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Abs t rac t 
We introduce a new approach to GA (Genetic 
Algorithms) based problem solving. Earlier 
GAs did not contain local search (i.e. hi l l 
climbing) mechanisms, which led to optimiza­
t ion difficulties, especially in higher dimensions. 
To overcome such difficulties, we introduce a 
"bug-based" search strategy, and implement a 
system called BUGS2. The ideas behind this 
new approach are derived from biologically re­
alistic bug behaviors. These ideas were con­
firmed empirically by applying them to some 
optimization and computer vision problems. 

1 I n t r o d u c t i o n 
This paper introduces a new GA (Genetic Algorithms) 
based approach to evolutionary learning. The purpose 
of our research is to apply artificial life systems to practi­
cal problem solving or to establish problem solving from 
nature. 

Traditional GAs optimize functions by adaptive com­
bination (crossover) and mutation of coded solutions to 
problems (i.e. points in the problem's search space) 
[Goldberg89]. These genetic search mechanisms often 
suffer from optimization difficulties cased by premature 
convergence [Schaffer91] or hamming cliff [Caruana88]. 
Although some recent works intend to realize local search 
operators for GAs [Ackley87][Muhlenbein89], it is very 
difficult to switch gradually from global search to lo­
cal search by adaptive methods. Moreover, as shown in 
[Rechenberg86], for search in higher dimensions typical 
in computer vision applications (e.g. see the 11 dimen­
sional search space of Fig.6) there is l i t t le hope in using 
random search or simple recombination methods. How­
ever, even for a higher dimensional space, in general the 
essential search dimensions are relatively few. Thus the 
best way is to climb up the gradient hi l l in these essential 
dimensions. 

To solve these difficulties, we present an evolutionary 
learning system, called BUGS2. In our earlier paper, 
we described the implementation of BUGS, a bug-based 
search system using GAs [Iba92a]. The basic idea of 
BUGS is that the GA chromosomes represent directional 
control codes rather than positional vectors and that se­
lection criteria is based on cumulative fitness. These 
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are derived from evolutionary learning models of preda­
tory behaviors [Iba92c]. BUGS2 extends BUGS by incor­
porating more biologically realistic bug behaviors, such 
as sexual/asexual reproductions, variable size of popula­
t ion, resource sharing and resource competition. In the 
extended strategy an analogy is made between the value 
(at a given point) of a function to be maximized, and the 
density of bacteria at that point. As a result, the usual 
GA adaptive search method is integrated more naturally 
wi th hi l l climbing search. These ideas are empirically 
confirmed by applying them to optimization and com­
puter vision problems. 

2 Evo lu t i on of P reda to ry Behaviors 
using Genetic Search 

This section introduces the fundamental idea that our 
BUGS2 program is based on. We experimented wi th the 
evolution of bugs which possess "predatory behaviors", 
i.e. the evolution of bugs which learn to hunt bacteria. 
The original motivation for these experiments was de­
rived from [Dewdney89]. Bugs learn to move to those 
regions in the search space where the bacterial concen­
trat ion is highest. Since the bug concentration is set up 
to be proportional to the local value of the function to be 
maximized in the search space, the "stabilized" bug con­
centrations are proportional to these search space values. 
Hence the bugs learn (GA style) to be hi l l climbers. 

2.1 Bugs h u n t bac te r ia 
Fig. 1(a) illustrates the world in which our bugs (large 
dots) live (a 512x512 cellular grid). They feed on bac­
teria (small dots) which are continually being deposited. 
Normal bacterial deposition rate is roughly 0.5 bac­
terium per (GA) generation over the whole grid. Each 
bug has its internal energy source. The maximum energy 
supply of a bug is set at 1500 units. When a bug's energy 
supply is exhausted, the bug dies and disappears. Each 
bacterium eaten provides a bug wi th 40 units of energy, 
which is enough to make 40 moves, where a move is de­
fined to be one of six possible directional displacements 
of the bug as shown in Fig.2. 

A bug's motion is determined by coded instructions on 
its gene code.vSix directions a bug can move are labeled 
F, R, HR, RV, HL and L for Forward, Right, Hard Right, 
Reverse, Hard Left, and Left. The GA chromosome for­
mat for these bugs is an integer valued 6-vector expressed 
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in their order (F,R,HR,RV,HL,L), e.g. (2,1,1,1,3,2) (as 
shown in the window on Fig. 1(a)). When a bug is to 
make a move, it wi l l move in direction di (e.g. d3 = HR) 
with a probability p(d»), which is determined by the for­
mula where ai is the i-the com­
ponent value of the 6-vector (e.g. a5 = 3 above). Once 
a move is made, a new directional orientation needs to 
be made. Fig.2 shows the new Fnext directions, e.g. if 
the move is R, new forward direction wi l l be to the right 
(i.e. east). For instance, a bug with a gene code of 
(1,9,1,1,1,1) turns frequently in direction R that it is 
highly likely to move in a circle. 

After 800 moves (i.e. when it attains an "age" of 800), 
the bug is said to be "mature" and is ready to reproduce 
if it is "strong" (i.e. its energy is greater than some 
threshold value of 1000 energy units). There are two 
types of reproduction, asexual and sexual. W i th asexual 
reproduction, a strong mature bug disappears and is re­
placed by two new bugs (in the same cell on the grid). 
Each daughter bug has half of the energy of its parent. 
The genes of each daughter bugs are mutated as follows. 
One of the components of the directional 6-vector is cho­
sen wi th uniform probability. The value of the direction 
is replaced by a new value chosen with uniform probabil­
i ty (over the integer range of e.g. [0,10]). Sexual repro­
duction occurs when two strong mature bugs "meet" (i.e. 
they move within a threshold distance from each other 
called the "reproductive radius"). The distance between 

two parents is defined as the Euclidean distance between 
the two parents. The reproductive radius is set at 10.0. 
The two parents continue to live and are joined by the 
two daughter bugs, where one daughter is placed in the 
grid position of one of the parents and similarly for their 
other daughter. Each parent loses half its energy in the 
sexual reproductive process. As a result, two children are 
born, whose energies are half of the average of parents' 
energies. The children's genes are obtained by applying 
mutation and uniform crossover operators to the par­
ents' genes. Thus these reproductions are constrained 
wi th probabilities. 

Fig. 1(b) shows the results of the first simple experi­
ment. The simulation began wi th 10 bugs with random 
genetic structures. Most of the bugs j i t tered from side to 
side unpredictably and are called "j i t terbugs". They are 
likely to starve to death because they eat up most of the 
food in their immediate vicinity and are unable to ex­
plore more widely. In time "cruiser" bugs evolve, which 
move forward most of the time and turn left or right oc­
casionally. (Note that if a bug hits an edge of the grid, it 
stays there unt i l an appropriate move displaces it away 
from that grid edge.) These "cruiser" bugs succeed in 
finding food and thus dominate the entire population. 
A typical chromosome for a "cruiser" bug is shown in 
the sub-window of F ig . l (b) ; i.e. (9,6,0,2,4,1). The re­
markable features of this chromosome (6-vector) are as 
follows. 
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Eden, the j itterbugs were more rewarded for their j i t ­
tering around small areas. Thus two kinds of "species" 
evolved (i.e. cruisers and twirlers) (Fig.4(c)). Note how 
typical gene codes of these two species differed from each 
other. In this second experiment, we compared three 
different strategies (asexual reproduction, sexual repro­
duction, and sexual reproduction wi th in reproductive ra­
dius) in four different situations. The aim is to evolve a 
mix of bugs, namely "cruisers" and "twir lers". We test 
two init ial conditions; a) randomized init ial bugs and b) 
"cruisers" already evolved. In addition, the influence of 
an empty area in which no bacteria exist is investigated. 
Obviously this empty-area condition makes the problem 
easier. The results of these experiments are as follows:-
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1. The forward gene (F) is large (9). 
2. The reverse gene (RV) is small (2). 
3. One of the Right (R), Left (L), Hard Right (HR) and 

Hard Left (HL) is of middle size (6). 
The second feature is important because bugs wi th large 
"reverse" (RV) gene values create "twirlers" which make 
too many turns in one direction. Such unfortunate crea­
tures usually die. The third feature is also essential, 
because intelligent bugs have to avoid loitering around 
wall edges. 

2.2 Effect iveness o f sexual r e p r o d u c t i o n 
Dewdney's original paper used only mutation operators, 
i.e. asexual reproduction. We introduce sexual repro­
duction to increase the effective evolution of our bugs. 
To show that the speed of evolution is higher wi th sex­
ual reproduction, we conducted some experiments. In 
the first experiment, we statistically compared the per­
formance rates, where the performance of bugs at the 
generation t is defined as follows:-
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As shown in the table, the sexual reproduction with a 
reproductive radius is superior to the other two strate­
gies and the improvement is significant for more difficult 
tasks such as no empty-area conditions. 

Thus we have confirmed that the crossover is useful 
for the evolution of predatory behavior. The described 
method contrasts wi th traditional GAs in that our ap­
proach uses search directions rather than positions and 
that selection is based on energy. This idea leads to a 
bug-based GA search (called BUGS2) whose implemen­
tation is described in the next section. 

3 B U G S 2 : A Bug-Based Search 
Strategy 

In this section, we apply the ideas and techniques intro­
duced in the previous section to optimization problems. 
The formalism introduced is general enough to be ap­
plicable to a 11-dimensional problem in section 4. As 
mentioned in section 1, the main idea of this paper is to 
use "bugs" as function optimizers, where the bacterial 
concentration in a region is proportional to the function 
value at that region. The function to be maximized is 



asexual reproduction can only occur with a probability 
p 
asex 

The BUGS2 version of the Genetic Algorithm BUGS-
GA(t) is shown in Table 2. 

This subroutine works in much the same way as a real 
valued GA, except that it operates on the directional 
code (DX), and not on the positional vector ( X ) . Posi­
tions are thus untouched by the adaptive process of the 
GA, and are changed only gradually as a result of DX 
increments. On the other hand, the fitness is evaluated 
using the positional potential, which is the same as for 
a real valued GA. Furthermore, chromosome selection 
is based on the cumulative fitness, i.e. the energy (see 
(8)). To summarize, the difference between a usual real 
valued GA [Wright91] and BUGS2 is as follows :-

Instead of raw vision data, we use data pre-processed 
by smoothing techniques such as the "median filter" 
[Nevatia82]. The parameters for experiments are as fol­
lows. We used a selection process to weed out hope­
less (i.e. low fitness) bugs (Selection Period and Selection 
Rate). 

Table 4 Parameters 
Fig.5(d) shows the results for three-line fitting problems. 
Each small "streak" in the (r, 0)-plane represents one 
bug. The tai l of each bug represents DX (length and 
direction) and the dot size indicates fitness (the larger 
fitness, the bigger dot). Bugs share resources and com­
pete with each other appropriately, which means they 
hill-climb over the r — 6 plane. Fig.5(c) illustrates the 
approximate search space which maps the fitness f(r,0) 
(vertical axis) in the r — 0 plane. Note that different 
"species" of bugs correspond to these optima. 

In a second experiment, we tried to derive a model 
description using (super)quadric forms from vision data 
(normals and positions). The (super)ellipsoidal shape 
model is represented in total by these eleven independent 
parameters. Fitness value is defined using the error-of-
fit measure in depth and surface orientation. The results 
(such as shown in Fig.7) were so satisfactory that we have 
confirmed the effectiveness of BUGS2. See [Iba92a,92d] 
for more details of this experiment. 

5 Discussion 
We conducted further experiments to show how the bugs 
in our BUGS2 program evolved, and how they were used 
to solve certain optimization problems [Iba92a]. To facil­
itate comparison wi th earlier GA optimization solutions, 
we used several "benchmark" optimization problems, 
such as Traveling Salesman Problem (TSP), N-queen 
problems, and DeJong's standard functions [Booker87]. 
These empirical studies highlighted the advantage of 
BUGS2 over usual GA approaches:-

1. Direction-based GAs establish an effective 
"coarse to fine" search approach. This is re­
alized by tail-shrinking mechanisms, in which 
directional code vectors DX are adaptively 
changed over the generations, so as to switch 
from global to local search. 

2. Energy-based selection integrates GA search 
with hill-climbing mechanisms. 

3. For search in higher dimensions, using 
direction-based GAs (with energy-based selec­
tion) lead to adaptive acquisition of only the 
essential search dimensions, which are known 
to be relatively few in general [Rechenberg86]. 

Therefore we believe that BUGS2 can be applied 
to wider and more practical areas. Furthermore, this 
direction-based evolution is somewhat similar to the 
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strategic learning of a meta-GA. Informally, a meta-
GA's search control can be regarded as a generalization 
of the adaptation of the bugs' directions. Current work 
involves extending the BUGS2 approach to a more struc­
tured (hierarchical) form of strategic learning, e.g using 
meta-GAs [Iba92b]. 

6 Conclusion 
This paper has described a system called BUGS2 which 
has combined the adaptive nature of traditional GA type 
search, wi th a hill-climbing mechanism. The basic idea 
of this combination is derived from the simulation of bugs 
which learn to hunt bacteria. We experimented with 
a "bug searcher" program as a preliminary study, and 
found that bugs evolve different types of search strategies 
for different niches. In order to show how well BUGS2 
performs, we undertook several experiments, e.g. line 
f i t t ing, and the recovery of shapes in a computer vision 
application. To improve the evolution of the behavior of 
the bugs, we introduced some ideas for making the bugs 
more biologically realistic. 

We believe that our BUGS2 system can be applied 
to broader and more practical areas, such as symbolic 
learning or the acquisition of meta-strategies. Further 
research on these ideas is currently under way. 
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