
Abs t rac t i on v ia A p p r o x i m a t e S y m m e t r y
Thomas E l lman

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903
ellman@cs.rutgers.edu

Abs t rac t
Abstraction techniques are important for solving
constraint satisfaction problems wi th global con­
straints and low solution density. In the presence
of global constraints, backtracking search is unable
to prune part ial solutions. It therefore operates like
pure generate-and-test. Abstraction improves on
generate-and-test by enabling entire subsets of the
solution space to be pruned early in a backtrack­
ing search process. This paper describes how ab­
straction spaces can be characterized in terms of
approximate symmetries of the original, concrete
search space. It defines two special types of ap­
proximate symmetry, called "range symmetry" and
"domain symmetry", which apply to function find­
ing problems. It also presents algorithms for au­
tomatically synthesizing hierarchic problem solvers
based on range or domain symmetry. The algo­
ri thms operate by analyzing declarative descriptions
of classes of constraint satisfaction problems. Both
algorithms have been ful ly implemented. This paper
concludes by presenting data from experiments test­
ing the two synthesis algorithms and the resulting
problem solvers on NP-hard scheduling and part i­
tioning problems.

1 . I n t r oduc t i on
Abstraction techniques are important for solving con­
straint satisfaction problems (CSPs) wi th global con­
straints and low solution density. Examples of such prob­
lems include the Part i t ion problem and the Mult ipro­
cessor Scheduling problem, both of which are NP-hard
[Garey and Johnson, 1979]. In the presence of global
constraints, backtracking search is unable to prune par­
t ia l solutions [Nadel, 1988]. It therefore operates like
pure generate-and-test. When overall solution density is
low, this approach is not effective, except when applied
to small problems. Abstraction can improve the perfor­
mance of backtracking by enabling entire subsets of the
solution space to be pruned early in the search process.

The value of abstraction can be illustrated by con­
sidering the Multiprocessor Scheduling problem. (See
Figure 2.) A solution to this problem is an assignment
of beginning times to jobs that meets deadlines, obeys
precedence constraints and has a l imited number of jobs
running at once. In this problem, the constraint on the
number of simultaneously running jobs is global, i.e., in
general, one cannot verify the constraint without know­
ing the beginning times of all the jobs. Backtracking
algorithms therefore cannot easily use this constraint to
prune partial solutions. In contrast, the following ab­
straction strategy introduces a new level of description
that enables partial solutions to be pruned: First part i­
t ion the set of possible beginning times into contiguous,

disjoint t ime windows. Then construct an abstract solu­
t ion in which each job is assigned a beginning window,
rather than a beginning time. If possible, prune any
window assignments that can be shown to violate the
problem constraints. Finally, refine the window assign­
ments into specific beginning times.

As a second il lustration of the value of abstraction,
consider the Part i t ion problem. (See Figure 3.) A so­
lution to this problem is a subset M of a set E such
that the weight of elements included in M equals the
weight of elements excluded from M. This constraint
is global, since one cannot verify equality of the total
weights without knowing the inclusion/exclusion status
of each element. Backtracking algorithms therefore can­
not easily use this constraint to prune partial solutions.
The following abstraction strategy overcomes this l imita­
t ion: First divide the elements of E into disjoint classes
such that elements of roughly equal weight are grouped
together. Then select a quota for each class that repre­
sents the number of elements of the class to be included
in M. If possible, prune any quota assignments that can
be shown to violate the problem constraints. Finally, re­
fine the quotas into an actual selection of elements to be
included in the set M.

The behavior of a hierarchic problem solver is illus­
trated in Figure 1. The il lustration shows a search tree
broken into two parts. The upper portion represents a
space of "abstract states", (e.g., a space of window or
quota assignments). Backtracking tests each complete
abstract solution against an "abstract goal" (e.g., test­
ing problem constraints against window or quota assign­
ments). The lower portion represents a space of "con-
crete states", (e.g., a space of beginning times or sub­
set membership assignments). Backtracking tests each
complete concrete solution against the original "concrete
goal", (e.g., testing problem constraints against begin­
ning times or subset membership assignments). Search
in the concrete space is also guided by "constrained vari­
able range generators". These require each concrete
state variable to assume values that are consistent wi th
the abstract solution, (e.g., obeying previously specified
window or quota assignments). Whenever the problem
goal includes local constraints, the search may also be
guided by "localized" abstract or concrete goals which
serve to prune partial abstract or concrete solutions.

Algorithms for synthesizing hierarchic problem solvers
are presented in Section 3. These synthesis algorithms
can be defined in terms of the components of the hier­
archic problem solver il lustrated in Figure 1. Each al­
gorithm inputs a description of a concrete search space
and a concrete goal. Each outputs an abstract search
space, an abstract goal and a set of constrained variable
range generators. (Methods of constructing local goals
and local abstract goals are described in [Braudaway and
Tong, 1989].)

916 Machine Learning

Ellman 917

918 Machine Learning

Synthesis A l g o r i t h m s : Algorithms for synthesizing
hierarchic problem solvers based on range and domain
symmetry are shown in Figure 4. Each algorithm be­
gins by part i t ioning the range R or the domain D of the
unknown function / into a set R or D of equivalence
classes. The parti t ioning is carried out by clustering R
or D based on similarity of values of some known func­
tion whose domain is R or D respectively, and which
is referenced by the goal function G(p, a). (These clus­
tering techniques are described [Ellman, 1993].) Next,
the original goal function G(p, s) is transformed into an
abstract goal G(p, a) in order that it wi l l operate on ab­
stract states a that represent abstractions / of the un­
known function /. In each algorithm this transformation
is achieved, in part, by a process of replacing operations
on objects wi th corresponding operations on sets, or cor­
responding symmetric operations. The revised goal is
then surrounded wi th a test for the appearance of True
in the returned set of boolean values. The resulting ab­
stract goal G(p,a) is, by construction, a necessary con­
dit ion on solvability of the abstract state a. Finally, a
refinement function Rd is constructed for each element D
of the domain d. The function Rd(p, a, s) takes the prob­
lem specification p, an abstract solution a, and a par­
t ial ly specified concrete solution s, and returns the set of
possible values for / (d) that are consistent wi th a and a.

The abstract goal is synthesized at compile time,
i.e., when the problem class is specified, but no prob­
lem instances are at hand. Once the abstract goal is
constructed, the system applies a series of equivalence-
preserving optimizing transformations, such as distribu­
tive laws and factorization of sums, products and quan­
tifications, to improve the computational efficiency of
the abstract goal. (The same optimizations are applied
to the original, concrete goal and to localized versions of
both abstract and concrete goals). A l l set arithmetic op­
erations appearing in abstract goals (E.g., +, —, /, *) are
implemented as operations on real intervals. Since these
set operations take constant t ime, the abstract goal has
the same asymptotic complexity as the original goal.

The domain D or range R is partitioned at run time,
i.e., after a problem instance has been specified. Input
taken from the user at compile t ime is used to determine
which known function wi l l guide partit ioning of D or R.
(In the Part i t ion and Multiprocessor Scheduling exam­
ples, the user actually has only one choice.) Depending
on the set U to be partit ioned, and the known function f
selected to guide the partit ioning, one of two clustering
algorithms is used: (1) If / is the identity function, and

Ellman 919

U is an unbroken sequence of integers (U = [/ . . . u) ,
then U is partit ioned into intervals of equal or nearly
equal size; (2) Otherwise, U is partitioned in a bottom
up fashion, starting wi th singleton sets, and repeatedly
merging two sets x and y such that / has minimal varia­
t ion over xUy. In either case, the final part i t ion is chosen
to yield an abstract space whose size is the square root
of the size of the concrete space, based on a rough anal­
ogy wi th Korf 's result on the optimal size of abstraction
spaces [Korf, 1987].

When the range symmetry algorithm is applied to the
Multiprocessor Scheduling problem description in Fig­
ure 2, it generates the abstract goal function shown in
Figure 5. This goal function G(p,a) performs interval
arithmetic, interval comparisons, and boolean-set alge­
bra on the t ime window assignments b(j , a) represented
by an abstract state a: For example, G(p, a) checks dead­
lines by converting beginning time windows into ending
time windows, and noticing whether any job's deadline
occurs earlier than the start of its ending window. Like­
wise, G(p, a) checks for processor overload by computing
lower bounds on the numbers of jobs running at each
point in t ime, and noticing whether any lower bound ex­
ceeds the available number of processors. The abstract
goal G(p, a) thereby computes a necessary condition on
the original goal.

When the domain symmetry algorithm is applied to
the Part i t ion problem description in Figure 3, it gener­
ates the abstract goal function shown in Figure 6. This
fjoal function G(p,a) selects an arbitrary concrete so-
ution s consistent wi th the quota assignments m(e, a)

represented by an abstract state a. It then applies to
s an approximation G(p, s) of the original goal function
that is symmetric w i th respect to the part i t ion E. This
symmetric goal function G(p, a) treats each eeE as if it
has an interval w(e) of weights, rather than an actual
weight w(e), i.e., an interval spanning the weights of all
elements in Class(e). It first computes an interval i1
bounding the total weight of elements included in M
and an interval S2 bounding the total weight of elements
excluded from M. It then checks whether these intervals
overlap. The abstract goal G(p,a) thereby computes a
necessary condition on the original goal.

4. Experimental Results
A series of experiments was run to evaluate the per­
formance of automatically synthesized problem solvers
based on range and domain symmetry. Results of these
experiments are shown in Figures 7 and 8. Each graph
compares the performance of a hierarchic problem solver,
which uses abstraction, to the performance of a flat prob­
lem solver, which uses no abstraction. The hierarchic
and fiat problem solvers use the same underlying back­
tracking code, but w i th different input specifications.
Each graph plots problem size against performance mea­
sured in terms of CPU time. CPU time is a better mea­
sure than alternatives, like numbers of goal tests or num­
bers of states generated, for two reasons: First, the com­
putational cost of generating one state or testing one goal
may not be the same in the flat and hierarchic problem
solvers. Second, the relative importance of state gener­
ation and goal testing may not be the same in the flat
and hierarchic problem solvers.

Figure 7: Multiprocessor Scheduling Problem Results:
Hierarchic (Solid) v. Flat (Dotted)

Figure 8: Part i t ion Problem Results:
Hierarchic (Solid) v. Flat (Dotted)

920 Machine Learning

The Multiprocessor Scheduling; problem graph com-
pares performance on problems wi th a fixed domain size
(i.e., 6 jobs), and a varying range size (i.e., the number
of t ime slots running f rom 5 to 35). Each data point
represents an average over a set of 100 randomly gener­
ated problems. The multiprocessor problem search was
guided by localized versions of the abstract and concrete

goals in order to realize pruning from application of the
ocal constraints that appear in this problem. The local­

ized goals were constructed automatically from the corre-
sponding unlocalized goals using standard dependency-
tracing techniques. The Part i t ion problem graph com­
pares performance on problems wi th a varying domain
size (i.e., the number of elements running from 4 to 16)
and a fixed boolean range. Each data point represents an
average over a set of 10 randomly generated problems.
The Part i t ion problem search was guided by unlocalized
versions of the abstract and concrete goals, since no local
constraints appear in the Parti t ion problem. In each of
the two test domains, the hierarchic solver outperforms
the flat solver for sufficiently large problems. A series of
paired, single-tailed T-Tests shows hierarchic scheduling
to be faster than flat scheduling wi th significance greater
than 99% on the five largest problem sizes. A series of
paired, single-tailed T-Tests shows hierarchic partit ion­
ing to be faster than flat partit ioning wi th significance
greater than 99% on the two largest problem sizes.

5. Related W o r k

Abstraction techniques have been studied previously in
the context of planning [Knoblock et a/., 1991] and the­
orem proving [Giunchiglia and Walsh, 1992]. In con­
trast, the research presented here is focused on ab­
straction techniques for constraint satisfaction problems.
A program called " H i T " for automatically construct­
ing abstraction spaces for CSPs is presented in [Mohan,
1991]. H iT uses the ranges of functions appearing in the
goal definition as the basis for constructing abstraction
spaces. H iT may be seen as a special case of the range
symmetry technique described here. Methods of attack­
ing hierarchical CSPs are discussed in [Mackworth et al,
1985]; however, these methods exploit existing hierar­
chies and do not construct new ones. Abstractions based
on quotas have been studied in the context of resource
allocation problems [Lowry and Linden, 1992]. Approxi­
mate symmetry provides a rational reconstruction of the
quota concept. Furthermore, approximate symmetry is
more general, because it depends only on the algebraic
form of the problem and not on semantic notions such
as "resources". Abstractions based on windows oper­
ate in a manner similar to interval constraint propaga­
tion [Davis, 1987]. Approximate symmetry provides a
means of using such interval-based methods to attack
problems wi th global constraints, to which constraint
propagation techniques to not immediately apply. Tech­
niques for recognizing and exploiting exact symmetries
have been investigated in the context of propositional
satisfiability [Crawford, 1992]. In contrast, the methods
presented here construct and exploit symmetries that are
not present in the original problem. Approximations and
abstractions have been used to construct heuristic eval­
uation functions in the context of constraint satisfaction
[Dechter and Pearl, 1987] and state space search [Priedi-
tis, 1991]. A system that selects and combines multiple
heuristics to synthesize CSP algorithms is described in
[Minton, 1993a] and [Minton, 1993b].

6. Acknowledgments
This research is supported by the National Science Foun­
dation. (Grants IRI-9017121 and IRI-9021607). It has
benefited from discussions with Haym Hirsh and Christo-
pher Tong and programming by Saibal Patra.

References
W. Braudaway and C. Tong. Automated synthe­
sis of constrained generators. In Proceedings of the
Eleventh International Joint Conference on Artif icial
Intelligence, Detroit, M I , 1989.
J. Crawford. A theoretical analysis of reasoning by sym­
metry in first order logic. Working Notes of the A A A I
Workshop on Tractable Reasoning, San Jose, CA, 1992.
E. Davis. Constraint propagation wi th interval labels.
Art i f ic ial Intelligence, 32:281 - 332, 1987.
R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Art i f icial Intelligence,
34:1-38, 1987.
T. Ellman. Synthesis of abstraction hierarchies for con­
straint satisfaction by clustering approximately equiva­
lent objects. In Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA, 1993.
M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New
York, NY, 1979.
F. Giunchiglia and T. Walsh. A theory of abstraction.
Art i f ic ial Intelligence, 57:323-389,1992.
C. Knoblock, J. Tennenberg, and Q. Yang. Characteriz­
ing abstraction hierarchies for planning. In Proceedings
of the Ninth National Conference on Art i f ic ial Intel l i -
gence, Anaheim, CA, 1991.
R. E. Korf. Planning as search: A quantitative ap­
proach. Art i f ic ial Intelligence, 33(1):65 - 88, 1987.
M. Lowry and T. Linden. Generation and exploitation
of aggregation abstractions for scheduling and resource
allocation. Working Notes of the A A A I Workshop on
Approximation and Abstraction of Computational The­
ories, San Jose, CA, 1992.
A. Mackworth, J. Mulder, and W. Havens. Hierarchi­
cal arc consistency: Exploiting structured domains in
constraint satisfaction problems. Computational Intel-
ligence, 1:118 - 126, 1985.
S. Minton. An analytic learning system for special­
izing heuristics. In Proceedings of the Thirteenth In-
ternational Joint Conference on Art i f ic ial Intelligence,
Chambery, France, 1993.
S. Minton. Integrating heuristics for constraint satis­
faction problems: A case study. In Proceedings of the
Eleventh National Conference on Art i f ic ial Intelligence,
Washington, D.C., 1993.
S. Mohan. Constructing hierarchical solvers for func­
tional constraint satisfaction problems. Working notes
of the A A A I Spring Symposium on Constraint-Based
Reasoning, Stanford, CA, 1991.
B. Nadel. Tree search and arc consistency in constraint
satisfaction algorithms. In L. Kanal and V. Kumar,
editors, Search in Art i f ic ial Intelligence, pages 287 -
342. Springer Verlag, New York, NY, 1988.
A. Prieditis. Machine discovery of effective admiss-
able heuristics. In Proceedings of the Twelfth Interna­
tional Joint Conference on Art i f ic ial Intelligence, Sid­
ney, Australia, 1991.

Ellman 921

