Evolutionary Learning Strategy using Bug-Based Search
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Abstract

We introduce a new approach to GA (Genetic
Algorithms) based problem solving. Earlier
GAs did not contain local search (i.e. hill
climbing) mechanisms, which led to optimiza-
tion difficulties, especially in higher dimensions.
To overcome such difficulties, we introduce a
"bug-based" search strategy, and implement a
system called BUGS2. The ideas behind this
new approach are derived from biologically re-
alistic bug behaviors. These ideas were con-
firmed empirically by applying them to some
optimization and computer vision problems.

1 Introduction

This paper introduces a new GA (Genetic Algorithms)
based approach to evolutionary learning. The purpose
of our research is to apply artificial life systems to practi-
cal problem solving or to establish problem solving from
nature.

Traditional GAs optimize functions by adaptive com-
bination (crossover) and mutation of coded solutions to
problems (i.e. points in the problem's search space)
[Goldberg89]. These genetic search mechanisms often
suffer from optimization difficulties cased by premature
convergence [Schaffer91] or hamming cliff [Caruana88].
Although some recent works intend to realize local search
operators for GAs [Ackley87][Muhlenbein89], it is very
difficult to switch gradually from global search to lo-
cal search by adaptive methods. Moreover, as shown in
[Rechenberg86], for search in higher dimensions typical
in computer vision applications (e.g. see the 11 dimen-
sional search space of Fig.6) there is little hope in using
random search or simple recombination methods. How-
ever, even for a higher dimensional space, in general the
essential search dimensions are relatively few. Thus the
best way is to climb up the gradient hill in these essential
dimensions.

To solve these difficulties, we present an evolutionary
learning system, called BUGS2. In our earlier paper,
we described the implementation of BUGS, a bug-based
search system using GAs [Iba92a]. The basic idea of
BUGS is that the GA chromosomes represent directional
control codes rather than positional vectors and that se-
lection criteria is based on cumulative fithess. These
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are derived from evolutionary learning models of preda-
tory behaviors [Iba92c]. BUGS2 extends BUGS by incor-
porating more biologically realistic bug behaviors, such
as sexual/asexual reproductions, variable size of popula-
tion, resource sharing and resource competition. In the
extended strategy an analogy is made between the value
(at a given point) of a function to be maximized, and the
density of bacteria at that point. As a result, the usual
GA adaptive search method is integrated more naturally
with hill climbing search. These ideas are empirically
confirmed by applying them to optimization and com-
puter vision problems.

2 Evolution of Predatory Behaviors

using Genetic Search

This section introduces the fundamental idea that our
BUGS2 program is based on. We experimented with the
evolution of bugs which possess "predatory behaviors",
i.e. the evolution of bugs which learn to hunt bacteria.
The original motivation for these experiments was de-
rived from [Dewdney89]. Bugs learn to move to those
regions in the search space where the bacterial concen-
tration is highest. Since the bug concentration is set up
to be proportional to the local value of the function to be
maximized in the search space, the "stabilized" bug con-
centrations are proportional to these search space values.
Hence the bugs learn (GA style) to be hill climbers.

2.1 Bugs hunt bacteria

Fig.1(a) illustrates the world in which our bugs (large
dots) live (a 512x512 cellular grid). They feed on bac-
teria (small dots) which are continually being deposited.
Normal bacterial deposition rate is roughly 0.5 bac-
terium per (GA) generation over the whole grid. Each
bug has its internal energy source. The maximum energy
supply of a bug is set at 1500 units. When a bug's energy
supply is exhausted, the bug dies and disappears. Each
bacterium eaten provides a bug with 40 units of energy,
which is enough to make 40 moves, where a move is de-
fined to be one of six possible directional displacements
of the bug as shown in Fig.2.

A bug's motion is determined by coded instructions on
its gene code.vSix directions a bug can move are labeled
F, R, HR, RV, HL and L for Forward, Right, Hard Right,
Reverse, Hard Left, and Left. The GA chromosome for-
mat for these bugs is an integer valued 6-vector expressed



in their order (F,R,HR,RV,HL,L), e.g. (2,1,1,1,3,2) (as
shown in the window on Fig. 1(a)). When a bug is to
make a move, it will move in direction d; (e.g. ds = HR)
with a prabahility [){‘d“»)_ which is determined by the for-
mula p{d;) = e/}, , e*, where a is the i-the com-
ponent value of the 6-vector (e.g. as = 3 above). Once
a move is made, a new directional orientation needs to
be made. Fig.2 shows the new F,. directions, e.g. if
the move is R, new forward direction will be to the right
(i.e. east). For instance, a bug with a gene code of
(1,9,1,1,1,1) turns frequently in direction R that it is
highly likely to move in a circle.

After 800 moves (i.e. when it attains an "age" of 800),
the bug is said to be "mature” and is ready to reproduce
if it is "strong" (i.e. its energy is greater than some
threshold value of 1000 energy units). There are two
types of reproduction, asexual and sexual. With asexual
reproduction, a strong mature bug disappears and is re-
placed by two new bugs (in the same cell on the grid).
Each daughter bug has half of the energy of its parent.
The genes of each daughter bugs are mutated as follows.
One of the components of the directional 6-vector is cho-
sen with uniform probability. The value of the direction
is replaced by a new value chosen with uniform probabil-
ity (over the integer range of e.g. [0,10]). Sexual repro-
duction occurs when two strong mature bugs "meet" (i.e.
they move within a threshold distance from each other
called the "reproductive radius"). The distance between
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Fig.2 Bug’s gene code

two parents is defined as the Euclidean distance between
the two parents. The reproductive radius is set at 10.0.
The two parents continue to live and are joined by the
two daughter bugs, where one daughter is placed in the
grid position of one of the parents and similarly for their
other daughter. Each parent loses half its energy in the
sexual reproductive process. As a result, two children are
born, whose energies are half of the average of parents'
energies. The children's genes are obtained by applying
mutation and uniform crossover operators to the par-
ents' genes. Thus these reproductions are constrained
with probabilities.

Fig.1(b) shows the results of the first simple experi-
ment. The simulation began with 10 bugs with random
genetic structures. Most of the bugs jittered from side to
side unpredictably and are called "jitterbugs". They are
likely to starve to death because they eat up most of the
food in their immediate vicinity and are unable to ex-
plore more widely. In time "cruiser" bugs evolve, which
move forward most of the time and turn left or right oc-
casionally. (Note that if a bug hits an edge of the grid, it
stays there until an appropriate move displaces it away
from that grid edge.) These "cruiser" bugs succeed in
finding food and thus dominate the entire population.
A typical chromosome for a "cruiser" bug is shown in
the sub-window of Fig.l(b); i.e. (9,6,0,2,4,1). The re-
markable features of this chromosome (6-vector) are as
follows.

-

Fig..l(b) Expleriment 1 (39I6.18- Generations)
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1. The forward gene (F) is large (9).

2. The reverse gene (RV) is small (2).

3. One of the Right (R), Left (L), Hard Right (HR) and

Hard Left (HL) is of middle size (6).

The second feature is important because bugs with large
"reverse" (RV) gene values create "twirlers" which make
too many turns in one direction. Such unfortunate crea-
tures usually die. The third feature is also essential,
because intelligent bugs have to avoid loitering around
wall edges.

2.2 Effectiveness of sexual reproduction
Dewdney's original paper used only mutation operators,
i.e. asexual reproduction. We introduce sexual repro-
duction to increase the effective evolution of our bugs.
To show that the speed of evolution is higher with sex-
ual reproduction, we conducted some experiments. In
the first experiment, we statistically compared the per-
formance rates, where the performance of bugs at the
generation t is defined as follows:-

)
Per formance(t) = EPerf(t -i), where (1)
i=0
_ # Eaten(k)
Perf(k} = 4 Bac(k) x #Bug(k) )
#Bug(k} = (no. of buga at the k — th generation)  (3)

#Bac(k) = (no. of bacteria at the k — th generation) (4)

#Eaten(k) = (no. of bacteria eaten by bugs at k — th gen.)
L]

This performance indicates how many bacteria are eat{er)l
by bugs as a whole for the previous 10 generations. As
can be seen in Fig.3 , sexual reproduction after the ma-
ture age (800) performs better than asexual reproduc-
tion, which is tested statistically (see [Iba92d] for more
details).

In a second experiment, the bacteria in the lower
left-hand corner (called the Garden of Eden, a square
of 75x75 cells) are replenished at a much higher rate
than normal (Fig.4(a}); normal bacterial deposition rate
is roughly 0.5 bacterium per (GA) generation over the
whole grid. In the Garden of Eden, this rate is 0.5

. x512 .
over the 75x75 area, i.c. & rate roughly 8ix%12 =~ 47

times as great. As the (GA) generations proceeded, the
ctuisers evolved as before. But within the Garden of
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1 . -

Fig.4(a) Experiment 2 (69 Generations)
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Eden, the jitterbugs were more rewarded for their jit-
tering around small areas. Thus two kinds of "species"
evolved (i.e. cruisers and twirlers) (Fig.4(c)). Note how
typical gene codes of these two species differed from each
other. In this second experiment, we compared three
different strategies (asexual reproduction, sexual repro-
duction, and sexual reproduction within reproductive ra-
dius) in four different situations. The aim is to evolve a
mix of bugs, namely "cruisers" and "twirlers". We test
two initial conditions; a) randomized initial bugs and b)
"cruisers" already evolved. In addition, the influence of
an empty area in which no bacteria exist is investigated.
Obviously this empty-area condition makes the problem
easier. The results of these experiments are as follows:-

Task Asexual | Sexual Sexual
empty crossover | Prox. crossover
initial area | mutation | mutation mutation
Random ° 8 0]
Cruisers o 0]
Crujsers X Fa¥ A
Randem X [ A : :
A difficult o possible O fast O faster

Table 1 Experimental results
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As shown in the table, the sexual reproduction with a
reproductive radius is superior to the other two strate-
gies and the improvement is significant for more difficult
tasks such as no empty-area conditions.

Thus we have confirmed that the crossover is useful
for the evolution of predatory behavior. The described
method contrasts with traditional GAs in that our ap-
proach uses search directions rather than positions and
that selection is based on energy. This idea leads to a
bug-based GA search (called BUGS2) whose implemen-
tation is described in the next section.

3 BUGS2:
Strategy

In this section, we apply the ideas and techniques intro-
duced in the previous section to optimization problems.
The formalism introduced is general enough to be ap-
plicable to a 11-dimensional problem in section 4. As
mentioned in section 1, the main idea of this paper is to
use "bugs" as function optimizers, where the bacterial
concentration in a region is proportional to the function
value at that region. The function to be maximized is
defined as :-
{z1,22, 1 @n) where z; € Dom; (6)

Where Dom,; represents the domain of the i-th (real val-
ued) parameter z;. For this type of optimization of
real valued functions, a real value GA method is used
(which is more efficient than the usual bit-string GA
[Wright91]). We use this real valued GA approach in
our integration of local search techniques.

Each bug in our BUGS2 program is characterized by
3 parameters :-

Bug;(t) : position Xi(t) = (2i(t),---,z5(t)) (7)
directional — code DX(t) = (dz}(t),--- Ldzh (1) (8)
energy eift), 9)

A Bug-Based Search

where t is the (GA) generation count of the bug, z; is ite
i-th position component in the search space, and DX;
is the directional control code which is used to deter-
mine the incremental changes in the bug positions. The
updated position is calculated as follows :-
Xi(t+1) = Xi(t) + G(DX (1)) (10)
Where the function G maps the directional-code DX
to the direction vector. For instance, in the case of the
predatory behavior described in section 2, G implements
the random move and head-turning mechanisms, where
DX = (dzy(t),~--,dzq(t)). The fitness of each bug is
derived with the aid of the function (3). The energy e:(t}
of bug "i" at time {or GA generation) "t” is defined to be
the cumulative sum of these function values with some
aging decay (see Step3 below).
With the above definitions, the BUGS?2 algorithm can
now be introduced.
Stepl The initial bug population is generated with random
values.
Pop(0} = {Bug:(0),- -+, Bugne(0)},
where Ng is the population size at GA generation 0.
The generation time is initialized to ¢ := 0.
Step2 Move each bu us'in% {7) synchronously. .
Stepd The fitness is derived using (3) and the energy is ac-
cumulated using
for t:=11to N; do Gi(t) = Ci(t - 1) + fl(X(t)) ""C"(nlg;i
where C,,. is the aging constant. o
Stepd If some bug Bug; (Bl.) ha}; I;ﬁ:tive e;erg;, it dies;
= Pop(t) — {Bug; My = Ne— 1.
Step‘:oﬁ(tghere :fi )son;[e rnl:gf;l('od‘ncibl‘e bugs, call BUGS-
t).
StepGGAf‘o;J(t + 1) 1= Pop{t), t := t + 1, Nuyy 1= N, and
then go to step2.
In STEP1, the initial bugs are generated using a uni-

form random generator for setting X and DX. In or-
der to reduce the preponderance of asexual reproduction,

Sexual reproduction :

Recombination =

individual energy gene individual energy gene
Parent) Bug(t) E, G = Parent’1 Buga(t+1} 18 G
Parenty  Bug,(t) £y Gy Parent), Bugny{t+1) : 2 e
Childy  Pugnsz{t + 1} Eth o
Childy Bugnpa(t+1) : &3z g

Reproduction condition = {Ey; > Reproduction energy threshold) A (Ea > Reproduction energy threshold)
A (distance between Parentl and Parent2 < Reproduction Radius)

G},G} © uniform crossover of G and Gy with P,ross, mutated with Pmy,

No
@ Return
Yes
Asexua! reproduction :
Individual snergy gene individual energy gene
Parent  Bug(t) : E G = Childy Bugn(t+1} i G’
Childy  Bugns;(t+1) : (14

Reproduction candition => {E > producible energy)
', G" : mutation of G with P,

Table 2 Flow chart of BUG-GA
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asexual reproduction can only occur with a probability

p
asex

The BUGS2 version of the Genetic Algorithm BUGS-
GA(t) is shown in Table 2.

This subroutine works in much the same way as a real
valued GA, except that it operates on the directional
code (DX), and not on the positional vector (X). Posi-
tions are thus untouched by the adaptive process of the
GA, and are changed only gradually as a result of DX
increments. On the other hand, the fithess is evaluated
using the positional potential, which is the same as for
a real valued GA. Furthermore, chromosome selection
is based on the cumulative fitness, i.e. the energy (see
(8)). To summarize, the difference between a usual real
valued GA [Wright91] and BUGS?2 is as follows :-

tiness romosome | Seleclion
BUGS2 | X DX Energy |
real GA X X Fitness

Table 3 BUGS2 vs. real valued GA

The main difference lies in the GA chromosome (i.e.

X v.s. DX) and the selection criteria (i.e. energy vs.
fitness). These differences will play a major role later in
this paper when we attempt to combine a hill-climbing
mechanism with the usual adaptive GA approach. The
basic idea of this combination is derived from the previ-
ous experimental results in section 2.

4 Experiments with BUGS2
This section describes some experiments for computer
vision applications. The aim of the first experiment is to
derive multiple descriptors from noisy vision data {See
Fig.5(a)). Multiple-line fitting problems are more diffi-
cult to solve than single line fitting problems and cannot
be solved easily with usual optimization techniques such
as the simulated annealing. This is because it is neces-
sary to seek different local optima simultaneously. On
the contrary, BUGS2 can solve this type of problem nat-
urally by introducing biclogically realistic features; such
as resource competition and resource sharing.
The bugs used to solve multiple-line fitting problems
are defined as follows:- . _
Bug,(1) :position Xi(t) = (r'(t),6°(t))  (12)
direction — code DX {t) = (dzi(2),---,d=z}(t)} (13)
energy ei(t), (14)
Each bug position provides two parameters (r,8) for
the equation of a straight line, where r is the distance
from the origin to the line, and # is the angle of the
normal to the line. With some simple trigonometry, it
can be shown that the equation of the line is:-
(cosb)z + (sind)y = r (15)
Hence there is a mapping (called Hough transforma-
tion) from a bug’s position (r,8) to the equation of a line.
The positions and energies of these bugs are derived as

explained in the earlier bug simulations. The fitness of
each “line finding” bug in (», @) is defined as follows:-

f(r,0) = no. of points on the line (cosb)z + (sinf)y = r
18)
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Instead of raw vision data, we use data pre-processed
by smoothing techniques such as the "median filter"
[Nevatia82]. The parameters for experiments are as fol-
lows. We used a selection process to weed out hope-
less (i.e. low fitness) bugs (Selection Period and Selection
Rate).

r (domain range} | 0.0 ~1.0 PQL‘E 58 0.6
# (domain range) | 0.0~2x | PyvraTion 0.033
line points 30~80 || Parer 0.1
random points 10 ~20 | Selection Period | 1060
Init. pop. size 40 Selection Rate 0.8
Int. Energy 5 Repr. Energy 15
Aging decay 0.8 Repr. Raidus 0.1

Table 4 Parameters

Fig.5(d) shows the results for three-line fitting problems.
Each small "streak" in the (r, 0)-plane represents one
bug. The tail of each bug represents DX (length and
direction) and the dot size indicates fitness (the larger
fitness, the bigger dot). Bugs share resources and com-
pete with each other appropriately, which means they
hill-climb over the r — 6 plane. Fig.5(c) illustrates the
approximate search space which maps the fitness f(r,0)
(vertical axis) in the r — 0 plane. Note that different
"species" of bugs correspond to these optima.

In a second experiment, we tried to derive a model
description using (super)quadric forms from vision data
(normals and positions). The (super)ellipsoidal shape
model is represented in total by these eleven independent
parameters. Fitness value is defined using the error-of-
fit measure in depth and surface orientation. The results
(such as shown in Fig.7) were so satisfactory that we have
confirmed the effectiveness of BUGS2. See [Iba92a,92d]
for more details of this experiment.

5 Discussion

We conducted further experiments to show how the bugs
in our BUGS2 program evolved, and how they were used
to solve certain optimization problems [Iba92a]. To facil-
itate comparison with earlier GA optimization solutions,
we used several "benchmark" optimization problems,
such as Traveling Salesman Problem (TSP), N-queen
problems, and Dedong's standard functions [Booker87].
These empirical studies highlighted the advantage of
BUGS2 over usual GA approaches:-

1. Direction-based GAs establish an effective
"coarse to fine" search approach. This is re-
alized by tail-shrinking mechanisms, in which
directional code vectors DX are adaptively
changed over the generations, so as to switch
from global to local search.

2. Energy-based selection integrates GA search
with hill-climbing mechanisms.

3. For search in higher dimensions, using
direction-based GAs (with energy-based selec-
tion) lead to adaptive acquisition of only the
essential search dimensions, which are known
to be relatively few in general [Rechenberg86].

Therefore we believe that BUGS2 can be applied
to wider and more practical areas. Furthermore, this
direction-based evolution is somewhat similar to the
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strategic learning of a meta-GA. Informally, a meta-
GA's search control can be regarded as a generalization
of the adaptation of the bugs' directions. Current work
involves extending the BUGS2 approach to a more struc-
tured (hierarchical) form of strategic learning, e.g using
meta-GAs [Iba92b].

6 Conclusion

This paper has described a system called BUGS2 which
has combined the adaptive nature of traditional GA type
search, with a hill-climbing mechanism. The basic idea
ofthis combination is derived from the simulation of bugs
which learn to hunt bacteria. We experimented with
a "bug searcher" program as a preliminary study, and
found that bugs evolve different types of search strategies
for different niches. In order to show how well BUGS2
performs, we undertook several experiments, e.g. line
fitting, and the recovery of shapes in a computer vision
application. To improve the evolution of the behavior of
the bugs, we introduced some ideas for making the bugs
more biologically realistic.

We believe that our BUGS2 system can be applied
to broader and more practical areas, such as symbolic
learning or the acquisition of meta-strategies. Further
research on these ideas is currently under way.
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