
R e t r i e v i n g Cases f r o m Re la t iona l Data-Bases:
A n o t h e r S t r i de Towards C o r p o ra te -Wide Case-Base Systems

Hideo Shimazu* H i roak i K i tano**
C&C Information Technology Research

Laboratories*, NEC Corporation
4-1-1 Miyazaki, Miyamae

Kawasaki, 216 Japan
{sh imazu,ak ih i ro} j o k e . c l . n e c . c o . j p

Abs t rac t

Vi ta l information for corporate activities is gen­
erally stored in large databases. While conven­
tional data-base management systems offer l im­
ited query flexibility, systems capable of gen­
erating similarity-based queries, such as those
seen in case-based reasoning research, would
certainly enhance the ut i l i ty of data resources.
This paper describes a method for building
case-based systems using a conventional rela­
tional data-base (RDB). The core of the algo­
r i thm is a novel approach to similarity comput­
ing in which database query form similarities,
rather than similarities of individual cases, are
computed. The method uses Standard Query
Language (SQL) to achieve nearest neighbor
matching, thus allowing similarity-based data­
base retrieval. It has been implemented as a
part of the CARET case retrieval tool and eval­
uated through the use of a newly developed
corporate-wide case-based system for a soft­
ware quality control domain. Experiments have
shown the proposed method to provide retrieval
results equivalent to those of non-RDB imple­
mentation at a sufficiently fast response time.

1 In t roduc t i on
This paper describes the architecture and performance
evaluation of a case-based reasoning system built on
a commercial relational data-base management sys­
tem (RDBMS). Specifically, the authors have developed
CARET (Case Retrieval Tool), a tool which generates
appropriate SQL [ANSI, 1989] expressions to carry out
similarity-based retrieval on a commercially available
RDBMS, such as ORACLE [Oracle, 1989]. The core of
the algorithm is a novel approach to similarity comput­
ing which pre-computes query form similarities, rather
than the similarities of individual cases.

The motivation behind this research was two-fold.
First, the use of a RDBMS, or a mechanism with equiv­
alent functions, was found to be the minimum require­
ment for CBR systems to be installed as part of a
corporate-wide information system. This requirement
was pointed out by engineers and managers in corporate

Ak ih i ro Shibata*
Case Systems Laboratory**

NEC Corporation
2-11-5 Shibaura, Minato

Tokyo, 108 Japan
k i tano spls26.ccs.mt .nec.co. jp

data processing divisions and other administrative divi­
sions. Important reasons include the need for security
control and integrity management.

Second, significantly large data-bases in various do­
mains presenly available in many corporate information
systems are built on commercial RDBMSs. Applications
using CBR would allow exploring new horizons in cor­
porate information systems, since current RDBMSs only
provide relatively primitive (i.e. only exact match) query
capability. Efforts to convert these data-bases into in­
dependent CBR systems, however, wi l l inevitably un­
dermine security control and waste computing resources
(memory and CPU). In addition, since two separate
data-bases would be created in such a conversion, the in­
tegrity of the case-base would not be maintained because
the mechanism for automatically reflecting changes in
the RDB to case-base would, for both technical and se­
curity reasons, not be installed

The underlying belief behind these observations is the
mainstream dogma, which claims that a CBR system
should be integrated into a mainstream corporate-wide
strategic information system. This idea was first advo­
cated in [Kitano et a/., 1992; Kitano et a/., 1993] and has
been the central core of the CBR-related research activ­
ities at NEC Corporation. Development of a CBR ar­
chitecture using RDBMS would be a major step forward
toward achieving the goals of the mainstream dogma.

Unfortunately, however, no existing CBR system uses
RDBMS as its case-base manager. Even commercial
tools, such as CBR Express on ART- IM, ReMind, and
ESTEEM, do not incorporate RDBMS. Of course, not all
CBR systems require t ight security control and integrity
management. Nevertheless, the advantages inherent in
building CBR systems using RDBMS are remarkable.
The authors argue that this is one of the most signifi­
cant unexplored avenues in CBR research and describe
the architecture and evaluation results of their proposed
CBR system for RDBMS.

2 Problems in Cur ren t Case-Base
Management

The case-base management concept is critically lacking
in the current research on CBR systems. This is mainly
due to the fact that a vast majority, if not all, of CBR
systems have been built as task-specific domain problem

Shimazu, Kitano, and Shibata 909

solvers. These systems, similar to most expert systems,
are detached f rom mainstream information systems for a
corporation. However, as has been clearly demonstrated
in the wide-spread use of data-base management systems
(DBMS), data resource management is an essential issue
the corporate information systems.

lb be more specific, the following issues have not been
addressed in previous studies on CBR systems.

Secur i t y C o n t r o l : In real applications, collected cases
include secret information for a corporation or a de­
partment. No CBR systems developed so far in­
corporated any security measures. In the absence
of the security control, the system can not be used
for highly confidential information where maximum
value can be exploited.

Sca lab i l i t y The efficiency of a CBR application heavily
depends on the number of cases collected. In some
real applications, collected cases can increase dras­
tically chronologically. For example, in the SQUAD
system, a corporate-wide CBR system for soft­
ware quality control domain [Kitano et a/., 1992],
over 3,000 cases have been added into its case-
base each year. Since real domains are often very
complicated and ill-formed, use of complex index­
ing, as seen in [Hammond, 1986; Hunter, 1988;
Ashley and Rissland, 1987; Kolodner, 1984], would
require significant development costs and the system
behavior would be unstable, as the experts them­
selves do not fully understand the nature of such
domains. It would be beyond control of system en­
gineers.

Speed Although various indexing and case-base organi­
zation methods have been investigated, only a few
studies addressed the issue of computing cost. Fast
case retrieval is an indispensable feature of real-
world applications, particularly for very large case-
bases.

3 C A R E T Design Decisions

This section describes major design decision made in de­
veloping CARET (CAse REtr ieval Tool) .

3.1 Case-Base M a n a g e m e n t us ing R D B M S

The most significant design decision was the use of a
commercial RDBMS for its case-base manager. Each
case is represented as a record of a relational database
table. The use of a RDBMS offers several advantages,
such as (1) data security, (2) data independence, (3)
data standardization, and (4) data integrity. The use
of RDBMS, however, automatically forces CARET to
generate SQL specifications [Codd, 1970; Chamberlin et
a/., 1976] to carry out any case-base retrievals. SQL is
the standard relational database access language. How­
ever, SQL does not entail any similarity-based retrieval
features. The essence of this work, therefore, is to find
a method to carry out similarity-based retrievals using
SQL.

The other constraint, imposed from the use of
RDBMS, is that cases have to be represented as a flat

record of n-ary relations. RDBMS do not entail a mech­
anism to support a complex indexing scheme, as seen
in most CBR researches. However, this constraint is
not necessarily a l imit ing factor for case representations.
Through the SQUAD development, the authors learned
that complex indexing schemes are too difficult to main­
tain, particularly for ordinary system engineers.

3.2 S i m i l a r i t y D e f i n i t i o n us ing A b s t r a c t i o n
H ie ra r chy

Similarity between values is defined using an abstraction
hierarchy, shown in Figure 1. It is defined for each at­
tribute in a flat table, such as language, machine, and
OS. In this example, the similarity between C and C++ is
0.7. Similarity between the input query and each case in
the case-base is calculated by referring to the similarity
of values in each attribute.

3.3 Case Re t r i eva l us ing Nearest Ne ighbo r
CARET uses nearest neighbor retrieval, instead of
indexing-based methods. Typically, a similarity between
a query (Q) and a case (C) in the case-base (S(Q,C)) is
the weighted sum of similarities for individual attributes:

where Wi is the t-th attr ibute weight, s(Qi, Ci) is sim­
ilarity between the t-th attr ibute value for a query (Q)
and that for a case (C) in the RDB.

Traditional implementations would compute the sim­
ilarity value for all records, and sort records based on
their similarity. However, this is a time consuming task,
as computing time increases linearly wi th regard to the
number of records in the case-base (C : Cardinality of the
data-base) and to the number of defined attributes (D :
Dtgree of the data-base). This results in time-complexity
of 0(C x D). This implementation strategy for RDBMS
would be a foolish decision, as individual records have
to be retrieved to compute similarity. Thus, the total
transaction number would be intolerable.

The challenge here is to discover an algorithm to im­
plement the nearest neighbor algorithm using SQL suf­
ficiently efficient to be practical. The following sections

910 Machine Learning

describe such an algorithm and report on its performance
using the deployed system.

4 Generat ing SQL specifications w i t h
S imi la r i t y Measures

4.1 C r e a t i n g N e i g h b o r Va lue Sets

For each attribute, CARET refers to the abstraction hi­
erarchies , as shown in Figure 1, to generate a set of values
neighboring the value specified by the user. For example,
assume that the user specified BSD4.2 in the hierarchy
shown in Figure 2, BSD4.2 is an element in the first-
order neighbor value set (lst-NVS). BSD4.3 is an element
in the second-order neighbor value set (2nd-NVS). SVR2
and SVR4 are elements in the third-order neighbor value
set (3rd-NVS). Such sets are created for each attribute.

Assume that the user specified VAX for an attribute
machine and ADA for an attribute language in the hier­
archies in Figure 1, Table 1 shows the generated NVS
sets.

4.2 E n u m e r a t i n g t he Comb ina t i ons

Next, all possible neighbor value combinations are cre­
ated from the n-th order neighbor value sets. Figure 3
illustrates how such combinations are created. This ex­
ample assumes that the user specified values for attribute
language and machine. A l l value combinations under
attribute language and machine wil l be created. Weight
of attributes (0.3 for language and 0.4 for machine) and
similarity measure (such as 1.0, 0.2, 0.8 assigned to each
value set) are used to calculate the similarity between a
combination and the problem definition specified by the
user. Using the neighbor value sets from the previous
example, combinations shown in Table 2 are created.

Disjunction is created for values under the same node.
Under this assumption, the maximum number of combi­
nations (N) produced in a given query wil l be:

(2)

where r is a number of attributes specified by the user,
and di is the depth of the tree of the attribute t. Aug­
menting this formula to a more general case which does
not involve disjunction, would lead to the following equa­
tion:

(3)

where is an average fanout of the tree for attribute
t .

4.3 Ass ign ing S i m i l a r i t y Va lue
For each combination, a similarity value is calculated
using similarity between values of attributes specified by
the user and values of combinations created in the pre­
vious stage. The calculation is similar to the weighted
nearest neighbor, except that not all attributes are in­
volved. The CARET algorithm does not compute any
attributes not specified by the user. The rationale
for this approach is described in [Kitano et a/., 1992].
Whether the user specified the attribute or not is shown
in a mask matrix (M) , which is a one-dimension matrix
whose size is equivalent to the case-base degree. The
matrix element Mi, wil l be 1, if the user specified the
value for the attribute i. Otherwise, Mi, wil l be 0. The
formula for calculating the similarity is as follows:

Shlmazu, Kitano, and Shlbata 911

where F is an NVS combination and Fi is the i-th at-
tr ibute for the combination. It should be noted that sim­
ilarity is calculated between the user specified attributes
and combinations of NVSs which is the seed for SQL
specifications. In essence, the similarity is computed be-
tween a user's specification and SQL specifications. This
is counter to traditional methods, which compare a user's
query specification with each case instance. For exam-
ple, the similarity of a combination, ([C, C + + , COBOL,
COBOL/S] , [SUN, NEWS, ...]) to the user's query spec­
ification is calculated as follows:

(5)

The similarity value is 0.54 because only attributes
language and machine are involved (the user specified
only these attributes), whose weights are 0.3 and 0.4, re­
spectively. The similarity between ADA and [C, C++,
COBOL, COBOL/S] is 0.2 and that for VAX and [SUM,
MEWS, . . .] is 0.8.

4.4 T h r e s h o l d i n g and N-Best M a t c h
When there are too many combinations, translating all
combinations and dispatching all SQL specifications are
inefficient and wasteful. Methods to l imit the number
of SQL specifications to be created are necessary in real
deployment. Two approaches are incorporated in the
CARET system.

The first method is the N-Best match. CARET dis­
patches SQLs from highest similarity score, and counts
the number of cases retrieved to stop the retrieval, when
the number of retrieved cases exceeds a predetermined
number.

Second, a threshold can be set in order to dispatch
SQL specifications, which are sufficiently similar to the
user's problem specifications. SQL specifications below
a specified threshold wi l l not be created.

4*5 Gene ra t i ng SQL Speci f icat ions
Each combination is translated into a corresponding SQL
specification. Since SQL does not involve the similarity
measure, the value assigned in the previous process is
stored in CARET, and is referred to when the query
results are returned.

The only SQL expression type used here is the
SELECT-FROM-WHERE type. Its form is

SELECT fields list
FROM case-base table
WHERE field conditions;

This should read "Select records in a case-base ta­
ble which satisfy specific field conditions in the WHERE
clause, and return the value of the requested fields in the
SELECT clause from the selected records".

Each element in a specific combination is translated
into a certain condition expression of SQL. For ex­
ample, machine(EVS4800) is translated into (machine
= EVS4800) which means that the attribute machine
must be EWS4800. Language(o r (C, C++, COBOL,
COBOL/S)) is translated into (language in (C, C++,
COBOL, COBOL/S)) which means that the attribute

912 Machine Learning

Figure 4: SQUAD-I I Screen Image

language must be C, C++, COBOL, or COBOL/S. Then,
each condition expression is connected with the logical-
AND operators. For example, and(machine (VAX),
language(o r (C , C++, COBOL, COBOL/S)) is trans­
lated into (machine = VAX) and (language in (C,
C++, COBOL, COBOL/S)).

As a result, the SQL specification would be produced.
An example of the generated SQL is shown below.

SELECT *
FROM case- tab le
WHERE (machine = VAX) AND

(language in (C,C++,COBOL,COBOL/S));

5 Performance Evaluation
CARET performance was evaluated using the

SQUAD-I I system which is a deployed case-base sys­
tem built on CARET using ORACLE, a commer­
cial RDBMS. SQUAD-I I is a direct descendent of the
SQUAD system which has been applied to the soft­
ware quality control (SWQC) domain. The prime dif­
ference between SQUAD and SQUAD-I I is the use of
RDB in SQUAD-I I , where SQUAD was built on a home-
made case-base manager. SQUAD-I I users are assumed
to choose several attributes and their values which de­
scribes the problem which the user is facing. The user's
choice, then, is interpreted by CARET, embedded in
SQUAD-I I , to produce SQL specifications. SQL spec­
ifications are sent to ORACLE to retrieve cases of soft­
ware quality control. Results are shown in the SQUAD-
II screen (Figure 4).

The experiments were carried out on SUN Sparc Sta­
tion 2, using ORACLE version 6 installed on SunOS ver­
sion 4.1.2. Figure 5 shows the response times measured
for three user queries, and various sizes of case-bases.
The three queries are:

For query-2, the following SQL specifications and their
similarity values are derived (See Table 3).

Characteristics for each query are shown in Table 4.
Query length refers to the number of conjunctive clause
in the WHERE clause. Tree depth shows abstraction hi­
erarchy depth for each attribute. Tree width is the
number of terminal nodes of the abstraction hierarchy
of each attr ibute. Generated SQL number is the num­
ber of SQLs generated and actually sent to RDBMS.
Cases matched shows the number of cases matched in
each query. 158+1-4_1199 should read as 158 matches at
the first SQL, 4 matches at the second SQL, and 199
matches at the third SQL. These numbers are measured
with a case-base containing 800 cases.

The algorithm scalability has been tested by increasing
the number of cases in the case-base. The number of
cases was increased up to 1,600. Response times (in real-
time, not in CPU time) are shown in Figure 5.

Query-1 returned the major part of cases in the case-
base, resulting in slower response time due to the neces­
sity to retrieve these cases. The response time for the
query-1 increases linearly as the case-base size increases.
Indexing methods for the commercial database systems
are not effective for reducing response time in such sit­
uations. Also, most of the time is spent on retrieving
matched cases, rather than on matching itself.

Fortunately, however, users generally specify a query
in a much more detailed manner. An empirical anal­
ysis, using the SQUAD system, showed that the aver­
age number of specified attributes for each retrieval was
3.4 out of 75 features [Kitano et a/., 1992]. This would
help RDBMS to constrain the search and the query time

would be dramatically shorter. The second and third
queries confirm this observation.

The second and the th i rd queries show a nearly con­
stant time responses, regardless of the case-base size.
This is due to the fact that SQL specifications are spe­
cific enough to constrain the search on RDBMS. Since
the system provides fast response time, it would suffice
for most tasks.

A brief analysis of the performance results would shed
light on the system behavior. There are two major fac­
tors which affect retrieval speed. They are: number of
SQL specifications actually dispatched to the RDBMS,
and number of cases retrieved. The maximum number of
the SQL specifications which may be created is decided
by a number of specified attributes by the user and the
depths of the tree of the specified attribute (Equation
2). Longer response time is required with a larger num­
ber of cases to be retrieved. The number of cases to be
retrieved depends upon the specificity employed in the
SQL specifications. Query-1 resulted in longer response
time than query-2 and query-3, because a large number
of cases had to be retrieved. Query-2 and query-3 at­
tained faster response time, because SQL specifications
were specific.

6 C o n c l u s i o n

This paper proposes a new method which enables the
use of RDBMS as a case-base management system. Al­
though case-base management, such as data-security and
data-integrity, which are readily available in RDBMS,
has not been the subject of significant case-base reason­
ing (CBR) research, case-base management functions are
essential to the integration of CBR systems with main-
stream corporate information systems.

This paper has proposed a novel method to implement
similarity-based retrieval using SQL, hereby enabling
CBR systems to use RDBMS. The algorithm was imple­
mented as a CARET case retrieval tool. CARET gener­
ates SQL specifications of varying degrees of similarity,
and the generated SQL specifications are dispatched to

Shimazu, Kitano, and Shibata 913

(Hammond, 1986] Hammond, K. Case-Based Planning:
An Integrated Theory of Planning, Learning, and
Memory. Ph.D. Thesis, Yale University, 1986.

[Hunter, 1988] Hunter, L„ The Use and Discovery of
Paradigm Cases Ph.D. Thesis, Yale University, 1988.

[Kitano et a/., 1992] Kitano, H., Shibata, A., Shimazu,
H., Kajihara J . , Sato, A., Building Large-Scale
Corporate-Wide Case-Based Systems: Integration of
Organizational and Machine Executable Algorithms.
In Proceedings of AAAI92, 1992.

[Kitano et a/., 1993] Kitano, H., Shimazu, H., Shibata,
A., Case-Method: A Methodology for Building Large-
Scale Case-Based Systems. In Proceedings of AAAI93,
1993.

[Kolodner, 1984] Kolodner, J . , Retrieval and organiza­
tional strategies in conceptual memory: A computer
model. Lawrence Erlbaum Associates, Hillsdale, NJ.,
1984.

[Oracle, 1989] Oracle Database Administrator's Guide,
and other ORACLE manuals. Oracle Corporation,
1989.

0 800 1000 1500 CASE

Figure 5: Response Times for Three User Queries

RDBMS to retrieve cases from RDB. The method we
have proposed here determines a pre-compute similari­
ties for individual query forms, rather than computing
the similarities of individual cases.

A performance test using SQUAD-I I , a corporate-wide
CBR system built on CARET, has demonstrated that
the proposed method attains acceptable performance
and suggests that the proposed method is practical for
large-scale case-bases used in workstations. The pro­
posed method, then, is well-suited to serve as a basic
algorithm for corporate-wide large-scale case-based sys­
tems.

References

[ANSI, 1989] ANSI Database Language SQL with In­
tegrity Enhancement. ANSI X3.135.1-1989, 1989.

[Ashley and Rissland, 1987] K.D. Ashley and E.L Riss-
land. Compare and Contrast, A test of Expertise. In
Proceedings of AAAI-87, 1987

[Chamberlin et a/., 1976] Chamberlin, D.D., et al., SE-
QUEL2: A Unified Approach to Data Definition, Ma-
nipulation, and Control. I B M J. Res. Develop., 1976.

[Codd, 1970] Codd, E.F.. A Relational Model of Data
for Large Shared Data Banks. In Communications of
ACM, 13, 6, 1970.

914 Machine Learning

