases can increase dras­
tically chronologically. For example, in the SQUAD 
system, a corporate-wide CBR system for soft­
ware quality control domain [Kitano et a/., 1992], 
over 3,000 cases have been added into its case-
base each year. Since real domains are often very 
complicated and ill-formed, use of complex index­
ing, as seen in [Hammond, 1986; Hunter, 1988; 
Ashley and Rissland, 1987; Kolodner, 1984], would 
require significant development costs and the system 
behavior would be unstable, as the experts them­
selves do not fully understand the nature of such 
domains. It would be beyond control of system en­
gineers. 

Speed Although various indexing and case-base organi­
zation methods have been investigated, only a few 
studies addressed the issue of computing cost. Fast 
case retrieval is an indispensable feature of real-
world applications, particularly for very large case-
bases. 

3 C A R E T Design Decisions 

This section describes major design decision made in de­
veloping CARET (CAse REtr ieval Tool) . 

3.1 Case-Base M a n a g e m e n t us ing R D B M S 

The most significant design decision was the use of a 
commercial RDBMS for its case-base manager. Each 
case is represented as a record of a relational database 
table. The use of a RDBMS offers several advantages, 
such as (1) data security, (2) data independence, (3) 
data standardization, and (4) data integrity. The use 
of RDBMS, however, automatically forces CARET to 
generate SQL specifications [Codd, 1970; Chamberlin et 
a/., 1976] to carry out any case-base retrievals. SQL is 
the standard relational database access language. How­
ever, SQL does not entail any similarity-based retrieval 
features. The essence of this work, therefore, is to find 
a method to carry out similarity-based retrievals using 
SQL. 

The other constraint, imposed from the use of 
RDBMS, is that cases have to be represented as a flat 

record of n-ary relations. RDBMS do not entail a mech­
anism to support a complex indexing scheme, as seen 
in most CBR researches. However, this constraint is 
not necessarily a l imit ing factor for case representations. 
Through the SQUAD development, the authors learned 
that complex indexing schemes are too difficult to main­
tain, particularly for ordinary system engineers. 

3.2 S i m i l a r i t y D e f i n i t i o n us ing A b s t r a c t i o n 
H ie ra r chy 

Similarity between values is defined using an abstraction 
hierarchy, shown in Figure 1. It is defined for each at­
tribute in a flat table, such as language, machine, and 
OS. In this example, the similarity between C and C++ is 
0.7. Similarity between the input query and each case in 
the case-base is calculated by referring to the similarity 
of values in each attribute. 

3.3 Case Re t r i eva l us ing Nearest Ne ighbo r 
CARET uses nearest neighbor retrieval, instead of 
indexing-based methods. Typically, a similarity between 
a query (Q) and a case (C) in the case-base (S(Q,C)) is 
the weighted sum of similarities for individual attributes: 

where Wi is the t-th attr ibute weight, s(Qi, Ci) is sim­
ilarity between the t-th attr ibute value for a query (Q) 
and that for a case (C) in the RDB. 

Traditional implementations would compute the sim­
ilarity value for all records, and sort records based on 
their similarity. However, this is a time consuming task, 
as computing time increases linearly wi th regard to the 
number of records in the case-base (C : Cardinality of the 
data-base) and to the number of defined attributes (D : 
Dtgree of the data-base). This results in time-complexity 
of 0(C x D). This implementation strategy for RDBMS 
would be a foolish decision, as individual records have 
to be retrieved to compute similarity. Thus, the total 
transaction number would be intolerable. 

The challenge here is to discover an algorithm to im­
plement the nearest neighbor algorithm using SQL suf­
ficiently efficient to be practical. The following sections 
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describe such an algorithm and report on its performance 
using the deployed system. 

4 Generat ing SQL specifications w i t h 
S imi la r i t y Measures 

4.1 C r e a t i n g N e i g h b o r Va lue Sets 

For each attribute, CARET refers to the abstraction hi­
erarchies , as shown in Figure 1, to generate a set of values 
neighboring the value specified by the user. For example, 
assume that the user specified BSD4.2 in the hierarchy 
shown in Figure 2, BSD4.2 is an element in the first-
order neighbor value set (lst-NVS). BSD4.3 is an element 
in the second-order neighbor value set (2nd-NVS). SVR2 
and SVR4 are elements in the third-order neighbor value 
set (3rd-NVS). Such sets are created for each attribute. 

Assume that the user specified VAX for an attribute 
machine and ADA for an attribute language in the hier­
archies in Figure 1, Table 1 shows the generated NVS 
sets. 

4.2 E n u m e r a t i n g t he Comb ina t i ons 

Next, all possible neighbor value combinations are cre­
ated from the n-th order neighbor value sets. Figure 3 
illustrates how such combinations are created. This ex­
ample assumes that the user specified values for attribute 
language and machine. A l l value combinations under 
attribute language and machine wil l be created. Weight 
of attributes (0.3 for language and 0.4 for machine) and 
similarity measure (such as 1.0, 0.2, 0.8 assigned to each 
value set) are used to calculate the similarity between a 
combination and the problem definition specified by the 
user. Using the neighbor value sets from the previous 
example, combinations shown in Table 2 are created. 

Disjunction is created for values under the same node. 
Under this assumption, the maximum number of combi­
nations (N) produced in a given query wil l be: 

(2) 

where r is a number of attributes specified by the user, 
and di is the depth of the tree of the attribute t. Aug­
menting this formula to a more general case which does 
not involve disjunction, would lead to the following equa­
tion: 

(3) 

where is an average fanout of the tree for attribute 
t . 

4.3 Ass ign ing S i m i l a r i t y Va lue 
For each combination, a similarity value is calculated 
using similarity between values of attributes specified by 
the user and values of combinations created in the pre­
vious stage. The calculation is similar to the weighted 
nearest neighbor, except that not all attributes are in­
volved. The CARET algorithm does not compute any 
attributes not specified by the user. The rationale 
for this approach is described in [Kitano et a/., 1992]. 
Whether the user specified the attribute or not is shown 
in a mask matrix ( M ) , which is a one-dimension matrix 
whose size is equivalent to the case-base degree. The 
matrix element Mi, wil l be 1, if the user specified the 
value for the attribute i. Otherwise, Mi, wil l be 0. The 
formula for calculating the similarity is as follows: 
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where F is an NVS combination and Fi is the i-th at-
tr ibute for the combination. It should be noted that sim­
ilarity is calculated between the user specified attributes 
and combinations of NVSs which is the seed for SQL 
specifications. In essence, the similarity is computed be-
tween a user's specification and SQL specifications. This 
is counter to traditional methods, which compare a user's 
query specification with each case instance. For exam-
ple, the similarity of a combination, ([C, C + + , COBOL, 
COBOL/S] , [SUN, NEWS, ...]) to the user's query spec­
ification is calculated as follows: 

(5) 

The similarity value is 0.54 because only attributes 
language and machine are involved (the user specified 
only these attributes), whose weights are 0.3 and 0.4, re­
spectively. The similarity between ADA and [C, C++, 
COBOL, COBOL/S] is 0.2 and that for VAX and [SUM, 
MEWS, . . . ] is 0.8. 

4.4 T h r e s h o l d i n g and N-Best M a t c h 
When there are too many combinations, translating all 
combinations and dispatching all SQL specifications are 
inefficient and wasteful. Methods to l imit the number 
of SQL specifications to be created are necessary in real 
deployment. Two approaches are incorporated in the 
CARET system. 

The first method is the N-Best match. CARET dis­
patches SQLs from highest similarity score, and counts 
the number of cases retrieved to stop the retrieval, when 
the number of retrieved cases exceeds a predetermined 
number. 

Second, a threshold can be set in order to dispatch 
SQL specifications, which are sufficiently similar to the 
user's problem specifications. SQL specifications below 
a specified threshold wi l l not be created. 

4*5 Gene ra t i ng SQL Speci f icat ions 
Each combination is translated into a corresponding SQL 
specification. Since SQL does not involve the similarity 
measure, the value assigned in the previous process is 
stored in CARET, and is referred to when the query 
results are returned. 

The only SQL expression type used here is the 
SELECT-FROM-WHERE type. Its form is 

SELECT fields list 
FROM case-base table 
WHERE field conditions; 

This should read "Select records in a case-base ta­
ble which satisfy specific field conditions in the WHERE 
clause, and return the value of the requested fields in the 
SELECT clause from the selected records". 

Each element in a specific combination is translated 
into a certain condition expression of SQL. For ex­
ample, machine(EVS4800) is translated into (machine 
= EVS4800) which means that the attribute machine 
must be EWS4800. Language( o r ( C, C++, COBOL, 
COBOL/S)) is translated into (language in (C, C++, 
COBOL, COBOL/S)) which means that the attribute 
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Figure 4: SQUAD-I I Screen Image 

language must be C, C++, COBOL, or COBOL/S. Then, 
each condition expression is connected with the logical-
AND operators. For example, and( machine (VAX), 
language( o r (C , C++, COBOL, COBOL/S)) is trans­
lated into (machine = VAX) and (language in (C, 
C++, COBOL, COBOL/S)). 

As a result, the SQL specification would be produced. 
An example of the generated SQL is shown below. 

SELECT * 
FROM case- tab le 
WHERE (machine = VAX) AND 

(language in (C,C++,COBOL,COBOL/S)); 

5 Performance Evaluation 
CARET performance was evaluated using the 

SQUAD-I I system which is a deployed case-base sys­
tem built on CARET using ORACLE, a commer­
cial RDBMS. SQUAD-I I is a direct descendent of the 
SQUAD system which has been applied to the soft­
ware quality control (SWQC) domain. The prime dif­
ference between SQUAD and SQUAD-I I is the use of 
RDB in SQUAD-I I , where SQUAD was built on a home-
made case-base manager. SQUAD-I I users are assumed 
to choose several attributes and their values which de­
scribes the problem which the user is facing. The user's 
choice, then, is interpreted by CARET, embedded in 
SQUAD-I I , to produce SQL specifications. SQL spec­
ifications are sent to ORACLE to retrieve cases of soft­
ware quality control. Results are shown in the SQUAD-
II screen (Figure 4). 

The experiments were carried out on SUN Sparc Sta­
tion 2, using ORACLE version 6 installed on SunOS ver­
sion 4.1.2. Figure 5 shows the response times measured 
for three user queries, and various sizes of case-bases. 
The three queries are: 



For query-2, the following SQL specifications and their 
similarity values are derived (See Table 3). 

Characteristics for each query are shown in Table 4. 
Query length refers to the number of conjunctive clause 
in the WHERE clause. Tree depth shows abstraction hi­
erarchy depth for each attribute. Tree width is the 
number of terminal nodes of the abstraction hierarchy 
of each attr ibute. Generated SQL number is the num­
ber of SQLs generated and actually sent to RDBMS. 
Cases matched shows the number of cases matched in 
each query. 158+1-4_1199 should read as 158 matches at 
the first SQL, 4 matches at the second SQL, and 199 
matches at the third SQL. These numbers are measured 
with a case-base containing 800 cases. 

The algorithm scalability has been tested by increasing 
the number of cases in the case-base. The number of 
cases was increased up to 1,600. Response times (in real-
time, not in CPU time) are shown in Figure 5. 

Query-1 returned the major part of cases in the case-
base, resulting in slower response time due to the neces­
sity to retrieve these cases. The response time for the 
query-1 increases linearly as the case-base size increases. 
Indexing methods for the commercial database systems 
are not effective for reducing response time in such sit­
uations. Also, most of the time is spent on retrieving 
matched cases, rather than on matching itself. 

Fortunately, however, users generally specify a query 
in a much more detailed manner. An empirical anal­
ysis, using the SQUAD system, showed that the aver­
age number of specified attributes for each retrieval was 
3.4 out of 75 features [Kitano et a/., 1992]. This would 
help RDBMS to constrain the search and the query time 

would be dramatically shorter. The second and third 
queries confirm this observation. 

The second and the th i rd queries show a nearly con­
stant time responses, regardless of the case-base size. 
This is due to the fact that SQL specifications are spe­
cific enough to constrain the search on RDBMS. Since 
the system provides fast response time, it would suffice 
for most tasks. 

A brief analysis of the performance results would shed 
light on the system behavior. There are two major fac­
tors which affect retrieval speed. They are: number of 
SQL specifications actually dispatched to the RDBMS, 
and number of cases retrieved. The maximum number of 
the SQL specifications which may be created is decided 
by a number of specified attributes by the user and the 
depths of the tree of the specified attribute (Equation 
2). Longer response time is required with a larger num­
ber of cases to be retrieved. The number of cases to be 
retrieved depends upon the specificity employed in the 
SQL specifications. Query-1 resulted in longer response 
time than query-2 and query-3, because a large number 
of cases had to be retrieved. Query-2 and query-3 at­
tained faster response time, because SQL specifications 
were specific. 

6 C o n c l u s i o n 

This paper proposes a new method which enables the 
use of RDBMS as a case-base management system. Al­
though case-base management, such as data-security and 
data-integrity, which are readily available in RDBMS, 
has not been the subject of significant case-base reason­
ing (CBR) research, case-base management functions are 
essential to the integration of CBR systems with main-
stream corporate information systems. 

This paper has proposed a novel method to implement 
similarity-based retrieval using SQL, hereby enabling 
CBR systems to use RDBMS. The algorithm was imple­
mented as a CARET case retrieval tool. CARET gener­
ates SQL specifications of varying degrees of similarity, 
and the generated SQL specifications are dispatched to 
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Figure 5: Response Times for Three User Queries 

RDBMS to retrieve cases from RDB. The method we 
have proposed here determines a pre-compute similari­
ties for individual query forms, rather than computing 
the similarities of individual cases. 

A performance test using SQUAD-I I , a corporate-wide 
CBR system built on CARET, has demonstrated that 
the proposed method attains acceptable performance 
and suggests that the proposed method is practical for 
large-scale case-bases used in workstations. The pro­
posed method, then, is well-suited to serve as a basic 
algorithm for corporate-wide large-scale case-based sys­
tems. 
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