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Abs t rac t 
Abstraction techniques are important for solving 
constraint satisfaction problems wi th global con­
straints and low solution density. In the presence 
of global constraints, backtracking search is unable 
to prune part ial solutions. It therefore operates like 
pure generate-and-test. Abstraction improves on 
generate-and-test by enabling entire subsets of the 
solution space to be pruned early in a backtrack­
ing search process. This paper describes how ab­
straction spaces can be characterized in terms of 
approximate symmetries of the original, concrete 
search space. It defines two special types of ap­
proximate symmetry, called "range symmetry" and 
"domain symmetry", which apply to function find­
ing problems. It also presents algorithms for au­
tomatically synthesizing hierarchic problem solvers 
based on range or domain symmetry. The algo­
ri thms operate by analyzing declarative descriptions 
of classes of constraint satisfaction problems. Both 
algorithms have been ful ly implemented. This paper 
concludes by presenting data from experiments test­
ing the two synthesis algorithms and the resulting 
problem solvers on NP-hard scheduling and part i­
tioning problems. 

1 . I n t r oduc t i on 
Abstraction techniques are important for solving con­
straint satisfaction problems (CSPs) wi th global con­
straints and low solution density. Examples of such prob­
lems include the Part i t ion problem and the Mult ipro­
cessor Scheduling problem, both of which are NP-hard 
[Garey and Johnson, 1979]. In the presence of global 
constraints, backtracking search is unable to prune par­
t ia l solutions [Nadel, 1988]. It therefore operates like 
pure generate-and-test. When overall solution density is 
low, this approach is not effective, except when applied 
to small problems. Abstraction can improve the perfor­
mance of backtracking by enabling entire subsets of the 
solution space to be pruned early in the search process. 

The value of abstraction can be illustrated by con­
sidering the Multiprocessor Scheduling problem. (See 
Figure 2.) A solution to this problem is an assignment 
of beginning times to jobs that meets deadlines, obeys 
precedence constraints and has a l imited number of jobs 
running at once. In this problem, the constraint on the 
number of simultaneously running jobs is global, i.e., in 
general, one cannot verify the constraint without know­
ing the beginning times of all the jobs. Backtracking 
algorithms therefore cannot easily use this constraint to 
prune partial solutions. In contrast, the following ab­
straction strategy introduces a new level of description 
that enables partial solutions to be pruned: First part i­
t ion the set of possible beginning times into contiguous, 

disjoint t ime windows. Then construct an abstract solu­
t ion in which each job is assigned a beginning window, 
rather than a beginning time. If possible, prune any 
window assignments that can be shown to violate the 
problem constraints. Finally, refine the window assign­
ments into specific beginning times. 

As a second il lustration of the value of abstraction, 
consider the Part i t ion problem. (See Figure 3.) A so­
lution to this problem is a subset M of a set E such 
that the weight of elements included in M equals the 
weight of elements excluded from M. This constraint 
is global, since one cannot verify equality of the total 
weights without knowing the inclusion/exclusion status 
of each element. Backtracking algorithms therefore can­
not easily use this constraint to prune partial solutions. 
The following abstraction strategy overcomes this l imita­
t ion: First divide the elements of E into disjoint classes 
such that elements of roughly equal weight are grouped 
together. Then select a quota for each class that repre­
sents the number of elements of the class to be included 
in M. If possible, prune any quota assignments that can 
be shown to violate the problem constraints. Finally, re­
fine the quotas into an actual selection of elements to be 
included in the set M. 

The behavior of a hierarchic problem solver is illus­
trated in Figure 1. The il lustration shows a search tree 
broken into two parts. The upper portion represents a 
space of "abstract states", (e.g., a space of window or 
quota assignments). Backtracking tests each complete 
abstract solution against an "abstract goal" (e.g., test­
ing problem constraints against window or quota assign­
ments). The lower portion represents a space of "con-
crete states", (e.g., a space of beginning times or sub­
set membership assignments). Backtracking tests each 
complete concrete solution against the original "concrete 
goal", (e.g., testing problem constraints against begin­
ning times or subset membership assignments). Search 
in the concrete space is also guided by "constrained vari­
able range generators". These require each concrete 
state variable to assume values that are consistent wi th 
the abstract solution, (e.g., obeying previously specified 
window or quota assignments). Whenever the problem 
goal includes local constraints, the search may also be 
guided by "localized" abstract or concrete goals which 
serve to prune partial abstract or concrete solutions. 

Algorithms for synthesizing hierarchic problem solvers 
are presented in Section 3. These synthesis algorithms 
can be defined in terms of the components of the hier­
archic problem solver il lustrated in Figure 1. Each al­
gorithm inputs a description of a concrete search space 
and a concrete goal. Each outputs an abstract search 
space, an abstract goal and a set of constrained variable 
range generators. (Methods of constructing local goals 
and local abstract goals are described in [Braudaway and 
Tong, 1989].) 
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Synthesis A l g o r i t h m s : Algorithms for synthesizing 
hierarchic problem solvers based on range and domain 
symmetry are shown in Figure 4. Each algorithm be­
gins by part i t ioning the range R or the domain D of the 
unknown function / into a set R or D of equivalence 
classes. The parti t ioning is carried out by clustering R 
or D based on similarity of values of some known func­
tion whose domain is R or D respectively, and which 
is referenced by the goal function G(p, a). (These clus­
tering techniques are described [Ellman, 1993].) Next, 
the original goal function G(p, s) is transformed into an 
abstract goal G(p, a) in order that it wi l l operate on ab­
stract states a that represent abstractions / of the un­
known function /. In each algorithm this transformation 
is achieved, in part, by a process of replacing operations 
on objects wi th corresponding operations on sets, or cor­
responding symmetric operations. The revised goal is 
then surrounded wi th a test for the appearance of True 
in the returned set of boolean values. The resulting ab­
stract goal G(p,a) is, by construction, a necessary con­
dit ion on solvability of the abstract state a. Finally, a 
refinement function Rd is constructed for each element D 
of the domain d. The function Rd(p, a, s) takes the prob­
lem specification p, an abstract solution a, and a par­
t ial ly specified concrete solution s, and returns the set of 
possible values for / ( d ) that are consistent wi th a and a. 

The abstract goal is synthesized at compile time, 
i.e., when the problem class is specified, but no prob­
lem instances are at hand. Once the abstract goal is 
constructed, the system applies a series of equivalence-
preserving optimizing transformations, such as distribu­
tive laws and factorization of sums, products and quan­
tifications, to improve the computational efficiency of 
the abstract goal. (The same optimizations are applied 
to the original, concrete goal and to localized versions of 
both abstract and concrete goals). A l l set arithmetic op­
erations appearing in abstract goals (E.g., +, —, /, *) are 
implemented as operations on real intervals. Since these 
set operations take constant t ime, the abstract goal has 
the same asymptotic complexity as the original goal. 

The domain D or range R is partitioned at run time, 
i.e., after a problem instance has been specified. Input 
taken from the user at compile t ime is used to determine 
which known function wi l l guide partit ioning of D or R. 
( In the Part i t ion and Multiprocessor Scheduling exam­
ples, the user actually has only one choice.) Depending 
on the set U to be partit ioned, and the known function f 
selected to guide the partit ioning, one of two clustering 
algorithms is used: (1) If / is the identity function, and 
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U is an unbroken sequence of integers (U = [ / . . . u ) , 
then U is partit ioned into intervals of equal or nearly 
equal size; (2) Otherwise, U is partitioned in a bottom 
up fashion, starting wi th singleton sets, and repeatedly 
merging two sets x and y such that / has minimal varia­
t ion over xUy. In either case, the final part i t ion is chosen 
to yield an abstract space whose size is the square root 
of the size of the concrete space, based on a rough anal­
ogy wi th Korf 's result on the optimal size of abstraction 
spaces [Korf, 1987]. 

When the range symmetry algorithm is applied to the 
Multiprocessor Scheduling problem description in Fig­
ure 2, it generates the abstract goal function shown in 
Figure 5. This goal function G(p,a) performs interval 
arithmetic, interval comparisons, and boolean-set alge­
bra on the t ime window assignments b( j , a) represented 
by an abstract state a: For example, G(p, a) checks dead­
lines by converting beginning time windows into ending 
time windows, and noticing whether any job's deadline 
occurs earlier than the start of its ending window. Like­
wise, G(p, a) checks for processor overload by computing 
lower bounds on the numbers of jobs running at each 
point in t ime, and noticing whether any lower bound ex­
ceeds the available number of processors. The abstract 
goal G(p, a) thereby computes a necessary condition on 
the original goal. 

When the domain symmetry algorithm is applied to 
the Part i t ion problem description in Figure 3, it gener­
ates the abstract goal function shown in Figure 6. This 
fjoal function G(p,a) selects an arbitrary concrete so-
ution s consistent wi th the quota assignments m(e, a) 

represented by an abstract state a. It then applies to 
s an approximation G(p, s) of the original goal function 
that is symmetric w i th respect to the part i t ion E. This 
symmetric goal function G(p, a) treats each eeE as if it 
has an interval w(e) of weights, rather than an actual 
weight w(e), i.e., an interval spanning the weights of all 
elements in Class(e). It first computes an interval i1 
bounding the total weight of elements included in M 
and an interval S2 bounding the total weight of elements 
excluded from M. It then checks whether these intervals 
overlap. The abstract goal G(p,a) thereby computes a 
necessary condition on the original goal. 

4. Experimental Results 
A series of experiments was run to evaluate the per­
formance of automatically synthesized problem solvers 
based on range and domain symmetry. Results of these 
experiments are shown in Figures 7 and 8. Each graph 
compares the performance of a hierarchic problem solver, 
which uses abstraction, to the performance of a flat prob­
lem solver, which uses no abstraction. The hierarchic 
and fiat problem solvers use the same underlying back­
tracking code, but w i th different input specifications. 
Each graph plots problem size against performance mea­
sured in terms of CPU time. CPU time is a better mea­
sure than alternatives, like numbers of goal tests or num­
bers of states generated, for two reasons: First, the com­
putational cost of generating one state or testing one goal 
may not be the same in the flat and hierarchic problem 
solvers. Second, the relative importance of state gener­
ation and goal testing may not be the same in the flat 
and hierarchic problem solvers. 

Figure 7: Multiprocessor Scheduling Problem Results: 
Hierarchic (Solid) v. Flat (Dotted) 

Figure 8: Part i t ion Problem Results: 
Hierarchic (Solid) v. Flat (Dotted) 

920 Machine Learning 



The Multiprocessor Scheduling; problem graph com-
pares performance on problems wi th a fixed domain size 
(i.e., 6 jobs), and a varying range size (i.e., the number 
of t ime slots running f rom 5 to 35). Each data point 
represents an average over a set of 100 randomly gener­
ated problems. The multiprocessor problem search was 
guided by localized versions of the abstract and concrete 

goals in order to realize pruning from application of the 
ocal constraints that appear in this problem. The local­

ized goals were constructed automatically from the corre-
sponding unlocalized goals using standard dependency-
tracing techniques. The Part i t ion problem graph com­
pares performance on problems wi th a varying domain 
size (i.e., the number of elements running from 4 to 16) 
and a fixed boolean range. Each data point represents an 
average over a set of 10 randomly generated problems. 
The Part i t ion problem search was guided by unlocalized 
versions of the abstract and concrete goals, since no local 
constraints appear in the Parti t ion problem. In each of 
the two test domains, the hierarchic solver outperforms 
the flat solver for sufficiently large problems. A series of 
paired, single-tailed T-Tests shows hierarchic scheduling 
to be faster than flat scheduling wi th significance greater 
than 99% on the five largest problem sizes. A series of 
paired, single-tailed T-Tests shows hierarchic partit ion­
ing to be faster than flat partit ioning wi th significance 
greater than 99% on the two largest problem sizes. 

5. Related W o r k 

Abstraction techniques have been studied previously in 
the context of planning [Knoblock et a/., 1991] and the­
orem proving [Giunchiglia and Walsh, 1992]. In con­
trast, the research presented here is focused on ab­
straction techniques for constraint satisfaction problems. 
A program called " H i T " for automatically construct­
ing abstraction spaces for CSPs is presented in [Mohan, 
1991]. H iT uses the ranges of functions appearing in the 
goal definition as the basis for constructing abstraction 
spaces. H iT may be seen as a special case of the range 
symmetry technique described here. Methods of attack­
ing hierarchical CSPs are discussed in [Mackworth et al, 
1985]; however, these methods exploit existing hierar­
chies and do not construct new ones. Abstractions based 
on quotas have been studied in the context of resource 
allocation problems [Lowry and Linden, 1992]. Approxi­
mate symmetry provides a rational reconstruction of the 
quota concept. Furthermore, approximate symmetry is 
more general, because it depends only on the algebraic 
form of the problem and not on semantic notions such 
as "resources". Abstractions based on windows oper­
ate in a manner similar to interval constraint propaga­
tion [Davis, 1987]. Approximate symmetry provides a 
means of using such interval-based methods to attack 
problems wi th global constraints, to which constraint 
propagation techniques to not immediately apply. Tech­
niques for recognizing and exploiting exact symmetries 
have been investigated in the context of propositional 
satisfiability [Crawford, 1992]. In contrast, the methods 
presented here construct and exploit symmetries that are 
not present in the original problem. Approximations and 
abstractions have been used to construct heuristic eval­
uation functions in the context of constraint satisfaction 
[Dechter and Pearl, 1987] and state space search [Priedi-
tis, 1991]. A system that selects and combines multiple 
heuristics to synthesize CSP algorithms is described in 
[Minton, 1993a] and [Minton, 1993b]. 
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