Abstraction via Approximate Symmetry

Thomas Ellman
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903
ellman@cs.rutgers.edu

Abstract

Abstraction techniques are important for solving
constraint satisfaction problems with global con-
straints and low solution density. In the presence
of global constraints, backtracking search is unable
to prune partial solutions. It therefore operates like
pure generate-and-test. Abstraction improves on
generate-and-test by enabling entire subsets of the
solution space to be pruned early in a backtrack-
ing search process. This paper describes how ab-
straction spaces can be characterized in terms of
approximate symmetries of the original, concrete
search space. It defines two special types of ap-
proximate symmetry, called "range symmetry" and
"domain symmetry", which apply to function find-
ing problems. It also presents algorithms for au-
tomatically synthesizing hierarchic problem solvers
based on range or domain symmetry. The algo-
rithms operate by analyzing declarative descriptions
of classes of constraint satisfaction problems. Both
algorithms have been fully implemented. This paper
concludes by presenting data from experiments test-
ing the two synthesis algorithms and the resulting
problem solvers on NP-hard scheduling and parti-
tioning problems.

1. Introduction

Abstraction techniques are important for solving con-
straint satisfaction problems (CSPs) with global con-
straints and low solution density. Examples ofsuch prob-
lems include the Partition problem and the Multipro-
cessor Scheduling problem, both of which are NP-hard
[Garey and Johnson, 1979]. In the presence of global
constraints, backtracking search is unable to prune par-
tial solutions [Nadel, 1988]. It therefore operates like
pure generate-and-test. When overall solution density is
low, this approach is not effective, except when applied
to small problems. Abstraction can improve the perfor-
mance of backtracking by enabling entire subsets of the
solution space to be pruned early in the search process.

The value of abstraction can be illustrated by con-
sidering the Multiprocessor Scheduling problem. (See
Figure 2.) A solution to this problem is an assignment
of beginning times to jobs that meets deadlines, obeys
precedence constraints and has a limited number ofjobs
running at once. In this problem, the constraint on the
number of simultaneously running jobs is global, i.e., in
general, one cannot verify the constraint without know-
ing the beginning times of all the jobs. Backtracking
algorithms therefore cannot easily use this constraint to
prune partial solutions. In contrast, the following ab-
straction strategy introduces a new level of description
that enables partial solutions to be pruned: First parti-
tion the set of possible beginning times into contiguous,

916 Machine Learning

disjoint time windows. Then construct an abstract solu-
tion in which each job is assigned a beginning window,
rather than a beginning time. If possible, prune any
window assignments that can be shown to violate the
problem constraints. Finally, refine the window assign-
ments into specific beginning times.

As a second illustration of the value of abstraction,
consider the Partition problem. (See Figure 3.) A so-
lution to this problem is a subset M of a set E such
that the weight of elements included in M equals the
weight of elements excluded from M. This constraint
is global, since one cannot verify equality of the total
weights without knowing the inclusion/exclusion status
of each element. Backtracking algorithms therefore can-
not easily use this constraint to prune partial solutions.
The following abstraction strategy overcomes this limita-
tion: First divide the elements of E into disjoint classes
such that elements of roughly equal weight are grouped
together. Then select a quota for each class that repre-
sents the number of elements of the class to be included
in M. If possible, prune any quota assignments that can
be shown to violate the problem constraints. Finally, re-
fine the quotas into an actual selection of elements to be
included in the set M.

The behavior of a hierarchic problem solver is illus-
trated in Figure 1. The illustration shows a search tree
broken into two parts. The upper portion represents a
space of "abstract states", (e.g., a space of window or
quota assignments). Backtracking tests each complete
abstract solution against an "abstract goal" (e.g., test-
ing problem constraints against window or quota assign-
ments). The lower portion represents a space of "con-
crete states", (e.g., a space of beginning times or sub-
set membership assignments). Backtracking tests each
complete concrete solution against the original "concrete
goal", (e.g., testing problem constraints against begin-
ning times or subset membership assignments). Search
in the concrete space is also guided by "constrained vari-
able range generators". These require each concrete
state variable to assume values that are consistent with
the abstract solution, (e.g., obeying previously specified
window or quota assignments). Whenever the problem
goal includes local constraints, the search may also be
guided by "localized" abstract or concrete goals which
serve to prune partial abstract or concrete solutions.

Algorithms for synthesizing hierarchic problem solvers
are presented in Section 3. These synthesis algorithms
can be defined in terms of the components of the hier-
archic problem solver illustrated in Figure 1. Each al-
gorithm inputs a description of a concrete search space
and a concrete goal. Each outputs an abstract search
space, an abstract goal and a set of constrained variable
range generators. (Methods of constructing local goals
and local abstract goals are described in [Braudaway and
Tong, 1989].)

Unconstrained Yerisble
Lacatised Abstzact Gos] Tests: Ringe Geerstons
Abstract Goal Tesw: Absiract Statee

Constrained Varishie
Locafized Concrese Goal Test: Range Getators
Concrete Goal Tests: é - Concreee: Staies

Figure 1: Hierarchic Problem Solver

2. Symmetry and Abstraction

An “abstraction space” A may be defined formally as a
partition of the states in the underlying “concrete space”
5. Thus each abstract state aeA is a set of concrete states
seS. Abatract search spaces may also be characterized in
terms of permutation groups whose elements operate on
states in the concrete search space. In particular, given
a group I of permutations that operate on states scS,
cne may define an abstraction space A as follows: For
all pairs of states #; and 2; drawn from §, 5, and a; lie
in a common abstract state a if and only if there exista
a o¢L, such that o(a;) = 2,. (The group axioms guar-
antee that this definition yields a partition of § .} On
the other hand, given an absiraction space A, one can
construct a group I of permutations that will induce 4
according to the definition given above. For example,
one may take I to be the direct product of the symmet-
ric subgroups ,A(a) for all aed. (The symmetric grou
A(X) is just the set of all permutations of the set X.
Notice that this last construction is not unique, since
several permutation groups may induce the same parti-
tion. As a result of the connection between permutation
groupe and abstraction spaces, one can characterize var-
ious abstraction strategies in terms of the structure of
permutation groups, as described below.

Exact Symmetry: Consider an arbitrary group I of
permutations of the states in the concrete space S, A
goal function G : § — {T'rue, False} is said to be ez-
actly symmetric with respect to I if for each 2¢S, and
each oeL, G(o(s)) = G(s). If the group E is used to
induce & partition of § into an abstraction space 4, the
space A will have the following useful property. For each
abstract state a, all concrete states sea have the same
value of the goal function. Thus if any single element
of a fails to satisfy the goal function, then all elements
of a will fail. The abstract state o may then be safely
pruned without risk of losing completeness of the prob-
lern solver. Furthermore if any single element of a suc-
ceeds in satisfying the goal function, then all elements of
a will succeed. All members of the abstract state a may
then be immediately identified as solutions.

Agproxlmatc Symmetry: Consider once again an
arbitrary group I of permutations of the states in
the concrete space 5. A goal function G : § —
{True, False} is said to be approrimately symmeiric
with respect to I if there exists a good approximation
G of G such that & is exactly symmetric with respect
to . Once again, if the group L is used to induce &
partition of § into an abstraction space A, the space A

will have useful properties. Two interesting cases result
from considering the ways in which G and G are relaged:

e Nocessary Approximations: G => G, i.e., G entails G
In this case, given an abstract state a, if any single
element of a fails to satiafy the approximate goal G,
all elements of a will fail to satisfy G, and therefore
all elements of a will fail to satisfy the original goal G.
The abstract state ¢ may then be safely prune%.

o Sufficient Approximations: G' = @, i.e., G entails G:
In thie case, given an abatract state a, if any single
element of a succeeds in satisfying the approximate
goal G, all elements of ¢ will satisfy G, and therefore
all elements of a will satisfy the original goal G. All
flements of the abstract state a will then ie valid so-

utions.

Necessary approximations are generally more important
in practice. In particular, necessary approximations are
useful for finding solutions when solution density is low
Sthe usual case), while sufficient approximations are use-
ul for finding non-solutions when solution density is high
(not the usual case). The distinction between necessar
and sufficient approximations is guit.e similar to the dit-
ference between “TT abstraction™ an “TI) abstraction”
defined in {Giunchiglia and Walsh, 1992], and the distinc-
tion between the “Upward Solution Property” and the
“Downward Solution Property” described in [Knoblock
et al., 1991).

Types of Approximate Symmetry: Interesting
special types of approximate symmetry result from con-
gidering CSPs whose solution requires finding a function
f : D — R to meet specified constraints. Example prob-
leme of thie type include the Multiprocessor Scheduling
problem, which requires finding a function mapping jobs
to beginning times, and the Partition problem, which
requires finding a boolean valued function of a set of el-
ements. For problems of this type, the concrete search
space S is the set of all functions from D into R. Ab-
stractions of thia space can be defined in the foll
three steps: g) Select some oug & of permutations
the domain D or the range R; (2) Use the group & to
construct a goup L of permutations of the search n'%ue
8 such that @ is a homomorphic image of T; (3) Use L to
induce a partition 4 of §. Various types of abetractions
result depending on the structure of the original group
&, on whether members of & operate on the domain D
g‘ the range R and on the detaiﬁe;f constructing I from

Range Symmetry: Suppose that & is a group of per-
mutations of the range R of the function f. Define the
group I in the following steps: (1) For each permuta-
tion ¢ of &, and each element d of D define ogq such
that oga(£)(d) = $(f(d)) and for all d'eD, if d # d’ then
cea(F)(d) = f(d'). (2) For each deD, let T4 be the set
of all 744 such that ge®. (3) Let L be the direct product
of all B4 for deD. Using thie construction, two functions
f1 and fa are equivalent with respect to & whenever fi
and f; differ only by returning values that are equivalent
with respect to @, In this case, ¥ induces an abetraction
A of the original space S that can be represented in the
following way: Each element acA is a function f that
accepts an element d in D and returns a set ¥ appearing
in the partition & induced by &. .
Consider an application of range symmetry to the
Multiprocessor Scheduling problem. (See Figure 2.} In

Ellman 917

this . is played by an integer val.

function b that defines the beginning times of jobs.
Tuﬁle the set J of jobe. Theprole
of Ri of possible beginning times.
The group & could be eelected to induce a partition T
of T such that the sets feT° are disjoint ces [i...u]
of beginning times. Fach element a in abstraction
lpaoe.tlwillr?mnntafunctionithntuﬁgmtomh
job 7 a range ¢ of pomsible beginning times. The range
f constrains the beginning time of job d to lie in & time
window, but does not specify the precise beginning time

of any job. Range symmetry thus captures the abstrac-
tio:?tnte of the Multiprocessor Scheduling example
described .

Domain Symmetry: Now suppose that & is a group

of permutations of the domain D of the function f. Su
pose further that & is a direct product of symmetric su
A(Qﬁoraﬂdinmepartition.bo{.l). Define

group L by taking each element ¢ of @ and formin
a corresponding element oy of I such that for each fe
and each deDD, co(fHd) = f(#(d)). Thus two functions
b fa are equivalent with respect to £ whenever f;
and f d’xﬁu by permuting their values at points in D
that are equivalent with respect to &. In this case, T
induces an abstraction A of original space § that can be
represented in the following way: Each element aeA is
a function f that accepts a subset d in the partition D
and returns a multiset of cardinality |d| of values drawn
from the range R.

Consider an application of domain symmetry to the
Partition problem. (See Figure 3.) In this example, the
role of f is played by a boolean function m, which spec-
ifies the elements included in the set M. The role of D
is taken by the set F of elements to be partitioned. The
tole of B is taken by the set {True, False} of boolean
values, The group & couid be selected to induce a parti-

tion 2 of E such that each set écE contains elements of
nearly equal weight. Each element a in the abstraction
space A will represent a function vhv that assigns to each
set & a multiset of boolean values, The number of True
values in the multiset will represent the number of ele-
ments of £ that are included in M. Likewise, the number
of False values in the multiset will nt the number
of elements of é that are not included in M. An abstract
solution a therefore implicitly assigns a quota to each
set &, but does not precisely apecify the inclusion status
of any ﬁnicuhr element. Domain symmetry thus cap-
tures the abatraction strategy of the Partition example
described above.

3. Synth;asis of Problem Solvers

A general stra for synthesising hierarchic problem
solvers can be f(;“gulatmn termssof appromimapt.e sym-
metry: (1) Selec::'froup L of permutations of the search
space §. {2) Transiorm the original goal G into an ap-
proximate goal G such that G = G and G is exactly sym-
metric with respect to . (3) Use T and G to construct
cormponents of the hi probletn solver showr in
Figuve 1. Algorithms that instantiate this generic ab-
straction strategy for the special cases of domain sym-
metry and range symmetry are described below.

Parameterised CSPs: Classes of constraint sat-
probls are represented using a notation
called “parameterised coustraint satisfaction problems”

918 Machine Learning

o Given: A set J of jobs; a set T of beginning times;
a mrhiniotime w(j) for each job j; a deadline dg)
for each job 3§: a precedence relation p{j, k) on the
jobs; a number n of processors. Find: An assignment
of beginning times to jobs that meets the deadlines,
obeys the precedence relation and has at most n jobs
running at once.

¢ Signature:

— Sets: Jobs J (Symbol); Times T (Integer).
- Known:
Working-Timew: J —+ T
Deadlined:J — T
Precedence p: J x J — {True, Falose}
Number of Processors n of type Integer.
— Unknown: Beginning-Timeb:J - T
¢ Goal Function:

G(p,) = gi(p.8) Aga(p 8) Ags(p, o)

g1(p, #) = (VjeJ(p)) e(jip s) < d(j\p)

Fz(Ps ') = (Vjs J."J(P))_‘p(j’ 7 P) v Q(jn i, 3)
g:(p, 8) == (EjeJ’(p)) (3, p, 2} > n(p)

a(s, i\ p,8) = b(j',8) > e(j,p, 8}

I(Jv » ’) = 2}.](’] "f(r(kt b(j)l P ')1 1, 0)
riit,p,8) = {b(4,8) <t} A{e(s,p,8) >t}
e(iip,8) = b(j,0) +w(ip)

Figure 2: Multiprocessor Scheduling Problem Class

' }SCSPs). A PCSP includes a signaiure S and a goal-

nction G. The signatureisa d ation of the typea of
sete and functions that appear in problem instances, in-
cludinp: A list of names and data t; (symbol or inte-
ge? of finite sets; A list of names ctions along with
a declared domain and range for each; A list of names
and data types of constants. Furthermore, the signature
also declares each function to be either “known” or “un.
known”. The known functions are supplied as part of &
problem instance apecification. The unknown functions
must be found in order to solve the problem, We use
the notation f(e, p) to indicate that the known function
f depends on the problem instance p, as well as its ar-
gument e. We use the notation f(e,s) to indicate that
the unknown function f depends on the sclution s, as
well an its argument e. The problem instance p or state
parameter will occasionally be omitted from f(e,p) or
F {::), when ite role is clear from the context.

The %oa.l function G serves to determine how the un-
known functions may be specified in order to solve the
problem. G is concepiually & map from the known and
unknown functions into the booleans. We use the nota-
tion G(p, ¢) to indicate that G depends on the problem
instance p (i.e., the known functions) and the solution s,
g.e., the unknown functions). A particular goal function

is represented by a boolean formula that may reference
the known and unknown functions; primitive arithmetic
(+, =1+, /), relational (<, <, >, >) and boolean (=, V, A)
operations; as well as conditio: mi{(c, z,y) and abwo-
lute values Aba(zg. G may also include universal ¥ or
existential 3 quantification and surns I or products IT of
functions over sets declared in the signature, Signatures
and functions for the Partition and Multiprocessor

uling problems are found Figures 2 and 3.

o Given: A set E and a weight w(e) for each element
e of B. Find: A subset M of E such that the total
weight of A equals the total weight of E — M.

¢ Signature:
— Sets: Elements E (Symbol); Weights W (Integer).
— Known: Weight w: E — W
— Unknown: Membership m : E — {T'rue, False}
¢ Goal Function:

Gip, = v) = s
s .3 = ;f?.g:,).) t'faw(!’(’e: Z)' w(e, p), 0)

sips) = zul(p) if(m(e, 8),0, w(e, p))
Figure 3: Partition Problem Class

Synthesis Algorithms: Algorithms for synthesizing
hierarchic problem solvers based on range and domain
symmetry are shown in Figure 4. Each algorithm be-
gins by partitioning the range R or the domain D of the

unknown function / into a set R or D of equivalence
classes. The partitioning is carried out by clustering R
or D based on similarity of values of some known func-
tion whose domain is R or D respectively, and which
is referenced by the goal function G(p, a). (These clus-
tering techniques are described [Ellman, 1993].) Next,
the original goal function G(p, s) is transformed into an

abstract goal G(p, a) in order that it will operate on ab-
stract states a that represent abstractions / of the un-
known function /. In each algorithm this transformation
is achieved, in part, by a process of replacing operations
on objects with corresponding operations on sets, or cor-
responding symmetric operations. The revised goal is
then surrounded with a test for the appearance of True
in the returned set of boolean values. The resulting ab-
stract goal G(p,a) is, by construction, a necessary con-
dition on solvability of the abstract state a. Finally, a
refinement function R, is constructed for each element D
ofthe domain d. The function Rd(p, a, s) takes the prob-
lem specification p, an abstract solution a, and a par-
tially specified concrete solution s, and returns the set of
possible values for /(d) that are consistent with a and a.
The abstract goal is synthesized at compile time,
i.e., when the problem class is specified, but no prob-
lem instances are at hand. Once the abstract goal is
constructed, the system applies a series of equivalence-
preserving optimizing transformations, such as distribu-
tive laws and factorization of sums, products and quan-
tifications, to improve the computational efficiency of
the abstract goal. (The same optimizations are applied
to the original, concrete goal and to localized versions of
both abstract and concrete goals). All set arithmetic op-
erations appearing in abstract goals (E.g., +, —, /, *) are
implemented as operations on real intervals. Since these
set operations take constant time, the abstract goal has
the same asymptotic complexity as the original goal.

The domain D or range R is partitioned at run time,
i.e., after a problem instance has been specified. Input
taken from the user at compile time is used to determine
which known function will guide partitioning of D or R.
(In the Partition and Multiprocessor Scheduling exam-
ples, the user actually has only one choice.) Depending
on the set U to be partitioned, and the known function f
selected to guide the partitioning, one of two clustering
algorithms is used: (1) If/ is the identity function, and

Definitionss

¢ Set Functions: Given an arbitrary function A :
A — B, define the corresponding set function h :
AU24 = 28 guch that h(z) = {A(2)}, if zed, and
h(z) = {h(p)lpez} if 2 € A.

e Symmetric Functions: Given an arbitrary func-
tion h: A — B, and a partition A of A, define the
corresponding symmetric function h : A U 24 . 28
such that A(x) = (h(y)|peClass(z)}, if zed, and
h{z) = Uyec {h(2)|2¢Class(y)}, if z C A.

Algorithms: Given a search space § representing all
functions f from D into R, and a goal function G{p, s)
defined on all se$ and problem instances p.

1. Define an abstraction space A:

¢ Range Symmetry: Define a partition R of R by clus-
teﬂngkR based on similarity of values of R itself or
some known function defined on R that is referenced
by the goal function G(p, s). Let the abatraction
space A represent all functions f: D — R.

¢ Domain Symmetry: Define a partition D of D b
clustering D based on similarity of velues of D itaeﬁ'
or some known function defined on D that is refer-
enced by the goal function G(p, 2). Let the abatrac-

tion space A represent all functions f with domain
D such that for all deD, f(d) returns a multiset over
R of cardinality |d|.
2. Synthesize an abstract goal G(p, a) defined on all acA
and problem instances p:
(a) Construct an approximate goal function G(p, s) that
is exactly symmetric with respect to R or D:
i. Transform the original goal function G(p, 4) into a
boolean set valued function G(p, #):
s Range Symmetry: Reylace each reference to

the unknown function f(d) with the expression
Class{f(d)). Replace emﬁ primitive or known

function A with the corresponding set function .
¢ Domain Symmetry: Replace each reference to a
known function A defined on domain D, with

the corresponding symmetric function A. Replace
each primitive or known function A deficed on

D' # D, with the corresponding set function A.
ii. Let G(p,8) = True ¢ G(p, 8).
(b) Define the absiract goal G(p,a) to select an arbi-
trary sea and return G(p, o).

3. Synthesise functions R4(p, a, #) that incorporate con-
straints between the abstract s, A and the concrete
space S. For each deD, R4(p, a,s) is the set of values
of f{d) that are consistent with the shstract solution
a and the partially specified concret - solution a.

o Range Symmetry: Ra(p,a,s) is the set f(d, a).

o Domain Symmetry: Rq4(p, a, s) is the set of elements
in the multiset difference between f{d,a), and the
multiset of all £(d, 2) (ded) such that f(d) is assigned
a value in state s,

Figure 4: Synthesis Algorithme and Definitions

Ellman 919

G(p,a

_ (V4. 3'e7(p)) 90(j,5'1p,0)
go(d, i's 21 6)

Fl(Jl b, d) A 91(31 J-'s > a) A gy(j,p,)

91(j, p.a) = True e {&/,p “)éd(jl)}

93(1.’ J"!) 8 a) = _'P(jv J"nP) VTrue € i(jl j'l P 8)
g3(J, p, a} = .F alse ¢ {f(j.p, ﬂ)sﬂ(p)}

804, 5" p,) = b(j’v ’)éa(js P ‘_)

IGipa) = Ll Pk 83, pia) (1), {0))
#(j.t,p,a) = {S(Jv ﬂ)ét}.’\{&(]‘, p, a)>t}
éGpa) = i e)tiGr)

Figure 5: Abstract Multiprocessor Scheduling Goal

Glp,a) = True ¢ (41(p,a)231(p,0))

#iipa) = nt(,)i:(..-).(a,a.(e..))‘f (vi18(e, p), {0})
10,0 = sy L iemeamenif(v: {0} (e, p))

Figure 6: Abstract Partition Goal

U is an unbroken sequence of integers (U = [/...u),
then U is partitioned into intervals of equal or nearly
equal size; (2) Otherwise, U is partitioned in a bottom
up fashion, starting with singleton sets, and repeatedly
merging two sets x and y such that / has minimal varia-
tion over xUy. In either case, the final partition is chosen
to yield an abstract space whose size is the square root
of the size of the concrete space, based on a rough anal-
ogy with Korf's result on the optimal size of abstraction
spaces [Korf, 1987].

When the range symmetry algorithm is applied to the
Multiprocessor Scheduling problem description in Fig-
ure 2, it generates the abstract goal function shown in
Figure 5. This goal function G(p,a) performs interval
arithmetic, interval comparisons, and boolean-set alge-
bra on the time window assignments b(j, a) represented
by an abstract state a: For example, G(p, a) checks dead-
lines by converting beginning time windows into ending
time windows, and noticing whether any job's deadline
occurs earlier than the start of its ending window. Like-
wise, G(p, a) checks for processor overload by computing
lower bounds on the numbers of jobs running at each
point in time, and noticing whether any lower bound ex-
ceeds the available number of processors. The abstract
goal G(p, a) thereby computes a necessary condition on
the original goal.

When the domain symmetry algorithm is applied to
the Partition problem description in Figure 3, it gener-
ates the abstract goal function shown in Figure 6. This
fioal function G(p,a) selects an arbitrary concrete so-
ution s consistent with the quota assignments m(e, a)
represented by an abstract state a. It then applies to
s an approximation G(p, s) of the original goal function
that is symmetric with respect to the partition E. This
symmetric goal function G(p, a) treats each eeE as if it
has an interval w(e) of weights, rather than an actual
weight w(e), i.e., an interval spanning the weights of all
elements in Class(e). It first computes an interval i,
bounding the total weight of elements included in M
and an interval S; bounding the total weight of elements
excluded from M. It then checks whether these intervals
overlap. The abstract goal G(p,a) thereby computes a
necessary condition on the original goal.

920 Machine Learning

4. Experimental Results

A series of experiments was run to evaluate the per-
formance of automatically synthesized problem solvers
based on range and domain symmetry. Results of these
experiments are shown in Figures 7 and 8. Each graph
compares the performance of a hierarchic problem solver,
which uses abstraction, to the performance of a flat prob-
lem solver, which uses no abstraction. The hierarchic
and fiat problem solvers use the same underlying back-
tracking code, but with different input specifications.
Each graph plots problem size against performance mea-
sured in terms of CPU time. CPU time is a better mea-
sure than alternatives, like numbers of goal tests or num-
bers of states generated, for two reasons: First, the com-
putational cost of generating one state or testing one goal
may not be the same in the flat and hierarchic problem
solvers. Second, the relative importance of state gener-
ation and goal testing may not be the same in the flat
and hierarchic problem solvers.

1. el
1. dw+Dio "‘r

i
i
1.2u+08 i

MLl i saconds)

lertdy §

U Thes

Figure 7: Multiprocessor Scheduling Problem Results:
Hierarchic (Solid) v. Flat (Dotted)

S Time (ALlLLeecenats)

+ - v y
& 4 10 12 M 1
Taint o Bhjects

Figure 8: Partition Problem Results:
Hierarchic (Solid) v. Flat (Dotted)

The Multiprocessor Scheduling; problem graph com-
pares performance on problems with a fixed domain size
(i.e., 6 jobs), and a varying range size (i.e., the number
of time slots running from 5 to 35). Each data point
represents an average over a set of 100 randomly gener-
ated problems. The multiprocessor problem search was
guided by localized versions of the abstract and concrete

oals in order to realize pruning from application of the
gocal constraints that appear in this problem. The local-
ized goals were constructed automatically from the corre-
sponding unlocalized goals using standard dependency-
tracing techniques. The Partition problem graph com-
pares performance on problems with a varying domain
size (i.e., the number of elements running from 4 to 16)
and a fixed boolean range. Each data point represents an
average over a set of 10 randomly generated problems.
The Partition problem search was guided by unlocalized
versions of the abstract and concrete goals, since no local
constraints appear in the Partition problem. In each of
the two test domains, the hierarchic solver outperforms
the flat solver for sufficiently large problems. A series of
paired, single-tailed T-Tests shows hierarchic scheduling
to be faster than flat scheduling with significance greater
than 99% on the five largest problem sizes. A series of
paired, single-tailed T-Tests shows hierarchic partition-
ing to be faster than flat partitioning with significance
greater than 99% on the two largest problem sizes.

5. Related Work

Abstraction techniques have been studied previously in
the context of planning [Knoblock et a/., 1991] and the-
orem proving [Giunchiglia and Walsh, 1992]. In con-
trast, the research presented here is focused on ab-
straction techniques for constraint satisfaction problems.
A program called "HiT" for automatically construct-
ing abstraction spaces for CSPs is presented in [Mohan,
1991]. HiT uses the ranges of functions appearing in the
goal definition as the basis for constructing abstraction
spaces. HiT may be seen as a special case of the range
symmetry technique described here. Methods of attack-
ing hierarchical CSPs are discussed in [Mackworth et al,
1985]; however, these methods exploit existing hierar-
chies and do not construct new ones. Abstractions based
on quotas have been studied in the context of resource
allocation problems [Lowry and Linden, 1992]. Approxi-
mate symmetry provides a rational reconstruction of the
quota concept. Furthermore, approximate symmetry is
more general, because it depends only on the algebraic
form of the problem and not on semantic notions such
as "resources". Abstractions based on windows oper-
ate in a manner similar to interval constraint propaga-
tion [Davis, 1987]. Approximate symmetry provides a
means of using such interval-based methods to attack
problems with global constraints, to which constraint
propagation techniques to not immediately apply. Tech-
niques for recognizing and exploiting exact symmetries
have been investigated in the context of propositional
satisfiability [Crawford, 1992]. In contrast, the methods
presented here construct and exploit symmetries that are
not present in the original problem. Approximations and
abstractions have been used to construct heuristic eval-
uation functions in the context of constraint satisfaction
[Dechter and Pearl, 1987] and state space search [Priedi-
tis, 1991]. A system that selects and combines multiple
heuristics to synthesize CSP algorithms is described in
[Minton, 1993a] and [Minton, 1993b].

6. Acknowledgments

This research is supported by the National Science Foun-
dation. (Grants IRI-9017121 and IRI-9021607). It has
benefited from discussions with Haym Hirsh and Christo-
pher Tong and programming by Saibal Patra.

References

W. Braudaway and C. Tong. Automated synthe-
sis of constrained generators. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, Detroit, M1, 1989.

J. Crawford. A theoretical analysis of reasoning by sym-
metry in first order logic. Working Notes of the AAAI
Workshop on Tractable Reasoning, San Jose, CA, 1992.

E. Davis. Constraint propagation with interval labels.
Artificial Intelligence, 32:281 - 332, 1987.

R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Artificial Intelligence,
34:1-38, 1987.

T. Ellman. Synthesis of abstraction hierarchies for con-
straint satisfaction by clustering approximately equiva-
lent objects. In Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA, 1993.

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New
York, NY, 1979.

F. Giunchiglia and T. Walsh. A theory of abstraction.
Artificial Intelligence, 57:323-389,1992.

C. Knoblock, J. Tennenberg, and Q. Yang. Characteriz-
ing abstraction hierarchies for planning. In Proceedings
of the Ninth National Conference on Artificial Intelli-
gence, Anaheim, CA, 1991.

R. E. Korf. Planning as search: A quantitative ap-
proach. Artificial Intelligence, 33(1):65 - 88, 1987.

M. Lowry and T. Linden. Generation and exploitation
of aggregation abstractions for scheduling and resource
allocation. Working Notes of the AAAIl Workshop on
Approximation and Abstraction of Computational The-
ories, San Jose, CA, 1992.

A. Mackworth, J. Mulder, and W. Havens. Hierarchi-
cal arc consistency: Exploiting structured domains in
constraint satisfaction problems. Computational Intel-
ligence, 1:118 - 126, 1985.

S. Minton. An analytic learning system for special-
izing heuristics. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence,
Chambery, France, 1993.

S. Minton. Integrating heuristics for constraint satis-
faction problems: A case study. In Proceedings of the
Eleventh National Conference on Artificial Intelligence,
Washington, D.C., 1993.

S. Mohan. Constructing hierarchical solvers for func-
tional constraint satisfaction problems. Working notes
of the AAAI Spring Symposium on Constraint-Based
Reasoning, Stanford, CA, 1991.

B. Nadel. Tree search and arc consistency in constraint
satisfaction algorithms. In L. Kanal and V. Kumar,
editors, Search in Artificial Intelligence, pages 287 -
342. Springer Verlag, New York, NY, 1988.

A. Prieditis. Machine discovery of effective admiss-
able heuristics. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, Sid-
ney, Australia, 1991.

Ellman 921

