
An Analy t ic Learning System
for Specializing Heuristics

Steven M i n t o n
Sterling Software

AI Research Branch
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035-1000, U. S. A.

minton@ptolemy.arc.nasa.gov

Abs t rac t

This paper describes how meta-level theories
are used for analytic learning in M U L T I - T A C .
M U L T I - T A C operationalizes generic heuristics
for constraint-satisfaction problems, in order
to create programs that are tailored to spe­
cific problems. For each of its generic heuris­
tics, M U L T I - T A C has a meta-theory specifi­
cally designed for operationalising that heuris­
t ic. We present examples of the specialisation
process and discuss how the theories influence
the tractabil i ty of the learning process. We also
describe an empirical study showing that the
specialised programs produced by M U L T I - T A C
compare favorably to hand-coded programs.

1 I n t r o d u c t i o n
M U L T I - T A C (Mult i-Tactic Analytic Compiler) is a learn­
ing system for constraint-satisfaction problems (CSPs).
The system operationalises generic heurist ics[l l] , pro­
ducing problem-specific versions of these heuristics, and
then attempts to find the most useful combination of
these heuristics on a set of training problems.

This paper focuses on the knowledge that M U L T I - T A C
uses in order to operationalize generic heuristics, and
how this approach differs from previous work in "ana­
lyt ic" (or knowledge-based) speed-up learning. Previ­
ous analytic speed-up methods, such as EBL, chunking,
and derivational analogy, have been used primarily for
caching problem-solving experience[9]. Typical EBL sys­
tems, for example, learn f rom problem-solving successes
and/or failures by caching a knowledge structure sum­
marising the experience (e.g., a chunk) and then reusing
that knowledge during subsequent problem solving. In
retrospect, relatively l i t t le attention has been paid to the
theories (i.e., the knowledge) used in the learning pro­
cess. However, this subject deserves more attention since
the choice of theories determines what is learned.

M U L T I - T A C employs meta-level theories in the learn­
ing process. These enable the system to reason about the
problem solver's base-level theory, as opposed to simply
caching the generalised results of the problem solver's
search. We argue that this approach is particularly ap-
propriate when solving combinatorial problems, such as

scheduling problems.
The system employs a rich variety of meta-level theo­

ries. This reflects a shift in research focus from "learn­
ing as a caching process" to "learning as an inferential
process". The key is to find tractable meta-theories for
generating useful search control knowledge. We outline
two such theories, and discuss how the representation of
the meta-level theories and the representation of the un­
derlying constraint-satisfaction task influences the ut i l ­
i ty of the learning process. We also describe an empiri­
cal study in which M U L T I - T A C compared favorably wi th
hand-coded programs.

2 Theories and Ana l y t i c Learn ing

Informally, analytic learning systems are characterized
by a "theory-driven" component that generates hypothe­
ses by analyzing a domain. Several analytic approaches
have been used for speed-up learning, in which the goal
is to improve problem-solving efficiency. For example,
one approach is to apply EBL to generate possible search
control rules[9]. These rules serve as "hypotheses" which
are tested by evaluating their ut i l i ty on a set of problem
instances. We wi l l use EBL to illustrate our argument
here, although a variety of analytic approaches have been
employed for speed-up learning.

The simplest type of EBL normally utilized by a prob­
lem solver involves learning from success. In this case,
the theory that is used in the explanation process is typ­
ically the same theory that the problem solver uses in its
search. For example, in macro-operator learning, a sim­
ple form of EBL, an explanation is simply an operator
sequence which solved a problem.

Learning from failure is slightly more complex, but
again, can often be accomplished by using essentially
the same theory that the problem solver employs. For
instance, if the base-level theory includes the axiom
"P Q1 v Q2" , a system can reason about the fail­
ure to derive " P " by using an equivalent form of the
axiom, U^P *-+ -*Q1 A -*Q2*.

In this paper we explore a more sophisticated approach
in which the learning system is given additional "meta-
level* knowledge. Meta-level theories enable the learn­
ing system to reason about the base-level theory that
the problem solver employs, so that the learning system
can do more than simply generate inferences from the

922 Machine Learning

base-level theory. For example, we show how a domain-
independent heuristic, such as the CSP heuristic "pre­
fer the least-constraining-value" can be automatically
specialised for a particular problem by reasoning about
what "least-constraining" means in the context of that
problem. This process involves incorporating informa­
tion that is not normally used by the base-level prob­
lem solver. Although some forms of meta-reasoning have
been employed in previous EBL systems (e.g., learning
from goal-interactions [9]) this approach remains largely
unexplored.

Meta-level analysis is particularly appropriate when
the base-level theory is intractable and there is no obvi­
ous skew in the distribution of solutions. For example,
consider an NP-hard problem such as scheduling or time­
tabling. It is unlikely that simply caching generalized
solutions wi l l prove very useful unless the distribution of
instances is extremely biased so that some special cases
arise repeatedly. In contrast, applying heuristics that
are specialized to the problem is quite likely to be use­
ful. Such heuristics can improve average problem-solving
performance on intractable problems without depending
on a skewed distr ibution.

3 M U L T I - T A C

M U L T I - T A C a speed-up learning system for solving com­
binatorial problems, such as shop scheduling, time­
tabling, and bin packing. Such problems abound in in­
dustry and government. The system is designed for a
scenario where instances of some NP-hard problem must
be solved routinely, such as a factory where a schedule
must be devised each week. While all NP-complete prob­
lems can be reduced to a single problem type, such as
Satisfiability, and then solved by some heuristic algo­
r i thm, this is generally a poor approach since the rela­
tive ut i l i ty of many heuristics is problem-dependent [6].
Instead, one typically writes a program specifically for
the problem at hand by modifying some "off-the-shelf"
algorithm and adding appropriate heuristics. Although
NP-complete problems are intractable in the worst case,
relatively efficient programs can often be designed for
specific applications. Indeed, for certain NP-complete
problems, such as graph-coloring, simple heuristic meth­
ods can produce solutions in polynomial time wi th high
probability even for "random" distributions[l5].

In this paper, we adopt the standard terminology of
computer science and use the term "problem" to refer
to a generic problem class and "instance" to refer to a
particular problem instance. For example, "Graph-3-
Colorabil ity" is a problem that requires that each node
in a graph be assigned one of three possible colors, such
that no two neighbors have the same color. An instance
of Graph-3-Colorability would consist of a specific graph
and a specific set of colors.

M U L T I - T A G ' S input consists of a problem specification
plus an instance generator for that problem. The in­
stance generator is a "black box" that generates instance
specifications according to some distr ibution. M U L T I -
TAGS' output is a Lisp program that is tailored to the
problem and the instance distribution. Our goal is to
synthesize programs that are as efficient as those writ­

ten by competent programmers (not algorithms experts).
Doing so requires the system to have considerable exper­
tise. However, it primarily requires expertise that would
be "commonsense" to a programmer, as opposed to a
knowledge base of operations research algorithms. (We
are not opposed to the latter approach, it is simply not
the focus here).

In order to present a problem to M U L T I - T A C it must be
formalized as an integer CSP, that is, as constraints over
a set of integer variables. The problem are described
using a first-order, sorted logic, a relatively expressive
language for CSPs. A solution exists when all the vari­
ables are assigned a value such the constraints on each
variable are satisfied. Consider the problem "Graph-3-
Colorabil ity". The nodes can be represented by variables
whose value can range from 0 to 2. The constraints on
variables are specified as follows:
(iff (satisfies Var Vat)

(forall Neigh-var such-that (edge Neigh-var Var)
(not (assigned Neigh-var Vat)))))

That is, a value satisfies the constraints on a variable
iff all neighboring variables have not been assigned that
value. The constraint language includes two types of
relations, problem-specific user-defined relations such
as edge and built- in system-defined relations such as
s a t i s f i e s and assigned. User-defined relations are de­
fined by explicitly listing their extension in the instance
specification. There are variety of built- in relations, such
as sum, g r e a t e r - t h a n , max (of a set), and union.

The graph coloring constraint is particularly simple.
However, a wide variety of problems can be specified in
the language. Consider another example, Bin Packing.
Each object is represented by a variable and each bin
by a value. The user-defined relations o b j e c t - s i z e and
b i n - c a p a c i t y relate each variable to a "size" and each
bin to a "capacity". The bin-packing constraint is rep­
resented as follows (paraphrasing in English): a variable
(object) can be assigned a value (bin) iff the bin's capac­
i ty minus the object's size is greater than or equal to the
sum of the sizes of the other objects assigned to the bin.

The program synthesis process employed by MULTI-
TAG is hierarchically organized. At the top level, the
system chooses one of a set of generic constraint satisfac­
tion search algorithms, including backtracking and iter­
ative repair [10]. Currently only the backtracking strat­
egy is implemented, so the remainder of the paper as­
sumes a backtracking search. As in the standard CSP
backtracking search[7], the system selects a variable and
then chooses a value for that variable. Backtracking oc­
curs when all values for a variable fail to satisfy the con­
straints. Thus, two obvious points for search control
knowledge are the choice of which variable to instantiate
next and the choice of which value to assign. Associated
wi th the backtracking schema are generic heuristics for
choosing variables and values, such as:
• Most-Constrained-Variable-First: This variable or­

dering heuristic prefers the variable wi th the fewest
possible values left.

• Most-Constraining-Variable-First: A related variable
ordering heuristic, this prefers variables that con­
strain the most other variables.

Minton 923

• Least-Constraining-Value-First: A value ordering
heuristic, this heuristic prefers values that constrain
the fewest other variables.

• Dependency-Directed Backtracking: If a value choice
is independent of a failure, backtrack over that choice
without t ry ing alternatives.
To synthesize a program, MULTI-TAC first operational-

izes the generic variable and value-ordering heuristics,
producing a set of candidate search control rules. This
set may be large (typically between 10 and 100 rules in
our experiments), since there are a variety of heuristics
and each heuristic may be specialized and/or approxi­
mated in several different ways. A system configuration
consists of a combination of control rules and a variety of
flag settings controlling other heuristic mechanisms (e.g.,
a flag indicates whether or not to use forward checking
[7]). The system carries out a utility evaluation process
in which it searches for the most effective system config­
uration using a hil l-climbing search. During this search,
the system evaluates the ut i l i ty of a given configuration
by compiling a Lisp program that implements the config­
uration, and then "experimenting" w i th the program by
running it on a set of instances. (The compilation pro­
cess also includes a variety of additional optimization
techniques, such a finite differencing[l3] and constraint
simplification).

The learning process impacts the efficiency of the tar­
get code in two ways. First, the generic heuristics are
re-expressed as problem-specific rules. Second, the ut i l ­
i ty evaluation process searches for a combination of these
heuristics that yields the best overall performance. The
resulting program may include several heuristics, which
can act synergistically.

Unfortunately, space does not allow a complete discus­
sion of the architecture. In the next section, we describe
how the generic variable- and value-selection heuristics
are specialized, the main subject of this paper.

4 Special izing Generic Heur ist ics

M U L T I - T A C is based on the supposition that expert prob­
lem solving can result f rom combining a variety of rel­
atively simple, generic heuristics. The key lies in spe­
cializing those heuristics to a given problem and then
selecting the most useful combination.

As in the EBL paradigm [9], the learning process re­
quires a target concept and a theory describing the target
concept. The result is a specialization of the target con­
cept (i.e., a sufficient condition for the target concept).

In M U L T I - T A C each generic heuristic, such as Least-
Constraining-Value-First, is a target concept. To spe-
cialize the heuristic, we use a meta-theory which de­
scribes the heuristic. (For some heuristics there are sev­
eral meta-theories, each one representing a different tac­
tic for operationalising the heuristic.) The specializa­
tion method is very similar to the BBS method used in
P R O D I G Y / E B L [9], except that the entire set of possible
specializations is generated (as in Etzioni's S T A T I C [3]),
rather than using an example to guide the specialization
process. As discussed in section 6, the meta-theories are
designed so that the set of possible specializations is not

prohibitively large. Below we present two examples i l ­
lustrating the specialization process.

4 .1 Leas t -Cons t ra in ing -Va lue -F i r s t

Our first example illustrates the theory M U L T I - T A C em­
ploys to operationalize Least-Constraining-Value-First.

The backtracking CSP search is modeled as a series
of state changes. In a given state, some variables have
a value assigned, and the rest of the variables are unas-
signed. Formally, (holds (assigned Var Vat) S) if and
only if variable Var is assigned value Val in state 5. In
general, for any given state 5 and any Statement in the
constraint language (holds Statement 5) if and only if
Statement is true in S.

Assigning a value to variable Varl constrains another
variable Varl iff the number of values that satisfy the
constraints on Varl is reduced. A value is a least-
constraining value if it would constrain the fewest num­
ber of other variables. (This is just one way to formalize
the intuit ive notion of "least constraining"). The generic
control rule which expresses this notion (paraphrased for
readability) is:
If the current variable to be assigned is Varl
choose a value with the minimum score, where

the score of Val1 is the number of Varl, such that
there exists a Val2 such that

(and (satisfies VarS Val2
(is-false-upon-assignment Varl Val1

"(satisfies Var2 Val2)")

In other words, each candidate value Vail for variable
Varl is scored by counting the number of other vari­
ables that are constrained when Vail is assigned to
Varl, where variable Varl is constrained if for some
value Val2, (s a t i s f i e s Varl Val2) changes from True to
False.1 The semantics of "Is-false-upon-assignment" can
be formally characterized as follows. Let (nex t - s t a te
S2 S1 Varl Val1l) be true if S2 is the state that re­
sults from S1 after Val1 is assigned to Varl. Then
(i s - fa lse-upon-ass ignment Varl Val1 Statement) is
true if:

V51,52,
[(holds Statement S1) A (next-state S2 S1 Varl Val1)}
=> (not (holds Statement S2))]

M U L T I - T A C derives a specialized control rule by opera-
tionalizing "is-false-upon-assignment". The system em­
ploys a theory designed specifically for this task. Since
space does not permit us to describe the complete the­
ory, below we list the sequence of specializations carried
out for our Graph-Colorability example. (We have taken
a few liberties for readability).

In i t ia l statement to be specialized:
(i s - fa lse-upon-ass ignment Varl Val1

"(satisfies Varl Val2)")

1This is a local definition of "constrains", since we only
consider the case where assigning a value to one variable di­
rectly constrains another variable. For example, if assigning a
value to Varl constrains Varl, which in turn constrains Var3,
we do not say that assigning a value to Varl constrains VarS.

924 Machine Learning

Expands into:
(i s - fa lse-upon~as« ignaent Var l Vai l

"(forall neigh-var such-that (edge neigh-var VarS)
(not (assigned neigh-var Val2)))")

Specializes to:
(exists neigh-var such-that (edge neigh-var Var2)

(is- fa lsa-upon-assigxunent Var l V a l 1
"(not (assigned neigh-var Val2))"))

Specializes to:
(exists neigh-var such-that (edge neigh-var VarS)

(and (equal Var l neigh-var)(equal V a l 1 Val2)))

Simplifying, we have:
(and (edge Var l Var2)(equal V a l 1 Val2))

As the example shows, the analysis proceeds by re-
cursively propagating "is-false-upon-assignment" inward
through the constraint. The meta-theory which guides
this analysis describes how each type of statement should
be specialized. For example, below we show an axiom
for specializing a universally quantified formula. (This
is used in the first specialization step above).

(only-if
(is-false-upon-assignment Var Vol

"(forall x such-that gen-statement test-statement)")
(exists x such-that gen-statement

(is-false-upon-assignment Var Val"test-statement)))

This axiom indicates that a universally quantified state­
ment over a set wi l l become false if the statement be­
comes false for at least one member of the set. There
are similar axioms for conjunctions, disjunctions, simple
predicates, etc.

Incorporating the specialized result in our example
back into the generic control rule and then simplify­
ing gives us the following specialized version of least-
constraining- value-first:

If the current variable to be assigned is Varl
choose a value with the minimum score, where

the score of Va l1 is the number of Var2, such that
(and (edge Var2 Varl)

(satisfies Var2 Val1)

To determine the score for the color red, for example,
this rule counts the number of neighbors which them­
selves can be colored red (i.e., the number of neighbors
which do not themselves have a red neighbor). To under­
stand why this makes sense, consider the extreme case
where all neighbors already have a red neighbor. In this
case, choosing red does not constrain any neighbor since
none could be colored red in any event. Thus the score
for red wi l l be 0, and so red wi l l be a preferred value.

Of what value is this specialization process? Consider
the generic, unspecialized rule that would be the alterna­
tive. This rule would simply count, for each value, how
many variables would be constrained by this value. For
Graph Colorability the complexity would be 0 (k 2 nd) ,
where k is the number of colors, n is the number of nodes
in the graph, and d is the maximum node degree (i.e.,
number of edges per node) since for every value, each
unassigned node in the graph would be examined to see

if any of its k possible values would be eliminated, at a
cost of d per constraint check. In comparison, the cost of
evaluating the specialized rule is 0 (kd 2) , since for each
value, each neighbor is examined and a constraint check
of cost d is carried out. (Note that d < n, so the savings
is at least a factor of k.)

For another il lustration of the ut i l i ty of this pro-
cess, consider the Bin Packing problem described earlier.
Choosing a value to assign to a variable corresponds to
choosing a bin for an object. If we simply try each bin
in turn, this gives us the "first-fit" heuristic. Special­
izing Least-Constraining-Value-First gives us (a version
of) the well-known "best-fit" heuristic, which prefers the
bin wi th the least remaining capacity that wi l l hold the
object. To see why the "best-fit" heuristic is a special­
ization of Least-Constraining-Value-First, consider that
the bin wi th the least remaining capacity is a "possible
b in" for fewer objects than any other bin. Thus, putting
the object in this bin constrains the fewest other ob­
jects. (Note that there is an alternate argument that the
least-constraining bin is the one wi th the "most remain­
ing capacity". In fact, this results from an alternative
specialization. The relative ut i l i ty of these alternatives
depends on the instance distribution.)

4.2 I d e n t i f y i n g S y m m e t r i c Values
We now describe a meta-theory that enables MULTI-TAC
to recognize certain types of symmetries and thereby
eliminate unnecessary search. The result is a control
rule that carries out a specialized form of dependency-
directed backtracking. Once again we wil l use Graph
Colorability as an il lustration. Suppose that we are
choosing the color for a node, and the possible values
include red and green. If no node in the graph is yet
colored either red or green, then these two colors can be
considered equivalent. If coloring the node red results in
failure (i.e. the remainder of the graph cannot be colored
consistently), then it makes no sense to t ry green since it
is guaranteed to fail as well. To see why this is true, con­
sider that any solution where the node is colored green
could be transformed into a solution where the node is
colored red merely by interchanging the labels green and
red on all nodes.

This is an example of reasoning by symmetry [5; l] .
In the general case, we wi l l consider symmetries where
two values V a l 1 and Val2 are swapped, such that all the
variables that are assigned V a l 1 are re-assigned Val2,
and vice versa. A generic control rule for utilizing this
information is (paraphrased):
If assigning value V a l 1 to variable Var resulted in failure

and value Val2 is a possible value for variable Var
and no variable is assigned value Val1
and no variable is assigned value ValS
and interchanging V a l 1 and ValS

preserves the solution property
then eliminate Val2 as a possible value for Var

We can formalize the last antecedent as follows. Let
(interchange S1 S2 V a l 1 ValS) be true if S2 is the state
that results from interchanging V a l 1 and and Val2 in
state S1. Then, interchanging V a l 1 and Val2 preserves
the solution property if:

Minton 925

VS1,s2 [(interchange S1 St V a l 1 Valt)
V Var9 [(holds (satisfies VarS Valt) S1)

(holds (satisfies Varx Val1) St)]]
M U L T I - T A C ' S task is to operationally express the condi­
t ion under which V a l 1 and Val2 can be interchanged. As
we wi l l show, for Graph Colorability the analysis reveals
that this condition simplifies to TRUE, since interchang­
ing V a l 1 and Valt in any solution preserves the solution
property. In other problems, V a l 1 and Valt can be in­
terchanged only in certain circumstances. For instance,
in the Bin Packing problem, interchanging two values is
equivalent to swapping all the objects assigned to one
bin w i th all the objects assigned to another bin. In this
case, the specialisation process reveals that the two bins
can be interchanged only if they have equal capacities.
Thus, for Bin Packing, the resulting search control rule
indicates that if putt ing an object in a bin fails, then
putt ing it in another bin wi l l also fai l provided that the
bins have the same capacity and both are empty.

In order to operationally express the conditions under
which two values can be interchanged, M U L T I - T A C spe­
cialises the statement below, using a theory specifically
designed for this task.

(interchange-preserves-truth (Val)
"(satisfies Var Vat)")

The meta-predicate "interchange-preserves-truth" is
a two-place relation. The second argument, e.g.,
" (S a t i s f i e s Var Val)" is the statement whose t ru th
must be preserved by the interchange. The first argu­
ment, e.g., "(Val)* is a list of the free (logical) variables
in the statement that are affected by the interchange.
(That is, if Val = V a l 1 prior to the exchange then
Val = Val2 afterwards, and if Val = Val2 prior to
the interchange then Val = V a l 1 afterwards, otherwise
Val is unaffected by the interchange.)

For each type of statement in M U L T I - T A C ' S language,
the meta-theory determines the conditions under which
a value interchange wi l l preserve the t ru th of the state­
ment. M U L T I - T A C recursively analyzes the expression,
keeping track of the terms to which the interchange ap­
plies. Below we show the series of specializations used in
the graph coloring example, after having expanded the
definition of "satisfies" in the statement above.

(interchange-preserves-truth (Val)
"(forall Neigh-var such-that (edge Neigh-var Var)

(not (assigned Neigh-var Vol)))")

specializes to:
(forall Neigh-var such-that (edge Neigh-var Var)

(interchange-preserves-truth (Val)
"(not (assigned Neigh-var Vat))"))

specializes to:
(forall Neigh-var such-that (Edge Neigh-var Var)

(true))

simplifies to:
(true)

The key step in this analysis is the last specialisa-
t ion, where it is determined that the t ru th of " (not
(assigned Neigh-var Vat))" wi l l be preserved when Val

Min imum Maximal Matching

Project member
MULTI-TAC
Subject 1
Simple CSP

Total
CPU Sec

3.4
4.6

165.9
915.0

Number
Unsolved

o
o 1
6 1
83 |

K-Closure

Project member
MULTI-TAC
Subject2
Simple CSP

Total
CPU Sec

3.4
4.8

482.2
932.4

Number
Unsolved

o 1
o 1
42 |
75 |

Figure 1: Performance results on two problems

is affected by the interchange, e.g., if (not (assigned
neighbor Val1)) is true prior to the interchange, then
(not (assigned neighbor Vai2)) wi l l be true after the
interchange.

We are also implementing two related meta-theories to
carry out more sophisticated analyses. The first consid­
ers interchanging values V a l 1 and Valt in a solution, ex­
cept that those variables already assigned at the decision
point are left unchanged. For graph coloring, this analy­
sis reveals that if value V a l 1 fails, value Valt wi l l also fail
provided no node presently assigned V a l 1 or Valt is next
to an unassigned node. For Bin Packing, this analysis
reveals that if b in V a l 1 fails, bin Valt wi l l fail provided
both bins have the same remaining capacity.

The second meta-theory considers interchanging value
V a l 1 w i th Val1+/, where I is some integer. This is not
useful for either graph coloring or bin-packing, but is
useful for Traveling Salesman, Hamiltonian Circuit, and
some types of scheduling problems. Consider the Trav­
eling Salesman problem where the variables correspond
to cities, and their values indicate the order in which the
cities are visited. The analysis reveals that it does not
matter which city is chosen to start the tour.

5 I n i t i a l R e s u l t s

Although M U L T I - T A C is st i l l under development, the
present version, M U L T I - T A C I . O , is capable of synthesiz­
ing very good algorithms on some problems. For ex­
ample, on graph coloring, M U L T I - T A C I . O synthesizes the
well-known "Brelaz" algorithm[15]. However, this is not
very surprising since the author's previous familiarity
wi th this algorithm influenced the design of M U L T I - T A C .
A more interesting question is how the system performs
on problems that are unfamiliar to the author and other
project members.

In order to gauge the system's current effectiveness,
we selected two problems from the book "Computers and
Intractabi l i ty" [6], Minimal Maximal Matching and K-
Closure. These problems could be easily expressed in
M U L T I - T A C ' S language and, in addition, they appeared
amenable to a backtracking approach (based on a cur­
sory examination). Two Ph.D.-level computer scientists
working on unrelated projects volunteered to write pro-

926 Machine Learning

grams that we could use for comparison. In addition, one
of the M U L T I - T A C project members was asked to write
programs for both problems. The humans were given
access to the same instance generators as M U L T I - T A C
for the purpose of testing their programs.2 The instance
generators used simple random techniques to generate
instances; we did not attempt to construct " tr icky" in­
stances. The humans were asked to write the fastest
program they could, given their busy schedules, and they
spent between 5 and 12 hours coding their programs.

For both problems, Figure 1 compares target code
generated by M U L T I - T A C wi th the hand-coded programs
and wi th an unoptimized CSP engine (with no heuris­
tics). The figures show the cumulative running time on
100 instances of both problems. The programs were al­
lowed to run for a maximum of 10 CPU seconds per
instance, so the figures also report for each program the
number of instances that were not solved within this time
bound. The results clearly indicate that M U L T I - T A C ' S
target programs were more efficient than those of our
two volunteers (Subject 1 and Subject2), although the
project member was able to produce even faster code on
both problems. Also, it is clear that the unoptimized
CSP engine performed poorly.

Interestingly, the project member's programs were sig­
nificantly faster than our two subjects' programs. We be­
lieve that this illustrates the importance of expertise in
wri t ing heuristic algorithms. Whereas the project mem­
ber has become something of an expert on heuristics
for combinatorial problems through his work on M U L T I -
T A C , the other two subjects do not work in this area.

Obviously, the results are extremely promising. Few, if
any, previous speed-up learning systems have performed
favorably against hand-coded programs. However, we
note that these results do not address the generality of
the system, since the problems were not randomly se­
lected from "Computers and Intractabi l i ty". Thus, while
the results indicate the potential of our approach, a more
thorough evaluation must eventually be carried out. Of
course, M U L T I - T A C is st i l l under development and wi th
further work its efficiency and robustness wil l both im­
prove. (See [8] for a complete description of these exper­
iments, as well as followup experiments.)

6 D i s c u s s i o n : T r a c t a b i l i t y o f A n a l y s i s

M U L T I - T A C ' s approach to generating control knowl­
edge is motivated in part by the P R O D I G Y / E B L sys­
tem [9] and Etzioni's subsequent work wi th S T A T I C
[3]. Like P R O D I G Y / B B L , M U L T I - T A C produces control
knowledge by specializing meta-level concepts. How­
ever, P R O D I G Y ' S E B L module generates explanations
from "first principles" in the following sense: the meta-
theories used to explain the examples are essentially de­
scriptions of the problem solver that are interpreted dur­
ing the explanation process. As a result, the explana­
tions are long and complex, and the explanation process
must be guided by heuristics so that useful explanations

2Unfortunately, due to a misunderstanding, Subject2 did
not make use of the instance distribution and thus undoubt­
edly was at a disadvantage.

can be generated tractably.
In contrast, although S T A T I C is designed to learn

the same type of control knowledge as P R O D I G Y / B B L ,
STATIC'S meta-theories are much simpler. By "simpler",
we mean that the search tree of possible specializations
is much smaller. As a result a much higher proportion of
the possible specializations can be examined (all of them,
in fact). Even though the number of possible specializa­
tions is considerably smaller, the useful specializations
tend to be included. To a large extent, this observation
motivated the development of M U L T I - T A C .

How is it that STATIC 'S theories can be simpler, yet
sti l l include the useful specializations? There are at
least two contributing factors that we have identified.
The first is that STATIC 'S theories are written in a
more abstract language than P R O D I G Y / E B L ' S . Although
S T A T I C ' theories describe the same target concepts as
P R O D I G Y / B B L (success, failure, goal-interaction), the
theories describe the target concepts directly in terms
of the planning operators in the base-level theory (what
Etzioni called a "problem-space graph"). In comparison,
P R O D I G Y / E B L ' S theories have an extra layer of indirec­
tion, since the meta-theories describe the target concepts
in terms of how the problem solving architecture oper­
ates on the base-level theory. The second factor is that
the complexity of STATIC 'S analyses is depth-bounded
in accordance wi th Etzioni's hypothesis that "recursive"
explanations are unlikely to be useful.

In designing M U L T I - T A C , we borrowed both of these
ideas in an effort to make the analyses as simple as pos­
sible. More precisely, our goal is for the search tree of
possible specializations to be small enough so that we
can tractably generate the entire tree. Like STATIC,
the metarlevel analyses in M U L T I - T A C operate directly
on the base-level theory, i.e., on the constraints in the
problem specification. We have not attempted to ax-
iomatize the problem solver, as in P R O D I G Y / B B L . In­
stead, the meta-theories used in M U L T I - T A C are each
designed for specializing a particular generic heuristic, as
illustrated by the two theories described in the last sec­
tion. Compared to the "first principles" approach used
in P R O D I G Y / B B L , M U L T I - T A C ' S approach is more like
that of an "expert system".

In addition, M U L T I - T A C ' S analyses are depth-limited,
reminiscent of the way STATIC 'S analyses are likewise
l imited. Specifically, the meta-theories in M U L T I - T A C
are not used to analyze chains of constraints. The
system only analyzes direct constraints between vari­
ables. In fact, because the specialization process op­
erates by recursively processing the constraint specifica-
tion (as illustrated in the previous section), the depth
of the tree of specializations is l imited by the fixed size
of the constraint specification. For example, at com­
pile time M U L T I - T A C can analyze the conditions under
which two variables are arc-consistent, or (by analogy)
arc-independent, but cannot analyze the conditions un­
der which two variables are path-consistent, or path-
independent. The only way for the system to make use
of these latter concepts is for the problem solver to tran­
sitively apply the "arc" properties at runtime.

The guiding principle (perhaps "hypothesis" would be

Minton 927

more accurate) underlying M U L T I - T A C ' S specialisation
process is that relatively simple analyses can produce
useful control knowledge. Indeed, our previous experi­
ence w i th P R O D I G Y / E B L and S T A T I C indicates that we
are much more likely to be successful if the analyses are
simple. As discussed by Etsioni and Minton[4], as the
proofs become more complex, EBL is more likely to gen­
erate specialisations that are overspecific in that they
include irrelevant conditions. The complexity of f ind­
ing a "good" specialisation, or what Etsioni and Minton
call a min imal sufficient condition grows wi th the size
of the theory.3 In M U L T I - T A C we have reduced the
size of the meta-theories using the techniques outlined
above, such that a complete static evaluation typically
produces between 10 and 100 search control rules. In
contrast, P R O D I G Y / E B L is capable of producing an un­
l imited number of search control rules as the size of the
instances increases, most of which are useless.

Unfortunately, designing tractable theories requires
considerable expertise. In the future, we hope to address
this issue. One possibility is to start w i th intractable
theories and to incrementally refine them.

M U L T I - T A C bears some resemblance to automatic pro­
gramming systems that refine a high-level specification
by applying correctness-preserving transformations. We
were motivated particularly by Smith's K I D S system [13]
and related work on knowledge compilation (e.g.,[12;
14]). Our approach is primari ly distinguished from these
systems by the use of machine learning, in that we gen­
erate alternative search control rules and then test them
on examples. This approach enables the system to be
completely autonomous, in contrast to transformational
systems that require the user to direct the transforma­
tional process. Nevertheless, the approach we employ for
representing and reasoning about constraints could also
be employed in a transformational system.

Recently, Ellman [2] and Yoshikawa and Wada [16]
have proposed new methods for improving CSP search.
In the future we hope to incorporate these into M U L T I -
T A C , giving it a broader range of possible optimizations.

7 Conclusion
This paper has advocated the use of meta-level theo­
ries for analytic learning. We illustrated this approach
wi th two meta-level theories used for speeding up con­
straint satisfaction in M U L T I - T A C . Each met a-theory is
designed for operationalizing a specific heuristic in such
a way that the number of specializations is l imited. In
this sense, M U L T I - T A C can be considered an expert sys­
tem for operationalizing the generic heuristics. This ap­
proach appears quite promising; in an empirical study,
target code produced by M U L T I - T A C compared favorably
wi th hand-coded programs.

8 Acknowledgements
I am indebted to several colleagues for their significant
contributions to M U L T I - T A C : J im Blythe, Gene Davis,

3Unfortunately, a single example, as used in EBL, does
not necessarily help the system discriminate between useful
and useless specialisations during the explanation process.

Andy Philips, Ian Underwood and Shawn Wolfe. Peter
Cheeseman, Oren Etsioni, Rich Keller, Phi l Laird, and
Mike Lowry commented on drafts of this paper. And
last, but not least, Bernadette Kowalski Minton helped
to generate the ideas behind M U L T I - T A C .

References
[1] J .M. Crawford. A theoretical analysis of reasoning

by symmetry in f i rst-order logic. In A A A I Work­
shop on Tractable Reasoning, 1992.

[2] T. Ellman. Abstraction via approximate symmetry.
In I J C A I Proceedings, 1993.

[3] O. Etzioni. A Structural Theory of Explanation-
Based Learning. PhD thesis, Carnegie-Mellon, 1990.

[4] O. Etzioni and S. Minton. Why EBL pro­
duces overly-specific knowledge: A critique of the
PRODIGY approaches. In Machine Learning Confer­
ence Proceedings, 1992.

[5] E.C. Freuder. Eliminating interchangeable values in
constraint satisfaction. In A A A I Proceedings, 1991.

[6] M.R. Garey and D.S. Johnson. Computers and In ­
tractability. W.H . Freeman and Co., 1979.

[7] V. Kumar. Algorithms for constraint satisfaction
problems. AI Magazine, 13, 1992.

[8] S. Minton. Integrating heuristics for constraint sat­
isfaction problems: A case study. In A A A I Proceed­
ings, 1993.

[9] S. Minton, J.G. Carbonell, C.A. Knoblock, D.R.
Kuokka, O. Etzioni, and Y. Gi l . Explanation-based
learning: A problem solving perspective. Art i f ic ial
Intelligence, 40:63-118, 1989.

[10] S. Minton, M. Johnston, A .B. Philips, and
P. Laird. Solving large scale constraint satisfac­
tion and scheduling problems using a heuristic re­
pair method. In Proceedings AAAI-90, 1990.

[11] J. Mostow. Machine transformation of advice into
a heuristic search procedure. In Machine Learning,
An Art i f ic ia l Intelligence Approach. Tioga Press,
1983.

[12] J. Mostow. A transformational approach to knowl­
edge compilation. In M.R. Lowry and R.D. McCart­
ney, editors, Automating Software Design. A A A I
Press, 1991.

[13] D.R. Smith. KIDS: A knowledge-based software
development system. In M.R. Lowry and R.D.
McCartney, editors, Automating Software Design.
A A A I Press, 1991.

[14] C. Tong. A divide and conquer approach to knowl­
edge compilation. In M.R. Lowry and R.D. McCart­
ney, editors, Automating Software Design. A A A I
Press, 1991.

[15] J.S. Turner. Almost all k-colorable graphs are easy
to color. Journal of Algorithms, 9:63-82, 1988.

[16] M. Yoshikawa and S. Wada. Constraint satisfaction
wi th multi-dimensional domain. In The First Inter­
national Conference on Planning Systems, 1992.

928 Machine Learning

