
C o m p l e x Concep t A c q u i s i t i o n t h r o u g h
D i r e c t e d Search and Feature Cach ing*

Har ish Ragavan La r r y Rendel l Michae l Shaw An to ine t t e Tessmer
NCR Corporation Beckman Institute, University of Illinois at Urbana-Champaign

West Columbia, SC 29169 405 N. Mathews Ave., Urbana, IL 61801

Abst rac t
Difficult concepts arise in many complex, for­
mative, or poorly understood real-world do­
mains. High interaction among the data
attributes causes problems for many learn­
ing algorithms, including greedy decision-tree
builders, extensions of basic methods, and even
backpropagation and MARS. A new algorithm,
LFC uses directed lookahead search to ad­
dress feature interaction, improving hypoth­
esis accuracy at reasonable cost. LFC also
addresses a second problem, the general ver­
bosity or global replication problem. The al­
gorithm caches search information as new fea­
tures for decision tree construction. The combi­
nation of these two design factors leads to im­
proved prediction accuracy, concept compact­
ness, and noise tolerance. Empirical results
wi th synthetic boolean concepts, bankruptcy
prediction and bond rating show typical accu­
racy improvement of 15%-20% with LFC over
several alternative algorithms in cases of mod­
erate feature interaction. LFC also explicates
latent relationships in the training data to pro­
vide useful intermediate concepts from the per­
spective of domain experts.

1 I n t r o d u c t i o n
We describe a learning method for complex concepts and
practical results in the difficult financial domain of risk
classification. Financial data are collected in the form of
observations and an overall assessment (often binary—to
lend or not to lend). This constitutes an attribute-value
representation, where each training example is described
by an n-tuple of attr ibute values and a class value. A
concept is an intensional description of the class; a learn­
ing algorithm constructs a hypothesis of the concept.
Learning that assumes class-membership varies l i t t le as
hypothesis descriptions are modified slightly has been
called similariiy-bastd (SBL).

"This work was supported in part by NSF grant IRI-92-
04473, a KPMG Peat Mar wick Foundation award, a Univer­
sity of Illinois Research Board award, and a Beckman Insti­
tute Cognitive Science and Artificial Intelligence Fellowship.

Shaw and Gentry [1990] have shown advantages of
SBL over traditional financial classification methods
such as discriminant analysis. Some statistical ap­
proaches allow nonlinearity, but SBL is more readily
comprehensible and facilitates human-computer interac­
t ion. While many concepts pose no problems for typical
decision tree induction algorithms, complex domains of­
ten produce inaccurate trees. As shown later, C4.5 give
low predictive accuracies for finacial concepts. Other
methods such as improved SBL and backpropagation
also fare poorly.

Financial risk classification is difficult because of in­
teraction among the attributes. In a critique of current
learning systems, Rendell and Ragavan [1993, this vol-
ume] examine relationships among attr ibute interaction,
real-world problems, and system requirements.

This paper explores a new algorithm called LFC
(lookahead feature construction) which applies directed
lookahead search to build decision trees and form new
features. LFC uses several techniques to decide dynam­
ically which paths to attempt, how far to pursue the
search, and which new features provide the most concise
hypothesis components.

Section 2 details the algorithm. Section 3 reports ex­
periments comparing LFC wi th other methods, using
controlled synthetic data, a bankruptcy concept, and a
bond rating concept. On complex concepts, LFC is rea­
sonably fast and much more accurate. In Section 4 we
also consider the value of the new feature constructions
to a financial expert. Consistent constructions support
and extend the expert's own notions to promote a reli­
able model of the domain.

2 The L F C A l g o r i t h m
LFC (Fig. 1) constructs new features using the IDS in­
formation gain function o. Its novelty lies in using a
geometric representation for beam search with branch
and bound (Secs. 2.1 & 2.2). The algorithm handles
discrete-valued data representations, such as integers,
booleans, and nominals. For continuous-valued represen­
tations (reals), LFC first intervalizes the data attributes,
based on minimizing the class entropy in each interval
(or on user-specified intervals). Noisy training samples
are handled through feature pruning and tree pruning.

946 Machine Learning

Figure 1: Pseudocode for FC (top) and LFC (bottom)
Algorithms.

LFC first selects a subset of a attributes from the
n original attributes for the beam. These a features
are used as operands. The beam features are init ial ly
selected from the original attributes, and subsequently
from both the original attributes and the constructed
features. After a maximum search depth of / levels, the
"best" (highest feature is selected for the decision
node.

The feature construction operators are negation and
conjunction, although disjunction may also be used. If

all three operators are given, FC chooses either conjunc­
tion or disjunction, whichever is better, to avoid repeat­
ing semantically equivalent features, since by DeMor-
gan's law, the set {-,) is functionally complete.

The constructed feature is pruned back by evaluat­
ing the number of misclassifications by the feature on
an independent test sample [Breiman et al., 1984]. The
last (usually least significant) attribute in the feature
(which is a conjunction of attribute literals) is iteratively
dropped, until either the error is minimized, or until a
single attribute is left.

After constructing a new feature for a decision-tree
node, LFC splits the data and iterates on each partition
block, unti l either a specified mix of positive and neg­
ative examples or a minimum sample size for splitting
is reached (stopping criterion). The tree is then pruned
back based on test sample error minimization.

2.1 Cons t ra i n i ng C o n s t r u c t i o n Geomet r i ca l l y

A key to guiding feature construction search is to relate
the value of a feature to the individual values of
its component attributes. Normally this relationship is
not explicit, and it is possible for two low attributes
to produce a high feature when conjoined. In this
section, we introduce a mapping technique for making
this relationship more explicit.

The information gain of an attribute (or constructed
feature) depends only on the number of positive and
negative examples after splitt ing the data using the at­
tribute, rather than on the exact examples themselves.

increases when the mix of positive and negative ex­
amples in each partit ion block decreases, and is maxi­
mum for partit ion blocks comprising purely positive and
negative examples. The best features thus have high
values.

Mapping each data attribute or new feature based on
the counts of positive and negative examples covered by
the attribute gives a geometric representation of their
quality. A similar study using values was discussed by
Mehlsam [1989], although his algorithm for constructing
features moves objects from one partit ion block to an­
other in a greedy manner, like the scheme of Breiman
et al. [1984]. In contrast, LFC maps the original at­
tributes to a geometric representation, then applies beam
search and branch-and-bound directly using this repre­
sentation. This technique applies lookahead search, fo­
cused by natural constraints arising in the representation
to prune off large chunks of the search space. The follow­
ing section details these new techniques to guide feature
construction.

2.2 M a p p i n g Features by U t i l i t y

Let Pmax and Nmax be the total number of positive and
negative examples in the training data. In Figure 2, S is
the plane bounded by (0,0) and (Pmax,Nmax) with axes
P and N. The line B given by ((0,0), {Pmax, Nmax)) bi­
sects S into a lower half-plane L and an upper half-plane
U. Initially, every original attribute-value x is mapped
to a point (p, n) on 5, where p and n are the number of
positive and negative examples covered by this attribute-
value. Subsequently, the beam features are also mapped

Ragavan et al. 947

Figure 2: Geometric Representation.

construction. This neighborhood contains far fewer fea­
tures than the space of all possible features, making it is
easier to find good features that lie in the range 0 to 0.3.

Nevertheless, the number of features could sti l l be
large; this is tackled by brand-and-bound search. FC
chooses a feature from the beam as one of its two
operands; for its second operand, FC selects an origi­
nal attr ibute value closest to (P m a x ,0). Suppose these
two component attr ibute values x1 at (p1 , n1) and x2 at
(P2 ,n2) produce the feature f1 = xi ^x2 The number
of positive (or negative) examples covered by f1 can at
most be p1 (n1) or P2 (n2), whichever is lower. Therefore
p(f1) lies inside the rectangle of intersection R1 given
by ((Q,0), (min(P1 , p 2) , (m in (n 1 ,n 2)) . The lowest value
of inside R\ occurs either at (min(p i ,p2) ,0) or at
(0, rnm(n 1 , n2)). If this value is higher than the value at
(p1, n1) or (P2 ,n2) , then the best (lowest) value of * for
f1 is worse (higher) than the values at x1 or x2- This
indicates that f\ is worse than the better of z\ or x2,
so f1 is eliminated. (A dual technique may be used for
eliminating z\ VX2 Moreover, all features formed from
conjunctions of f1 may be dropped because of this prop­
erty. At every step of the beam search, if no new feature
is better than the existing ones, feature construction is
stopped, even before the search depth of / is reached, au­
tomatically terminating search early. Choosing the best

attributes for the beam corresponds to choosing the
steepest gradients on the surface. Starting from a
point p(x) on 5 corresponding to an original attribute x,
FC produces new features mapping to points that move
closer toward P, eventually stopping at P.

3 Emp i r i ca l Analys is
We compare several algorithms wi th LFC. In addition to
hypothesis predictive accuracy, the performance criteria
also include speed, which we omit in this short version
of the paper {LFC speeds are competitive). Our use
of feature construction suggests other criteria, such as
consistency and comprehensibility, factors that promote
useful expert-system interaction. The algorithms we
tested are standard SBL methods (IDS, C4-5, and PLS),

948 Machine Learning

various SBL improvements (GREEDYS, FRINGE, and
LFC), and also backpropagation (BP). We first consider
synthetic data to allow control of attribute interaction.
Next, we present results in two difficult financial do­
mains. Results for these domains appear in in three
respective subsections. (Ragavan & Rendell [1993] give
other results).

3.1 Compar i sons U s i n g Syn the t i c Concepts

As a preliminary assessment for LFC and two other
methods, we use controlled attr ibute interaction in
boolean concepts. An m/n parity concept is an m-bit
boolean parity function described with training examples
using n bits (m < n). For fixed n, attribute interaction
increases as m increases; the concept becomes more dif­
ficult to learn because the number of training examples
is the same for all the concepts.

Figure 4 shows results wi th three algorithms when
learning m/7 parity concepts. For different m, Figure 4
shows predictive accuracy. GREEDY3 uses depth-first
search for greedy feature construction to construct de­
cision lists (Pagallo, 1990). Each point in Figure 4 was
obtained by averaging over 10 runs, using independent
training and testing sets. Each algorithm was trained us­
ing 55 examples, and tested using 72 unseen examples.
In each run, the tree was inconsistent wi th at most 4 out
of 48 training examples.

Figure 4 shows that LFC produces more accurate trees
compared wi th IDS and GREEDYS. As m increases,
attr ibute interaction increases, so the average predictive
accuracy decreases for all three algorithms because of
the sparse training sample. Although the rate at which
all algorithms degrade may be controlled by adjusting
the size of the training sample, the sample size was held
constant to study this degradation wi th higher attribute
interaction. This gives the fairly high degradation rate
observed in Figure 4, but LFC sti l l maintains higher
accuracy, and shows slower degradation than the other
algorithms.

We also investigated the behavior of LFC and other
methods using complex financial problems: bankruptcy

prediction and bond rating. The next two sections de­
tai l these results. The data attributes were developed
by experts using cash-flow theories, and represent situ­
ations of real companies. The last two authors of this
paper have found that LFC constructed features that are
identifiable and significant from the domain perspective.

3.2 Compar isons U s i n g B a n k r u p t c y D a t a

Numerous empirical models have been developed that
use annual financial information discriminate firms that
declare bankruptcy from these that remain solvent.
Lenders and investors want to improve their ability to
explain, interpret, and predict bankruptcy. Our study
used 198 bankruptcy data; half of the companies went
bankrupt in a given period while the other half were fi­
nancially healthy during the same time period. A cash
flow model was used to define the fifteen attributes,
which include net operating flow (NOF), financial costs
(NFC), and change in inventory (INVF) [Gentry et al.,
1990].

3.2.1 P r e d i c t i o n Accuracy
Table 1 shows results with the bankruptcy data, which

was randomly split into mutually exclusive training and
testing sets containing 95% and 5% of the examples re­
spectively. Table 1 compares the predictive accuracy of
LFC with that of five other algorithms. Each accuracy
figure was obtained by averaging over several runs (50 in
most cases) using mutually exclusive training and test­
ing sets. The means are shown with 99% confidence
intervals.

PLS and FRINGE gave 65% and 66% accuracy, com­
parable to the prior class frequency estimate of 49.7%.
GREEDYS produced an accuracy of 58%. Possibly be­
cause of tree pruning, C4-5 gave a much better accuracy
of 70%. However, the variability in the accuracy of its
trees is high (± 5.4%). Consequently, the improvement
is not significant at p < 0.001, <-test. We also tested
backpropagation with many parameter settings and net
structures. The best choice was 14 input nodes, 8 in­
termediate nodes, and 1 output. The best accuracy we
could obtain was 76%.

In contrast, LFC gave an average accuracy of about
90%, improving over each of the other algorithms (p <
0.001, *-test). Tree variability was very low (± 0.4%).
We measured the relationship of accuracy to the amount
of lookahead used by LFC. The lookahead depth was
varied from 1 to 3. The accuracies were, respectively,

Ragavan et al. 949

64%, 84%, and 90% (99% confidence intervals were ±
1.7 for / = 1,2, and ± 0.4 for / = 3). W i th no looka-
head, LFC's performance approaches that of PLS. As
lookahead depth increases, LFC makes more informed
selections for a decision node, improving accuracy and
consistency.

3.2.2 D i scove r i ng M e a n i n g f u l Features
In our experiments wi th the bankruptcy data, LFC re­

duced verbosity and compressed the decision tree from
10 nodes for PLS to 7 nodes on the average. LFC also
improved the abstraction of the decision trees by dis­
covering new financial concepts, which capture specific
risk characteristics of a company (shown in Table 2).
One example from Table 2 is inventory financing INFI,
which relates the change in inventory (INVF) to the
fixed coverage expenditures (FCE), and the flows from
operations (NOF). INFI abstracts the three low level
attributes NOF, FCE, and INVF. This feature is an
intermediate concept [Fu and Buchanan, 1985] charac­
terizing the company's strategy to finance its inventory.
INFI is true for companies that need to finance an in­
crease in inventory but avoid financing with long-term
debts; Table 2 summarizes the features that occurred
most frequently in six typical trees for the bankruptcy
concept. Each feature is expressed in terms of both the
original attributes it relates and also its corresponding
real-world concept.

3.3 Compar i sons w i t h B o n d R a t i n g D a t a
Bond ratings are used in the capital market as yardsticks
for estimating potential yields. The bond rating data set
had 125 samples, and three classes. The concept gave an
average accuracy of 42% with C4-5 for all three classes.
No other comparison algorithm did better, except back-
propagation, which achieved 50% as the best of many
varied trials. LFC (extended for multiple classes) did
considerably better, wi th an average accuracy of 70%.

For the first class (high risk bonds), the average pre­
dictive accuracy of the LFC trees was 83%. The av­
erage size was 20 decision nodes. In al l , 14 boolean
conditions using the original attributes were generated.
Because each new feature could contain up to three
original attributes, the feature search space contained
14 x 13 x 12 = 2184 possible features per node. This
figure is the total number of choices, i.e., the number in
3-ply exhaustive and naive lookahead.

In contrast, LFC evaluated only 755 features, which
is about 38 features/node, an enormous reduction from
2184. Hence LFC searches less than 2% of the feature
space. Of these 755 features, LFC selected 20 for the
final nodes of the decision tree.

In terms of accuracy, exhaustive lookahead is the only
competitor of LFC. Although LFC is slower than some
methods, its times are reasonable, especially in the light
of the many hours required for exhaustive lookahead
(we compared LFC in ful l search mode and also Bun-
tine's IND). Other techniques, including backpropaga-
t ion, were l i t t le or no faster, and produced significantly
and considerably inferior hypotheses. LFC is also supe­
rior wi th respect to human comprehension and expert-
computer interaction.

4 Discussion
A typical divide-and-conquer splitter (e.g., CART,
Breiman et al. , 1984) iteratively partitions the data us­
ing the single best attr ibute to create a decision node.
Although this greedy procedure is efficient, it may get
trapped by local opt ima and degrade the quality of the
induced decision tree [Ragavan and Ren dell, 1991]. This
occurs when the concept has a high degree of attr ibute
interaction [Rendell and Ragavan, 1993, this volume].
Attr ibute interaction increases the number of original at­
tributes (conjuncts) required to specify meaningful sub­
classes at the leaves. At t r ibute interaction also causes
node replication [Pagallo, 1990], which degrades accu­
racy, consistency, and comprehensibility.

Some algorithms have extended greedy splitters; e.g.,
FRINGE [Pagallo, 1990] uses the decision tree produced
by a greedy splitter to construct new features for improv­
ing tree quality. Repeated fringe patterns near the leaves
of the tree are coalesced to give new features, which are
combined with the original attributes to build a new de­
cision tree. The process iterates. But such strategies are
insufficient when attributes interact much. This is be­
cause the original decision tree is greedy and because re­
peated decision patterns are distributed throughout the
tree, rather than being confined to fringes. Replications
become complex and global.

One way to extend SBL splitters is to look ahead to
observe the effects of current attr ibute selection further
down in hypothesis construction. The best sequence may
be found when all possible expansions of a decision tree
are evaluated. This avoids problems of attr ibute interac­
t ion. Norton [1989] found fairly good improvement with
an exhaustive lookahead algorithm IDX, though it does
not construct new features to cache the search knowl­
edge. While splitters can construct better hypotheses
wi th ful l lookahead search, naive lookahead search is ex­
pensive, and unnecessary in many cases.

A practical cure for attr ibute interaction is dynamic
lookahead. LFC constructs features while building the
decision tree. LFC can replace a greedy algorithm for
the decision tree construction phase of FRINGE-like al­
gorithms, but it largely prevents tree patterns from re-
peating in the first place. A sequence of decisions down
any path of a decision tree is treated as a conjunction
of attributes for constructing a new feature. The fea­
tures are not evaluated individually, but instead as a
group, effectively projecting multi-dimensionally [Raga­
van and Rendell, 1991]. Forming a new feature from the
attributes economically caches this search information.

LFC guides lookahead search and feature construc­
tion by taking advantage of patterns in the training data
and natural search constraints that arise in its geomet­
ric search representation. The algorithm deepens search
only when necessary, stopping when it reaches the P axis
(Fig. 2). The window filter is used for ini t ial selection
of candidate original attributes for feature construction,
based on their quality. Subsequently, the beam is cho­
sen based upon where the features and attributes map
in the geometric plane. Variable beam width is a type of
iterative broadening [Ginsberg and Harvey, 1992]. The
distinction in LFC is the way it focuses on essential parts

950 Machine Learning

Table 2: Intermediate Concepts created by LFC.

of the search space and prunes irrelevant parts with its
branch-and-bound. FC uses only the coordinates of the
component attributes to determine whether to eliminate
new features constructed from them, so the data are not
split on a feature that may be discarded, or conjunc­
tions thereof. Ragavan and Rendell [1993] present other
comparative results using LFC.

New features help to build a high-level knowledge
structure for more accurate and comprehensible mod­
els. An important issue is closer interaction between
the learning algorithm and the domain expert. In the
complex financial domains of Section 3, the higher-level
hypotheses produced by LFC facilitate interpretation of
results and help to refine important attribute relation­
ships.

5 Conclusions

Severe attr ibute interaction in real-world domains makes
learning hard for similarity-based and other induction al­
gorithms. We analyzed a global search technique for fea­
ture construction that improves learning for controlled
synthetic and difficult natural financial domains. Accu­
racy improves by as much as twenty percentage points.
Interpretation of the new features and decision trees by
domain experts corroborates improvement in their ab­
straction. Repeatability of the constructed features im­
proves expert-machine interaction.

In LFC the complexity of feature construction is re­
duced by a combination of analytic and heuristic tech­
niques. The algorithm is distinctive because it tackles
both the attr ibute interaction problem (using directed
lookahead) and the global replication problem (through
feature construction). Rendell and Ragavan [1993, this
volume] detail these phenomena.

LFC improves learning in several respects:
• Predictive accuracy of decision trees
• Consistency of the trees, measured by the variance in
their predictive accuracy
• Reduction in the complexity of lookahead search for
feature construction, through a geometric procedure
• Significance of the tree nodes (features) from a domain
perspective.

References
[Breiman et al., 1984] L. Breiman, J. Friedman, R. 01-

shen and C. Stone. Classification and Regression
Trees. Wadsworth, Belmont, CA, 1984.

[Fu and Buchanan, 1985] L.-M. Fu and B.G. Buchanan.
Learning intermediate concepts in constraining a hi­
erarchical knowledge base. In Proc. Ninth Intl. Joint
Conf. on Al, 659-666, 1985.

[Ginsberg and Harvey, 1992] M.L. Ginsberg and W.D.
Harvey. Iterative broadening. Artificial Intelligence,
Vol.55, No.2-3, 367-383, June 1992.

[Gentry et al., 1990] J.A. Gentry, P. Newbold and D.T.
Whitford. Profiles of cash flow components. Finan­
cial Analysts, 41-48, July-August 1990.

[Mehlsam, 1989] G. Mehlsam. Automatisches Erzeugen
von Klassifikationskriterien. Doctoral Dissertation,
Technische Universitat Wien, Austria, 1989.

[Norton, 1989] S. Norton. Generating better decision
trees. In Proc. Eleventh Intl. Joint Conf. on Al,
800-805, 1989.

[Pagallo, 1990] G. Pagallo. Learning DNF by decision
trees. Ph.D. Thesis, University of California at
Santa Cruz, 1990.

[Ragavan and Rendell, 1991] H. Ragavan and L.A. Ren­
dell. Relieving limitations of empirical algorithms.
In Proc. Change of Representation Workshop.
Twelfth Int l . Joint Conf. on A l , 1991.

[Ragavan and Rendell, 1993] H. Ragavan and L.A. Ren­
dell. Lookahead feature construction for learning
hard concepts. In IProc. Tenth Intl. Machine Learn­
ing Conf, 1993.

[Rendell and Ragavan, 1993] L.A. Rendell and H. Raga-
van. Improving the design of induction methods by
analyzing algorithms functionality and data-based
concept complexity. In Proc. Thirteenth In t l . Joint
Conf. on Al, 1993 (this volume), .sp .5

[Shaw and Gentry] M.J. Shaw and J.A. Gentry. Induc­
tive learning for risk classification. IEEE Expert, 47-
53, February 1990.

Ragavan et al. 951

