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Abst rac t 
Difficult concepts arise in many complex, for­
mative, or poorly understood real-world do­
mains. High interaction among the data 
attributes causes problems for many learn­
ing algorithms, including greedy decision-tree 
builders, extensions of basic methods, and even 
backpropagation and MARS. A new algorithm, 
LFC uses directed lookahead search to ad­
dress feature interaction, improving hypoth­
esis accuracy at reasonable cost. LFC also 
addresses a second problem, the general ver­
bosity or global replication problem. The al­
gorithm caches search information as new fea­
tures for decision tree construction. The combi­
nation of these two design factors leads to im­
proved prediction accuracy, concept compact­
ness, and noise tolerance. Empirical results 
wi th synthetic boolean concepts, bankruptcy 
prediction and bond rating show typical accu­
racy improvement of 15%-20% with LFC over 
several alternative algorithms in cases of mod­
erate feature interaction. LFC also explicates 
latent relationships in the training data to pro­
vide useful intermediate concepts from the per­
spective of domain experts. 

1 I n t r o d u c t i o n 
We describe a learning method for complex concepts and 
practical results in the difficult financial domain of risk 
classification. Financial data are collected in the form of 
observations and an overall assessment (often binary—to 
lend or not to lend). This constitutes an attribute-value 
representation, where each training example is described 
by an n-tuple of attr ibute values and a class value. A 
concept is an intensional description of the class; a learn­
ing algorithm constructs a hypothesis of the concept. 
Learning that assumes class-membership varies l i t t le as 
hypothesis descriptions are modified slightly has been 
called similariiy-bastd (SBL). 
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Shaw and Gentry [1990] have shown advantages of 
SBL over traditional financial classification methods 
such as discriminant analysis. Some statistical ap­
proaches allow nonlinearity, but SBL is more readily 
comprehensible and facilitates human-computer interac­
t ion. While many concepts pose no problems for typical 
decision tree induction algorithms, complex domains of­
ten produce inaccurate trees. As shown later, C4.5 give 
low predictive accuracies for finacial concepts. Other 
methods such as improved SBL and backpropagation 
also fare poorly. 

Financial risk classification is difficult because of in­
teraction among the attributes. In a critique of current 
learning systems, Rendell and Ragavan [1993, this vol-
ume] examine relationships among attr ibute interaction, 
real-world problems, and system requirements. 

This paper explores a new algorithm called LFC 
(lookahead feature construction) which applies directed 
lookahead search to build decision trees and form new 
features. LFC uses several techniques to decide dynam­
ically which paths to attempt, how far to pursue the 
search, and which new features provide the most concise 
hypothesis components. 

Section 2 details the algorithm. Section 3 reports ex­
periments comparing LFC wi th other methods, using 
controlled synthetic data, a bankruptcy concept, and a 
bond rating concept. On complex concepts, LFC is rea­
sonably fast and much more accurate. In Section 4 we 
also consider the value of the new feature constructions 
to a financial expert. Consistent constructions support 
and extend the expert's own notions to promote a reli­
able model of the domain. 

2 The L F C A l g o r i t h m 
LFC (Fig. 1) constructs new features using the IDS in­
formation gain function o. Its novelty lies in using a 
geometric representation for beam search with branch 
and bound (Secs. 2.1 & 2.2). The algorithm handles 
discrete-valued data representations, such as integers, 
booleans, and nominals. For continuous-valued represen­
tations (reals), LFC first intervalizes the data attributes, 
based on minimizing the class entropy in each interval 
(or on user-specified intervals). Noisy training samples 
are handled through feature pruning and tree pruning. 
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Figure 1: Pseudocode for FC (top) and LFC (bottom) 
Algorithms. 

LFC first selects a subset of a attributes from the 
n original attributes for the beam. These a features 
are used as operands. The beam features are init ial ly 
selected from the original attributes, and subsequently 
from both the original attributes and the constructed 
features. After a maximum search depth of / levels, the 
"best" (highest feature is selected for the decision 
node. 

The feature construction operators are negation and 
conjunction, although disjunction may also be used. If 

all three operators are given, FC chooses either conjunc­
tion or disjunction, whichever is better, to avoid repeat­
ing semantically equivalent features, since by DeMor-
gan's law, the set {-, ) is functionally complete. 

The constructed feature is pruned back by evaluat­
ing the number of misclassifications by the feature on 
an independent test sample [Breiman et al., 1984]. The 
last (usually least significant) attribute in the feature 
(which is a conjunction of attribute literals) is iteratively 
dropped, until either the error is minimized, or until a 
single attribute is left. 

After constructing a new feature for a decision-tree 
node, LFC splits the data and iterates on each partition 
block, unti l either a specified mix of positive and neg­
ative examples or a minimum sample size for splitting 
is reached (stopping criterion). The tree is then pruned 
back based on test sample error minimization. 

2.1 Cons t ra i n i ng C o n s t r u c t i o n Geomet r i ca l l y 

A key to guiding feature construction search is to relate 
the value of a feature to the individual values of 
its component attributes. Normally this relationship is 
not explicit, and it is possible for two low attributes 
to produce a high feature when conjoined. In this 
section, we introduce a mapping technique for making 
this relationship more explicit. 

The information gain of an attribute (or constructed 
feature) depends only on the number of positive and 
negative examples after splitt ing the data using the at­
tribute, rather than on the exact examples themselves. 

increases when the mix of positive and negative ex­
amples in each partit ion block decreases, and is maxi­
mum for partit ion blocks comprising purely positive and 
negative examples. The best features thus have high 
values. 

Mapping each data attribute or new feature based on 
the counts of positive and negative examples covered by 
the attribute gives a geometric representation of their 
quality. A similar study using values was discussed by 
Mehlsam [1989], although his algorithm for constructing 
features moves objects from one partit ion block to an­
other in a greedy manner, like the scheme of Breiman 
et al. [1984]. In contrast, LFC maps the original at­
tributes to a geometric representation, then applies beam 
search and branch-and-bound directly using this repre­
sentation. This technique applies lookahead search, fo­
cused by natural constraints arising in the representation 
to prune off large chunks of the search space. The follow­
ing section details these new techniques to guide feature 
construction. 

2.2 M a p p i n g Features by U t i l i t y 

Let Pmax and Nmax be the total number of positive and 
negative examples in the training data. In Figure 2, S is 
the plane bounded by (0,0) and (Pmax,Nmax) with axes 
P and N. The line B given by ((0,0), {Pmax, Nmax)) bi­
sects S into a lower half-plane L and an upper half-plane 
U. Initially, every original attribute-value x is mapped 
to a point (p, n) on 5, where p and n are the number of 
positive and negative examples covered by this attribute-
value. Subsequently, the beam features are also mapped 
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Figure 2: Geometric Representation. 

construction. This neighborhood contains far fewer fea­
tures than the space of all possible features, making it is 
easier to find good features that lie in the range 0 to 0.3. 

Nevertheless, the number of features could sti l l be 
large; this is tackled by brand-and-bound search. FC 
chooses a feature from the beam as one of its two 
operands; for its second operand, FC selects an origi­
nal attr ibute value closest to ( P m a x ,0). Suppose these 
two component attr ibute values x1 at (p1 , n1) and x2 at 
(P2 ,n2) produce the feature f1 = xi ^x2 The number 
of positive (or negative) examples covered by f1 can at 
most be p1 (n1) or P2 (n2), whichever is lower. Therefore 
p(f1) lies inside the rectangle of intersection R1 given 
by ((Q,0), (min(P1 , p 2 ) , (m in (n 1 ,n 2 ) ) . The lowest value 
of inside R\ occurs either at (min(p i ,p2) ,0) or at 
(0, rnm(n 1 , n2)). If this value is higher than the value at 
(p1, n1) or (P2 ,n2 ) , then the best (lowest) value of * for 
f1 is worse (higher) than the values at x1 or x2- This 
indicates that f\ is worse than the better of z\ or x2, 
so f1 is eliminated. (A dual technique may be used for 
eliminating z\ VX2 Moreover, all features formed from 
conjunctions of f1 may be dropped because of this prop­
erty. At every step of the beam search, if no new feature 
is better than the existing ones, feature construction is 
stopped, even before the search depth of / is reached, au­
tomatically terminating search early. Choosing the best 

attributes for the beam corresponds to choosing the 
steepest gradients on the surface. Starting from a 
point p(x) on 5 corresponding to an original attribute x, 
FC produces new features mapping to points that move 
closer toward P, eventually stopping at P. 

3 Emp i r i ca l Analys is 
We compare several algorithms wi th LFC. In addition to 
hypothesis predictive accuracy, the performance criteria 
also include speed, which we omit in this short version 
of the paper {LFC speeds are competitive). Our use 
of feature construction suggests other criteria, such as 
consistency and comprehensibility, factors that promote 
useful expert-system interaction. The algorithms we 
tested are standard SBL methods (IDS, C4-5, and PLS), 
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various SBL improvements (GREEDYS, FRINGE, and 
LFC), and also backpropagation (BP). We first consider 
synthetic data to allow control of attribute interaction. 
Next, we present results in two difficult financial do­
mains. Results for these domains appear in in three 
respective subsections. (Ragavan & Rendell [1993] give 
other results). 

3.1 Compar i sons U s i n g Syn the t i c Concepts 

As a preliminary assessment for LFC and two other 
methods, we use controlled attr ibute interaction in 
boolean concepts. An m/n parity concept is an m-bit 
boolean parity function described with training examples 
using n bits (m < n). For fixed n, attribute interaction 
increases as m increases; the concept becomes more dif­
ficult to learn because the number of training examples 
is the same for all the concepts. 

Figure 4 shows results wi th three algorithms when 
learning m/7 parity concepts. For different m, Figure 4 
shows predictive accuracy. GREEDY3 uses depth-first 
search for greedy feature construction to construct de­
cision lists (Pagallo, 1990). Each point in Figure 4 was 
obtained by averaging over 10 runs, using independent 
training and testing sets. Each algorithm was trained us­
ing 55 examples, and tested using 72 unseen examples. 
In each run, the tree was inconsistent wi th at most 4 out 
of 48 training examples. 

Figure 4 shows that LFC produces more accurate trees 
compared wi th IDS and GREEDYS. As m increases, 
attr ibute interaction increases, so the average predictive 
accuracy decreases for all three algorithms because of 
the sparse training sample. Although the rate at which 
all algorithms degrade may be controlled by adjusting 
the size of the training sample, the sample size was held 
constant to study this degradation wi th higher attribute 
interaction. This gives the fairly high degradation rate 
observed in Figure 4, but LFC sti l l maintains higher 
accuracy, and shows slower degradation than the other 
algorithms. 

We also investigated the behavior of LFC and other 
methods using complex financial problems: bankruptcy 

prediction and bond rating. The next two sections de­
tai l these results. The data attributes were developed 
by experts using cash-flow theories, and represent situ­
ations of real companies. The last two authors of this 
paper have found that LFC constructed features that are 
identifiable and significant from the domain perspective. 

3.2 Compar isons U s i n g B a n k r u p t c y D a t a 

Numerous empirical models have been developed that 
use annual financial information discriminate firms that 
declare bankruptcy from these that remain solvent. 
Lenders and investors want to improve their ability to 
explain, interpret, and predict bankruptcy. Our study 
used 198 bankruptcy data; half of the companies went 
bankrupt in a given period while the other half were fi­
nancially healthy during the same time period. A cash 
flow model was used to define the fifteen attributes, 
which include net operating flow (NOF), financial costs 
(NFC), and change in inventory ( INVF) [Gentry et al., 
1990]. 

3.2.1 P r e d i c t i o n Accuracy 
Table 1 shows results with the bankruptcy data, which 

was randomly split into mutually exclusive training and 
testing sets containing 95% and 5% of the examples re­
spectively. Table 1 compares the predictive accuracy of 
LFC with that of five other algorithms. Each accuracy 
figure was obtained by averaging over several runs (50 in 
most cases) using mutually exclusive training and test­
ing sets. The means are shown with 99% confidence 
intervals. 

PLS and FRINGE gave 65% and 66% accuracy, com­
parable to the prior class frequency estimate of 49.7%. 
GREEDYS produced an accuracy of 58%. Possibly be­
cause of tree pruning, C4-5 gave a much better accuracy 
of 70%. However, the variability in the accuracy of its 
trees is high (± 5.4%). Consequently, the improvement 
is not significant at p < 0.001, <-test. We also tested 
backpropagation with many parameter settings and net 
structures. The best choice was 14 input nodes, 8 in­
termediate nodes, and 1 output. The best accuracy we 
could obtain was 76%. 

In contrast, LFC gave an average accuracy of about 
90%, improving over each of the other algorithms (p < 
0.001, *-test). Tree variability was very low (± 0.4%). 
We measured the relationship of accuracy to the amount 
of lookahead used by LFC. The lookahead depth was 
varied from 1 to 3. The accuracies were, respectively, 
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64%, 84%, and 90% (99% confidence intervals were ± 
1.7 for / = 1,2, and ± 0.4 for / = 3). W i th no looka-
head, LFC's performance approaches that of PLS. As 
lookahead depth increases, LFC makes more informed 
selections for a decision node, improving accuracy and 
consistency. 

3.2.2 D i scove r i ng M e a n i n g f u l Features 
In our experiments wi th the bankruptcy data, LFC re­

duced verbosity and compressed the decision tree from 
10 nodes for PLS to 7 nodes on the average. LFC also 
improved the abstraction of the decision trees by dis­
covering new financial concepts, which capture specific 
risk characteristics of a company (shown in Table 2). 
One example from Table 2 is inventory financing INFI, 
which relates the change in inventory (INVF) to the 
fixed coverage expenditures (FCE), and the flows from 
operations (NOF). INFI abstracts the three low level 
attributes NOF, FCE, and INVF. This feature is an 
intermediate concept [Fu and Buchanan, 1985] charac­
terizing the company's strategy to finance its inventory. 
INFI is true for companies that need to finance an in­
crease in inventory but avoid financing with long-term 
debts; Table 2 summarizes the features that occurred 
most frequently in six typical trees for the bankruptcy 
concept. Each feature is expressed in terms of both the 
original attributes it relates and also its corresponding 
real-world concept. 

3.3 Compar i sons w i t h B o n d R a t i n g D a t a 
Bond ratings are used in the capital market as yardsticks 
for estimating potential yields. The bond rating data set 
had 125 samples, and three classes. The concept gave an 
average accuracy of 42% with C4-5 for all three classes. 
No other comparison algorithm did better, except back-
propagation, which achieved 50% as the best of many 
varied trials. LFC (extended for multiple classes) did 
considerably better, wi th an average accuracy of 70%. 

For the first class (high risk bonds), the average pre­
dictive accuracy of the LFC trees was 83%. The av­
erage size was 20 decision nodes. In al l , 14 boolean 
conditions using the original attributes were generated. 
Because each new feature could contain up to three 
original attributes, the feature search space contained 
14 x 13 x 12 = 2184 possible features per node. This 
figure is the total number of choices, i.e., the number in 
3-ply exhaustive and naive lookahead. 

In contrast, LFC evaluated only 755 features, which 
is about 38 features/node, an enormous reduction from 
2184. Hence LFC searches less than 2% of the feature 
space. Of these 755 features, LFC selected 20 for the 
final nodes of the decision tree. 

In terms of accuracy, exhaustive lookahead is the only 
competitor of LFC. Although LFC is slower than some 
methods, its times are reasonable, especially in the light 
of the many hours required for exhaustive lookahead 
(we compared LFC in ful l search mode and also Bun-
tine's IND). Other techniques, including backpropaga-
t ion, were l i t t le or no faster, and produced significantly 
and considerably inferior hypotheses. LFC is also supe­
rior wi th respect to human comprehension and expert-
computer interaction. 

4 Discussion 
A typical divide-and-conquer splitter (e.g., CART, 
Breiman et al. , 1984) iteratively partitions the data us­
ing the single best attr ibute to create a decision node. 
Although this greedy procedure is efficient, it may get 
trapped by local opt ima and degrade the quality of the 
induced decision tree [Ragavan and Ren dell, 1991]. This 
occurs when the concept has a high degree of attr ibute 
interaction [Rendell and Ragavan, 1993, this volume]. 
Attr ibute interaction increases the number of original at­
tributes (conjuncts) required to specify meaningful sub­
classes at the leaves. At t r ibute interaction also causes 
node replication [Pagallo, 1990], which degrades accu­
racy, consistency, and comprehensibility. 

Some algorithms have extended greedy splitters; e.g., 
FRINGE [Pagallo, 1990] uses the decision tree produced 
by a greedy splitter to construct new features for improv­
ing tree quality. Repeated fringe patterns near the leaves 
of the tree are coalesced to give new features, which are 
combined with the original attributes to build a new de­
cision tree. The process iterates. But such strategies are 
insufficient when attributes interact much. This is be­
cause the original decision tree is greedy and because re­
peated decision patterns are distributed throughout the 
tree, rather than being confined to fringes. Replications 
become complex and global. 

One way to extend SBL splitters is to look ahead to 
observe the effects of current attr ibute selection further 
down in hypothesis construction. The best sequence may 
be found when all possible expansions of a decision tree 
are evaluated. This avoids problems of attr ibute interac­
t ion. Norton [1989] found fairly good improvement with 
an exhaustive lookahead algorithm IDX, though it does 
not construct new features to cache the search knowl­
edge. While splitters can construct better hypotheses 
wi th ful l lookahead search, naive lookahead search is ex­
pensive, and unnecessary in many cases. 

A practical cure for attr ibute interaction is dynamic 
lookahead. LFC constructs features while building the 
decision tree. LFC can replace a greedy algorithm for 
the decision tree construction phase of FRINGE-like al­
gorithms, but it largely prevents tree patterns from re-
peating in the first place. A sequence of decisions down 
any path of a decision tree is treated as a conjunction 
of attributes for constructing a new feature. The fea­
tures are not evaluated individually, but instead as a 
group, effectively projecting multi-dimensionally [Raga­
van and Rendell, 1991]. Forming a new feature from the 
attributes economically caches this search information. 

LFC guides lookahead search and feature construc­
tion by taking advantage of patterns in the training data 
and natural search constraints that arise in its geomet­
ric search representation. The algorithm deepens search 
only when necessary, stopping when it reaches the P axis 
(Fig. 2). The window filter is used for ini t ial selection 
of candidate original attributes for feature construction, 
based on their quality. Subsequently, the beam is cho­
sen based upon where the features and attributes map 
in the geometric plane. Variable beam width is a type of 
iterative broadening [Ginsberg and Harvey, 1992]. The 
distinction in LFC is the way it focuses on essential parts 
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Table 2: Intermediate Concepts created by LFC. 

of the search space and prunes irrelevant parts with its 
branch-and-bound. FC uses only the coordinates of the 
component attributes to determine whether to eliminate 
new features constructed from them, so the data are not 
split on a feature that may be discarded, or conjunc­
tions thereof. Ragavan and Rendell [1993] present other 
comparative results using LFC. 

New features help to build a high-level knowledge 
structure for more accurate and comprehensible mod­
els. An important issue is closer interaction between 
the learning algorithm and the domain expert. In the 
complex financial domains of Section 3, the higher-level 
hypotheses produced by LFC facilitate interpretation of 
results and help to refine important attribute relation­
ships. 

5 Conclusions 

Severe attr ibute interaction in real-world domains makes 
learning hard for similarity-based and other induction al­
gorithms. We analyzed a global search technique for fea­
ture construction that improves learning for controlled 
synthetic and difficult natural financial domains. Accu­
racy improves by as much as twenty percentage points. 
Interpretation of the new features and decision trees by 
domain experts corroborates improvement in their ab­
straction. Repeatability of the constructed features im­
proves expert-machine interaction. 

In LFC the complexity of feature construction is re­
duced by a combination of analytic and heuristic tech­
niques. The algorithm is distinctive because it tackles 
both the attr ibute interaction problem (using directed 
lookahead) and the global replication problem (through 
feature construction). Rendell and Ragavan [1993, this 
volume] detail these phenomena. 

LFC improves learning in several respects: 
• Predictive accuracy of decision trees 
• Consistency of the trees, measured by the variance in 
their predictive accuracy 
• Reduction in the complexity of lookahead search for 
feature construction, through a geometric procedure 
• Significance of the tree nodes (features) from a domain 
perspective. 
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